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Abstract

Deep neural networks (DNNs) have revolutionized medical image analysis and
disease diagnosis. Despite their impressive increase in performance, it is diffi-
cult to generate well-calibrated probabilistic outputs for such networks such that
state-of-the-art networks fail to provide reliable uncertainty estimates regarding
their decisions. We propose a simple but effective method using traditional data
augmentation methods such as geometric and color transformations at test time.
This allows to examine how much the network output varies in the vicinity of
examples in the input spaces. Despite its simplicity, our method yields useful
estimates for the input-dependent predictive uncertainties of deep neural networks.
We showcase the impact of our method via the well-known collection of fundus
images obtained from a previous Kaggle competition.

1 Introduction

Deep neural networks (DNNs) have emerged as powerful image analysis and prediction tools also in
medical image analysis and disease diagnosis. For instance, DNNs surpassed or achieved human-level
performance on skin cancer classification from dermoscopic images [1] and diabetic retinopathy (DR)
detection from fundus images [2] . Despite their impressive improvement in various performance
metrics, such as accuracy, sensitivity, specificity, F1 score, or ROC-AUC, which mainly describe a
model’s discriminative power, DNNs do not generate well-calibrated reliable uncertainty estimates
regarding their decisions [3, 4, 5, 6]. Especially in medical settings, uncertainty estimates are crucial,
however [7].

The predictive uncertainty of neural networks can be decomposed into two parts: epistemic uncertainty
and aleatoric uncertainty [5]. Epistemic uncertainty can be formalized by means of a probability
distribution over the model parameters and accounts for our ignorance about them. It is also known
as model uncertainty and can be explained away given enough data [5]. The remaining uncertainty is
called aleatoric uncertainty and described by the noise inherent in observations, that is the model’s
input-dependent uncertainty. Despite the epistemic uncertainty may vanish in the case of zero
parameter ignorance, aleatoric uncertainty remains, for instance, due to sensor noise and motion noise.
Aleatoric uncertainty cannot be explained away with more data; however, it can be formalized by a
distribution over model outputs [5]. Aleatoric uncertainty can be further divided into two subtypes:
homoscedastic and heteroscedastic. In the case of homoscedasticity, uncertainty is assumed to be
constant for different inputs. Heteroscedastic uncertainty is useful when modeling assumptions
include variable noise across the parts of input space. Considering the epistemic and aleatoric
uncertainties as the properties of model and data, respectively, [5] proposed a Bayesian deep learning
framework that jointly models both types of uncertainties. While simultaneous modeling of both
enables the best efficacy, the overall performance is dominated by the explanation of aleatoric
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uncertainty. The contribution from the epistemic component is marginal. Moreover, the explanation
of aleatoric uncertainty compensates for the epistemic uncertainty when they are modeled separately.
Therefore, in the regime of big data, it is more effective to tackle aleatoric uncertainty, since the
epistemic one will be explained away. Moreover, “we can form aleatoric models without expensive
Monte Carlo samples.” - [5, p.9], which generously opens up new avenues to explore.

Here we propose to model aleatoric uncertainty based on data augmentation techniques. The goal of
data augmentation is to obtain additional examples for a dataset so that a machine learning algorithm
can learn from a larger and preferably better set of examples. Although the data augmentation
strategy for training is well-established and has been used to improve the discriminative performance
of models during inference, to the best of our knowledge, estimation of predictive uncertainty via
test-time data augmentation is an unexplored territory. We focus on traditional data augmentation
methods, such as simple geometric and color transformations. We hypothesize that such simple but
random transformations of examples will enable us to capture heteroscedastic aleatoric uncertainty
of deep neural networks. In this setting, we emphasize the aleatoric uncertainty; however, data
augmentation during training may also help reduce the epistemic uncertainty since it contributes to
learning experience of networks.

In the next section, we review the recent methods for the estimation of predictive uncertainties of
deep neural networks. Then, we present ours and demonstrate its impact on a well-known diabetic
retinopathy (DR) detection dataset. Lastly, we discuss the results and provide an outlook for further
evaluation of the test-time data augmentation strategy for predictive uncertainty estimation.

2 Related Work

Despite the fact that Bayesian neural networks are easy to formulate, they are computationally
intractable for many real world problems [3, 5, 8]. In this regard, dropout [9], which is essentially
a regularization technique based on random selections of active neurons, has been used to perform
approximate Bayesian inference [3]. By turning dropout on at test time and having T forward passes,
given a test case, one can obtain a predictive distribution as a proxy for the true predictive posterior.
This method is called Monte Carlo Dropout (MCDO). MCDO is simple, efficient and captures model
uncertainty. Leibig et al. used a VGG-like CNN equipped with MCDO for DR detection from fundus
images [7] . To mimic a clinical work flow, they leveraged the predictive uncertainty information
and referred difficult cases for further inspection, which resulted in substantial improvements in DR
detection performance in the remaining data.

Recently, Batch Normalization (BN) has been cast as an approximate Bayesian inference method:
Monte Carlo Batch Normalization (MCBN) [10]. Essentially, BN [11, 12] uses the lower order
moments (µB, σB in Eq. 1) of pre/activations (x) generated by a neuron, given a minibatch of size
m sampled during stochastic training, and normalizes them w.r.t. the minibatch statistics. Then, it
restores the representational power of the network via an affine transform that scales (γ) and shifts
(β) the normalized values (x̂i). Note that γ and β are learned via backpropagation [11].

µB =
1

m

m∑
i=1

xi σB =

√√√√ 1

m

m∑
i=1

(xi − µB)2

x̂i =
xi − µB

σB
yi = γx̂i + β ≡ BNγ,β(xi)

(1)

BN reduces the network’s internal covariate shift and stabilizes the training of neural networks. Also,
minibatch statistics collected during training give rise to moving averages µ and σ that are used during
inference. Ultimately, BN improves the generalization performance of neural networks. As a by
product, it offers a compelling regularization performance [11, 12]. Thus, BN has replaced dropout
and state-of-the-art networks, e.g., ResNets [13, 14], use only BN. However, BN has its drawbacks
[12]: i) the estimates of µB and σB become inaccurate and the effectiveness of BN diminishes, when
m is small, ii) non-i.i.d. examples in minibatches interact at every layer, which may cause the network
to overfit to the specific distribution of minibatches, iii) the activities generated by the network during
training and inference may differ. Batch Renormalization (BReN) [12] reinforces BN by relating the
minibatch statistics to the moving averages via an affine transformation (Eq. 2) and corrects them
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while training. Thus, it uses more informed statistics even if m is small, addresses the discrepancy
between the activations generated during training and inference, and improves on BN.

xi − µ
σ

=
xi − µB

σB
r + d, where r =

σB
σ
, d =

µB − µ
σ

(2)

MCBN exploits the stochasticity of minibatch statistics in order to obtain predictive distributions.
T forward passes with random minibatches sampled from training data during inference leads to
a predictive distribution for a test case. In this respect, MCBN also captures model uncertainty.
However, MCBN explicitly shies aways from the use of moving averages during inference and
resorts to those obtained from individual minibatches for the sake of stochasticity in predictions.
Clearly, this indicates a fallback from the maximum attainable performance of a network, especially
given the whole purpose of BReN. Also, it should be noted that MCBN requires the training data
to be available for the sampling of minibatches for stochastic normalization during inference. Last
but not least, MCBN further requires that the same minibatch size be specified during training and
inference; otherwise, the respective approximate posteriors would be inconsistent [10]. Considering
that inference generally takes less resources than training, one may try to use a larger batch size
during inference; however, this is prohibited by MCBN, while permitted by BN. Also, if a pre-trained
network is used for inference, it is virtually impossible to figure out the training minibatch size, unless
it is documented somewhere.

The quality of uncertainties offered by Bayesian neural networks depends on the suitability of the
prior and the approximation quality which is usually tied to computational constraints. Non-Bayesian
alternatives can offer simpler yet effective means to quantify the uncertainties of deep neural networks.
[6] has recently proposed an ensemble approach and combined it with adversarial training. Basically,
the ensemble consists of multiple neural networks and it is diversified by their random initializations as
well as random shuffling of training examples. As a result, it readily provides predictive distributions
and uncertainty estimates during inference. Adversarial examples, which are essentially augmented
training examples: x′ = x + εsign (∇xJ(θ,x, y)) [15, 6], explore the localities of the original
training examples to test the robustness of neural networks. As a result, the likelihood of the data
smooths out in the ε-neighborhood of examples and the ensemble generates well-calibrated outputs
[6]. Note that the exploration is guided by gradients and the adversarial examples are attracted
towards the objective function (Figure 1). While the procedure cleverly avoids the computational
burden of the ideal exploration in all 2D directions in {+1,−1}D [6], it clearly leaves us with the
following question: Can we efficiently explore the localities of examples in all directions in order to
obtain predictive uncertainty estimates?

Figure 1: Illustration of ε-neighborhood exploration in 1-D. Given a data point (blue), adversarial
examples generated by the fast gradient sign method are attracted towards the likelihood function
(red) because of the positive gradients (green). Thus, the left hand side of the original example is left
mostly unexplored.
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3 Test-time Data Augmentation for Aleatoric Uncertainty Estimation

We aim to test whether it is possible to use data augmentation techniques as an efficient and effective
means to explore the locality of the example given in Figure 1 with a sweeping capacity greater than
that of adversarial examples generated by the fast gradient sign method [15, 6]. With more freedom
to traverse different parts of input spaces, we aim to estimate the heteroscedastic aleatoric uncertainty
of deep neural networks. To this end, we resort to test-time data augmentation and propose a general
purpose uncertainty estimation method that is independent of training procedures as well as the
choice of pretrained architectures. However, we emphasize the use of BReN for training in order to
attain the maximum performance of a network.

Our approach amounts to generating T augmented examples per test case and feeding them to a neural
network so as to obtain a predictive distribution which can then be used to evaluate the predictive
uncertainty. We conjecture that simple and randomized transformations of examples will enable us to
efficiently and effectively estimate the input-dependent uncertainties of deep neural networks. Our
data augmentation pipeline consists of the following geometric and color transformations in the given
order: random crop and resize, random brightness, hue, saturation, and contrast adjustments, random
horizontal and vertical flips, and random rotation.

4 Experiments

We evaluate our method using the well-known collection of fundus images obtained from a previous
Kaggle competition [16]. The dataset consists of 35,126 training images and 53,576 test images
graded by clinicians according to DR scales (Figure 2). During the competition, the labels of 10,906
test images were public and used for validation purposes by participants. Rest was private and
internally used for ranking submitted solutions. The dataset is severely imbalanced. It is dominated
by the examples of No DR, which corresponds to ∼73% of images in both the training and test sets.

0 - No DR 1 - Mild DR 2 - Moderate DR 3 - Severe DR 4 - Proliferative DR

Figure 2: Examples of fundus images from the Kaggle DR dataset. Class priors based on the training
set are as follows: 0: 73.48%, 1: 6.95%, 2: 15.06%, 3: 2.48%, 4: 2.01%.

4.1 Image Processing and Data Augmentation

All images are cropped to a squared center region and resized to 512× 512 pixels (Figure 2). Then,
they are color-normalized as described in [7] for contrast enhancement. For simplicity and the sake of
floating point representation of images, pixel values are mapped from [0, 255] into [0, 1]. In addition
to image processing, we perform data augmentation via the pipeline described in Section 3 during
training. With a probability of 0.5, each image is cropped to a box, corners of which are randomly
sampled from the margins of 1/3 of height or width from each side, and resized to 512× 512. Then,
color transformations are applied with offsets for brightness and hue adjustments sampled from
[−0.5, 0.5) and [−0.5, 0.5], respectively. Saturation and contrast factors are from [0, 3]. At this point,
resulting pixel values are clipped into [0, 1]. Then, the remaining geometric transformations are
applied. The probability of horizontal or vertical flip is 0.5 and the image is rotated by an angle from
[−π, π]. Figure 3 shows several examples obtained via the pipeline. We use the same configuration
at test time, as well.
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Figure 3: Exemplary images obtained via image processing and data augmentation. Images exhibit
high diversity due to the wide range of parameter specifications used in the pipeline.

4.2 Network Architecture, Training and Inference

We implemented1 a CNN based on the ResNet50 [13, 14] architecture, details of which are provided
in Table 1. While we followed the principles of the original architecture, we made our own design
choices, as well. For instance, our network includes an additional fully connected layer before
softmax. Also, it uses parametric ReLUs (PReLUs) [17] in the first convolutional stack and the fully
connected layer. Since these parts of the network has no residual connections, we used PReLUs in
order to promote gradient propagation through those layers. The intermediate convolutional stacks
fully enjoy the residual architecture with ReLUs and head nodes use max pooling to downsample
their inputs in order to match the dimensions to the corresponding residual parts. The use of max
pooling in lieu of 1x1 convolutions with strides of 2 aims to keep a clean information path with no
scaling effects as per [14]. All weight layers in the network use BReN. Lastly, we concatenate the
max and average pooled features from the convolutional stack before the fully connected layer.

We train the network with softmax cross-entropy loss in an end-to-end fashion for 1,000,000 iterations
with Adam [18]. For the first 200,000 iterations, we use balanced minibatches of 5 in an attempt
to combat severe class imbalance. Then, we increase the minibatch size to 8 and sample stratified
batches until the end of training, which lets the network adjust itself to the true distribution of classes
with an incentive of oversampling2. As a result of data augmentation, the network is exposed to 7.4
million images generated during training. Weights are initialized via He’s initialization [17] and we
use weight decay with λ = 1e− 5. Initial learning rate is 0.005 and it decays with a rate of 0.96 at
every 25,000 iterations. Also, the performance of the network is validated on the public examples
once in 10,000 iterations. The best performing configuration is saved and used for inference. When
making predictions via test-time data augmentation, we generate T = 128 augmented examples and
rely on the median probability scores. We evaluate the uncertainties w.r.t. interquartile range.

4.3 Results

In addition to the 5-way classification of fundus images, we introduce two additional binary classifica-
tion tasks by considering two scenarios for healthy vs. diseased separation. Given an onset level, say
1 - Mild DR or 2 - Moderate DR, we dichotomize the network outputs by summing up the softmax
values according to the onset level. Figure 4.a shows the training curve of the network. Zooming into
the tail reveals that the network needs more training until convergence. Despite its non-convergence
even after 1,000,000 iterations, its validation performances on two binary classification tasks (Fig-
ure 4.b) suggest that the network has reached a reasonable discriminative capacity. Under the onset
level 1 scenario, it achieves a ROC-AUC score of 0.876, whereas Leibig et al. reported 0.889. Given
that our priority is uncertainty estimation, we save the discriminative performance improvements for
later. Further analysis of the performances via multi-class ROC-AUC scores in Figure 5.a reveals that
the most of the network’s discriminative power stems from its ability to recognize the examples of
two classes: Class 0 (no DR) and Class 3 (severe DR). While the examples of Class 1 (mild DR) and
2 (moderate DR) have been shown to be the most difficult ones [7] as these are transitional stages of
DR, the same network performs poorly on the examples of Class 4 (proliferative DR), which is a bit
surprising since the patterns of proliferative DR are expected to be more pronounced in comparison

1Code available at https://github.com/berenslab/ttaug-midl2018
2Minibatches of 8 consists of 3,1,2,1 and 1 examples from each class, which still induces an oversampling of

the minority classes; however, it preserves the majority of the No DR examples.
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Table 1: Network architecture based on ResNet50 [13, 14] and implemented in Tensorflow 1.4.1 [19]
Stack ID Output size Act. Func. Specification Note

input 512× 512× 3 - -

conv1 256× 256× 64 PReLU 5× 5, 64, /2

128× 128× 64 - 3× 3 max pool,/2

conv2 128× 128× 256 ReLU [1× 1, 64 head block
does not
downsample

3× 3, 64
1× 1, 256]× 3

conv3 64× 64× 512 ReLU [1× 1, 128 head block
downsamples
by /2

3× 3, 128
1× 1, 512]× 4

conv4 32× 32× 1024 ReLU [1× 1, 256 head block
downsamples
by /2

3× 3, 256
1× 1, 1024]× 6

conv5 16× 16× 2048 ReLU [1× 1, 512 head block
downsamples
by /2

3× 3, 512
1× 1, 2048]× 3

1× 1× 4096 16× 16 max pool + 16× 16 avg. pool

fc PReLU Fan in: 4096
Fan out: 1024

softmax softmax Fan in: 1024
Fan out: 5

to severe DR. Reminding ourselves that proliferative DR is the most underrepresented class in our
dataset, we speculate that the network would have achieved better performance on such examples
if it had converged to a better solution. Selection of better hyperparameters and improved training
procedures can remedy this situation along with the slight overfitting that can be observed from
Figure 5, which we also leave for further investigation.

(a) Training curves through the entire training (red)
and between the 10001-1,000,000th iterations (blue).

(b) Validation performance of the network w.r.t. dif-
ferent onset levels

Figure 4: Training and validation curves of networks.

Test-time data augmentation yields a competitive discrimination performance (Figure 5.b) and offers
slight improvements on all of the baseline performance scores achieved via the traditional inference
scheme. The performance improvement is a by-product of test-time data augmentation and our
results suggest error-correction via neighborhood exploration. We find it promising for boosting
the network’s performance, explaining the decisions as well as relabeling examples, all of which
will require further analysis. For now, in order to demonstrate the effectiveness of test-time data
augmentation for uncertainty estimation, we consider two binary classification tasks introduced earlier.
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(a) Traditional single prediction scheme

(b) T predictions via test-time data augmentation

Figure 5: Multi-class Receiver Operating Characteristics of the network.

Figure 6 shows the distributions of the input-dependent predictive uncertainties in both scenarios.
Clearly, missed predictions are associated with higher uncertainty levels, which are also indicative of
difficult cases that are usually located around class boundaries as shown by [7]. Similar to their case,
we propose to leverage the uncertainty information in order to refer the difficult cases for further
inspection by a physician. To this end, we rank the predictions by their uncertainty estimates and
refer them based on various levels of tolerated uncertainty for further inspection. Then, we measure
the ROC-AUC scores due to the predictions for the remaining cases. As a result of decision referral,
we obtain monotonic performance improvements (Figure 7) on the remaining data that are safer to
diagnose automatically. If 50% of data is referred for further inspection, our network achieves a score
of 0.92 among the remaining data, whereas Leibig et al. reported 0.94 at the same referral rate. Also
note that random referral has no such gain, which indicates that our uncertainty estimates are useful.

5 Discussion

We propose a simple and general purpose predictive uncertainty estimation method for deep neural
networks. In particular, we demonstrate its effectiveness on a well-known collection of fundus
images curated for DR detection. Despite its simplicity, test-time data augmentation is efficacious for
evaluating the heteroscedastic aleatoric uncertainty of deep neural networks. Via a decision referral
scenario that mimics a clinical work flow, we show that the uncertainty measures obtained by our
method are useful. To the best of our knowledge, we are the first to demonstrate the use of test-time
data augmentation for the evaluation of deep neural networks’ predictive uncertainty. Considering that
MCDO is phasing out due to the replacement of dropout with BN as well as MCBN’s practical issues
outlined in Section 2, test-time data augmentation is a promising avenue to explore, especially as an
alternative to expensive Monte Carlo methods and approximate Bayesian inference. As an extension
to this work, we will investigate the impact of components in our data augmentation pipeline on
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(a) Onset level 1 (b) Onset level 2

Figure 6: Distributions of uncertainties for all test images, grouped by classification results.

Figure 7: Improvement in performance via uncertainty-informed decision referral.

uncertainty and provide an analysis of the variation in input data. Also, we look forward to seeing
what more sophisticated data augmentation methods will do to this end.

While the uncertainty estimates obtained via our method are useful, they may still reflect our lack
of knowledge about the model parameters due to finite training data. In this regard, it will be
essential to distinguish between the epistemic and aleatoric uncertainties. [20] has recently shown
that information gain can do the trick. Adopting their approach, we will quantify how well our
method captures the heteroscedastic aleatoric uncertainty of deep neural networks.

Ensemble approach to the estimation of predictive uncertainties is also of interest to us. Each member
of an ensemble aims to reduce the bias and the ensemble uses their combined wisdom to tackle
the variance. In this respect, we will construct an ensemble of networks. Under this scenario, we
will follow the guidelines proposed by [6], exploit the randomness from parameter initialization and
data shuffling as well as augmentation, and use our test-time data augmentation strategy to estimate
predictive uncertainty. Given that the ensemble approach addressed the mode collapse of MCDO by
better capturing the full posterior [20], we expect to improve the explanation of aleatoric uncertainty
via ensembles of networks.

In the scope of our study, we focus on aleatoric uncertainty; however, epistemic uncertainty is also
useful in small data scenarios and for detection of out-of-sample examples, e.g., anomalies. Even
though the epistemic uncertainty is due to the model parameters, it will be interesting to see what the
test-time data augmentation approaches will bring in this regard. We leave it for future work.
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