
Under review as a conference paper at ICLR 2018

AUTOREGRESSIVE CONVOLUTIONAL NEURAL
NETWORKS FOR ASYNCHRONOUS TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Significance-Offset Convolutional Neural Network, a deep convolu-
tional network architecture for regression of multivariate asynchronous time se-
ries. The model is inspired by standard autoregressive (AR) models and gating
mechanisms used in recurrent neural networks. It involves an AR-like weighting
system, where the final predictor is obtained as a weighted sum of adjusted re-
gressors, while the weights are data-dependent functions learnt through a convo-
lutional network. The architecture was designed for applications on asynchronous
time series and is evaluated on such datasets: a hedge fund proprietary dataset of
over 2 million quotes for a credit derivative index, an artificially generated noisy
autoregressive series and household electricity consumption dataset. The pro-
posed architecture achieves promising results as compared to convolutional and
recurrent neural networks. The code for the numerical experiments and the archi-
tecture implementation will be shared online to make the research reproducible.

1 INTRODUCTION

Time series forecasting is focused on modeling the predictors of future values of time series given
their past. As in many cases the relationship between past and future observations is not determin-
istic, this amounts to expressing the conditional probability distribution as a function of the past
observations:

p(Xt+d|Xt, Xt−1, . . .) = f(Xt, Xt−1, . . .). (1)
This forecasting problem has been approached almost independently by econometrics and machine
learning communities.

In this paper we examine the capabilities of convolutional neural networks (CNNs), (Lecun et al.,
1998) in modeling the conditional mean of the distribution of future observations; in other words, the
problem of autoregression. We focus on time series with multivariate and noisy signal. In particular,
we work with financial data which has received limited public attention from the deep learning
community and for which nonparametric methods are not commonly applied. Financial time series
are particularly challenging to predict due to their low signal-to-noise ratio (cf. applications of
Random Matrix Theory in econophysics (Laloux et al., 2000; Bun et al., 2017)) and heavy-tailed
distributions (Cont, 2001). Moreover, the predictability of financial market returns remains an open
problem and is discussed in many publications (cf. efficient market hypothesis of Fama (1970)).

A common situation with financial data is that the same signal (e.g. value of an asset) is observed
from different sources (e.g. financial news, analysts, portfolio managers in hedge funds, market-
makers in investment banks) in asynchronous moments of time. Each of these sources may have a
different bias and noise with respect to the original signal that needs to be recovered (cf. time series
in Figure 1). Moreover, these sources are usually strongly correlated and lead-lag relationships are
possible (e.g. a market-maker with more clients can update its view more frequently and precisely
than one with fewer clients). Therefore, the significance of each of the available past observations
might be dependent on some other factors that can change in time. Hence, the traditional economet-
ric models such as AR, VAR, VARMA (Hamilton, 1994) might not be sufficient. Yet their relatively
good performance motivates coupling such linear models with deep neural networks that are capable
of learning highly nonlinear relationships.

1iTraxx Europe Main Index, a tradable Credit Default Swap index of 125 investment grade rated European
entities.

1

Under review as a conference paper at ICLR 2018

07:00:00 08:00:00 09:00:00 10:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00
time

75.0

75.5

76.0

76.5

77.0

77.5

78.0

78.5

79.0

79.5

pr
ic

e

evolution of quoted prices throughout one day

source A bid
source A ask

source B bid
source B ask

source C bid
source C ask

source D bid
source D ask

Figure 1: Quotes from four different market par-
ticipants (sources) for the same CDS1 throughout
one day. Each trader displays from time to time
the prices for which he offers to buy (bid) and sell
(ask) the underlying CDS. The filled area marks
the difference between the best sell and buy offers
(spread) at each time.

For these reasons, we propose Significance-
Offset Convolutional Neural Network, a Convo-
lutional Network extension of standard autore-
gressive models (Sims, 1972; 1980) equipped
with a nonlinear weighting mechanism and pro-
vide empirical evidence on its competitiveness
with standard multilayer CNN and recurrent
Long-Short Term Memory network (Hochreiter
& Schmidhuber, 1997). The mechanism is in-
spired by the gating systems that proved suc-
cessful in recurrent neural networks (Hochre-
iter & Schmidhuber, 1997; Chung et al., 2014)
and highway networks (Srivastava et al., 2015).

2 RELATED WORK

2.1 TIME SERIES FORECASTING

Literature in time series forecasting is rich and has a long history in the field of econometrics which
makes extensive use of linear stochastic models such as AR, ARIMA and GARCH processes to
mention a few. Unlike in machine learning, research in econometrics is more focused on explaining
variables rather than improving out-of-sample prediction power. In practice, one can notice that
these models ‘over-fit’ on financial time series: their parameters are unstable and out-of-sample
performance is poor.

Reading through recent proceedings of the main machine learning venues (e.g. ICML, NIPS, AIS-
TATS, UAI), one can notice that time series are often forecast using Gaussian processes (Petelin
et al., 2011; Tobar et al., 2015; Hwang et al., 2016), especially when time series are irregularly sam-
pled (Cunningham et al., 2012; Li & Marlin, 2016). Though still largely independent, researchers
have started to “bring together the machine learning and econometrics communities” by building on
top of their respective fundamental models yielding to, for example, the Gaussian Copula Process
Volatility model (Wilson & Ghahramani, 2010). Our paper is in line with this emerging trend by
coupling AR models and neural networks.

Over the past 5 years, deep neural networks have surpassed results from most of the existing liter-
ature in many fields (Schmidhuber, 2015): computer vision (Krizhevsky et al., 2012), audio signal
processing and speech recognition (Sak et al., 2014), natural language processing (NLP) (Bengio
et al., 2003; Collobert & Weston, 2008; Grave et al., 2016; Jozefowicz et al., 2016). Although se-
quence modeling in NLP, i.e. prediction of the next character or word, is related to our forecasting
problem (1), the nature of the sequences is too dissimilar to allow using the same cost functions and
architectures. Same applies to the adversarial training proposed by Mathieu et al. (2016) for video
frame prediciton, as such approach favors most plausible scenarios rather than outputs close to all
possible outputs, while the latter is usually required in financial time series due to stochasticity of
the considered processes.

Literature on deep learning for time series forecasting is still scarce (cf. Gamboa (2017) for a recent
review). Literature on deep learning for financial time series forecasting is even scarcer though in-
terest in using neural networks for financial predictions is not new (Mozer, 1993; McNelis, 2005).
More recent papers include Sirignano (2016) that used 4-layer perceptrons in modeling price change
distributions in Limit Order Books, and Borovykh et al. (2017) who applied more recent WaveNet
architecture of van den Oord et al. (2016a) to several short univariate and bivariate time-series (in-
cluding financial ones). Despite claim of applying deep learning, Heaton et al. (2016) use autoen-
coders with a single hidden layer to compress multivariate financial data. Besides these and claims
of secretive hedge funds (it can be marketing surfing on the deep learning hype), no promising re-
sults or innovative architectures were publicly published so far, to the best of our knowledge. In
this paper, we investigate the gold standard architectures’ (simple Convolutional Neural Network
(CNN), Residual Network, multi-layer LSTM) capabilities on AR-like artificial asynchronous and
noisy time series, and on real financial data from the credit default swap market where some ineffi-
ciencies may exist, i.e. time series may not be totally random.

2

Under review as a conference paper at ICLR 2018

2.2 GATING AND WEIGHTING MECHANISMS

Gating mechanisms for neural networks were first proposed by Hochreiter & Schmidhuber (1997)
and proved essential in training recurrent architectures (Jozefowicz et al., 2016) due to their ability
to overcome the problem of vanishing gradient. In general, they can be expressed as

f(x) = c(x)⊗ σ(x), (2)

where f is the output function, c is a ‘candidate output’ (usually a nonlinear function of x), ⊗ is an
element-wise matrix product and σ : R→ [0, 1] is a sigmoid nonlinearity that controls the amount of
the output passed to the next layer (or to further operations within a layer). Appropriate compositions
of functions of type 2 lead to the popular recurrent architectures such as LSTM (Hochreiter &
Schmidhuber, 1997) and GRU (Chung et al., 2014).

A similar idea was recently used in construction of highway networks (Srivastava et al., 2015) which
enabled successful training of deeper architectures. van den Oord et al. (2016b) and Dauphin et al.
(2016) proposed gating mechanisms (respectively with hyperbolic tangent and linear ‘candidate
outputs’) for training deep convolutional neural networks.

The gating system that we propose is aimed at weighting a number of different ‘candidate predic-
tors’ and therefore is most closely related to the softmax gating used in MuFuRU (Multi-Function
Recurrent Unit, Weissenborn & Rocktäschel (2016)), i.e.

f(x) =

L∑
l=1

pl(x)⊗ f l(x), p(x) = softmax(p̂(x)), (3)

where (f l)Ll=1 are candidate outputs (composition operators in MuFuRu) and (p̂l)Ll=1 are linear
functions of the inputs.

The idea of weighting outputs of the intermediate layers within a neural networks is also used in
attention networks (See e.g. Cho et al. (2015)) that proved successful in such tasks as image cap-
tioning and machine translation. Our approach is similar as the separate inputs (time series steps)
are weighted in accordance with learned functions of these inputs, yet different since we model these
functions as multi-layer CNNs (instead of projections on learned directions) and since we do not use
recurrent layers. The latter is important in the above mentioned tasks as it enables the network to
remember the parts of the sentence/image already translated/described.

3 MOTIVATION

Time series observed in irregular moments of time make up significant challenges for learning algo-
rithms. Gaussian processes provide useful theoretical framework capable of handling asynchronous
data; however, due to assumed Gaussianity they are inappropriate for financial datasets, which often
follow fat-tailed distributions (Cont, 2001). On the other hand, prediction of even a simple autore-
gressive time series such us AR(2) given by X(t) = αX(t− 1) + βX(t− 2) + ε(t) 2 may involve
highly nonlinear functions when sampled irregularly. Precisely, it can be shown that the conditional
expectation

E[X(t)|X(t− 1), X(t− k), k] = akX(t− 1) + bkX(t− k), (4)
where ak and bk are rational functions of α and β (See Appendix A for the proof). This would not
be a problem if k was fixed, as then one would be interested in estimating of ak and bk directly; this,
however, is not the case with asynchronous sampling. When X is an autoregressive series of higher
order and more past observations are available, the analogous expectation E[X(tn)|{X(tn−m),m =
1, . . . ,M}] would involve more complicated functions that in general may not possess closed forms.

In real–world applications we often deal with multivariate time series whose dimensions are ob-
served separately and asynchronously. This adds even more difficulty to assigning appropriate
weights to the past values, even if the underlying data structure is linear. Furthermore, appropri-
ate representation of such series might be not obvious as aligning such series at fixed frequency may
lead to loss of information (if too low frequency is chosen) or prohibitive enlargement of the dataset
(especially when durations have varying magnitudes), see Figure 2A. As an alternative, we might

2Where ε(t) is an error term independent of {X(s) : s < t}.

3

Under review as a conference paper at ICLR 2018

consider representing separate dimensions as a single one with dimension and duration indicators
as additional features. Figure 2B presents this approach, which is going to be at the core of the
proposed architecture.

(A)

(B)

Figure 2: (A) Fixed sampling frequency and
it’s drawbacks; keeping all available information
leads to much more datapoints. (B) Proposed data
representation for the asynchronous series. Con-
secutive observations are stored together as a sin-
gle value series, regardless of which series they
belong to; this information, however, is stored
in indicator features, alongside durations between
observations.

A natural model for prediction of such se-
ries could be an LSTM, which, given con-
secutive input values and respective durations
(X(tn), tn − tn−1) =: xn in each step would
memorize the series values and weight them at
the output according to the durations. How-
ever, the drawback of such approach lies in
imbalance between the needs for memory and
for nonlinearity: the weights that such network
needs to assign to the memorized observations
potentially require several layers of nonlinear-
ity to be computed properly, while past obser-
vations might just need to be memorized as they
are.

For these reasons we shall consider a model that
combines simple autoregressive approach with
neural network in order to allow learning mean-
ingful data-dependent weights

E[xn|{xn−m,m = 1, . . . ,M}] =

=

M∑
m=1

αm(xn−m) · xn−m (5)

where (αm)Mm=1 satisfying α1 + · · ·+αM ≤ 1
are modeled using neural network. To allow
more flexibility and cover situations when e.g.
observed values of x are biased, we should con-
sider the summation over terms αm(xn−m) ·
f(xn−m), where f is also a neural network. We
formalize this idea in Section 4.

4 MODEL ARCHITECTURE

Suppose that we are given a multivariate time series (xn)n ⊂ Rd and we aim to predict the condi-
tional future values of a subset of elements of xn

yn = E[xIn|{xn−m,m = 1, 2, . . .}], (6)

where I = {i1, i2, . . . idI
} ⊂ {1, 2, . . . , d} is a subset of features of xn. Let x−Mn = (xn−m)Mm=1.

We consider the following estimator of yn

ŷ(i)n =

M∑
m=1

[
F (x−Mn)⊗ σ(S(x−Mn))

]
im
, i ∈ 1, 2, . . . , dI , (7)

where

• F, S : Rd×M → RdI×M are neural networks described below,

• σ is a normalized activation function independent on each row, i.e.

σ((aT1 , . . . , a
T
dI

)T) = (σ(a1)T , . . . , σ(adI
)T)T (8)

for any a1, . . . , adI
∈ RM and σ such that σ(a)T1M = 1 for any a ∈ RM .

• ⊗ is Hadamard (element-wise) matrix multiplication.

4

Under review as a conference paper at ICLR 2018

The summation in 7 goes over the columns of the matrix in bracket; hence the i-th element of the
output vector ŷn is a linear combination of the i-th row of the matrix F (x−Mn). We are going to
consider S to be a fully convolutional network (composed solely of convolutional layers) and F of
the form

F (x−Mn) = W ⊗
[
off(xn−m) + xIn−m)

]M
m=1

(9)

where W ∈ RdI×M and off : Rd → RdI is a multilayer perceptron. In that case F can be seen as a
sum of projection (x 7→ xI) and a convolutional network with all kernels of length 1. Equation (7)
can be rewritten as

ŷn =

M∑
m=1

Wm ⊗ (off(xn−m) + xIn−m)⊗ σ(Sm(x−Mn)), (10)

where Wm, Sm(·) are m-th columns of matrices W and S(·).

Figure 3: A scheme of the proposed SOCNN
architecture. The network preserves the time-
dimension up to the top layer, while the number
of features per timestep (filters) in the hidden lay-
ers is custom. The last convolutional layer, how-
ever, has the number of filters equal to dimension
of the output. The Weighting frame shows how
outputs from offset and significance networks are
combined in accordance with Eq. 10.

We will call the proposed network a
Significance-Offset Convolutional Neural
Network (SOCNN), while off and S respec-
tively the offset and significance (sub)networks.
The network scheme is shown in Figure 3.
Note that when off ≡ 0 and σ ≡ 1 the model
simplifies to the collection of dI separate
AR(M) models for each dimension.

Interpretation of the components
Note that the form of Equation (10) enforces the
separation of temporal dependence (obtained
in weights Wm), the local significance of
observations Sm (S as a convolutional network
is determined by its filters which capture lo-
cal dependencies and are independent on the
relative position in time) and the predictors
off(xn−m) that are completely independent on
position in time. This provides some amount
of interpretability of the fitted functions and
weights. For instance, each of the past ob-
servations provides an adjusted single regres-
sor for the target variable through the offset
network. Note that due to asynchronous sam-
pling procedure, consecutive values of x might
be heterogenous, hence On the other hand,
significance network provides data-dependent
weights for all regressors and sums them up in
autoregressive manner. Figure 7 in Appendix
E.2 shows sample significance and offset acti-
vations for the trained network.

Relation to asynchronous data
As mentioned before, one of the common prob-
lems with time series are the varying durations
between consecutive observations. A simple
approach at data-preprocessing level is aligning
the observations at some chosen frequency by
e.g. duplicating or interpolating observations. This, however, might extend the size of an input and,
therefore, model complexity.

The other idea is to treat the duration and/or time of the observation as another feature, as presented
in Figure 2B. This approach is at the core of the SOCNN architecture: the significance network is
aimed at learning the high-level features that indicate the relative importance of past observations,
which, as shown in Section 3, could be predominantly dependent on time and duration between
observations.

5

Under review as a conference paper at ICLR 2018

Loss function
L2 error is a natural loss function for the estimators of expected value

L2(y, y′) = ‖y − y′‖2. (11)

As mentioned above, the output of the offset network can be seen as a collection of separate predic-
tors of the changes between corresponding observations xIn−m and the target variable yn

off(xn−m) ' yn − xIn−m. (12)

For that reason, we consider the auxiliary loss function equal to mean squared error of such inter-
mediate predictions

Laux(x−Mn , yn) =

1

M

M∑
m=1

‖off(xn−m) + xIn−m − yn‖2. (13)

The total loss for the sample (x−Mn , yn) is therefore given by

Ltot(x−Mn , yn) = L2(ŷn, yn) + αLaux(x−Mn , yn), (14)

where ŷn is given by Eq. 10 and α ≥ 0 is a constant. In Section 5.2 we discuss the empirical
findings on the impact of positive values of α on the model training and performance, as compared
to α = 0 (lack of auxiliary loss).

5 EXPERIMENTS

We evaluate the proposed model on a financial dataset of bid/ask quotes sent by several market
participants active in the credit derivatives market, artificially generated datasets and household
electric power consumption dataset available from UCI repository (Lichman, 2013), comparing its
performance with simple CNN, single- and multi-layer LSTM (Hochreiter & Schmidhuber, 1997)
and 25-layer ResNet (He et al., 2015).

Apart from performance evaluation of SOCNNs, we discuss the impact of the network components,
such as auxiliary loss and the depth of the offset sub-network.

The details of the training process and hyperparameters used in the proposed architecture as well as
in benchmark models are presented in C.

5.1 DATASETS

Artificial data
We test our network architecture on the artificially generated datasets of multivariate time series. We
consider two types of series:

1. Synchronous series. The series ofK noisy copies (‘sources’) of the same univariate autore-
gressive series (‘base series’), observed together at random times. The noise of each copy
is of different type.

2. Asynchronous series. The series of observations of one of the sources in the above dataset.
At each time, the source is selected randomly and its value at this time is added to form
a new univariate series. The final series is composed of this series, the durations between
random times and the indicators of the ‘available source’ at each time.

The details of the simulation process are presented in Appendix D. We consider synchronous and
asynchronous series XK×N where K ∈ {16, 64} is the number of sources and N = 10, 000, which
gives 4 artificial series in total3.

3Note that a series with K sources is K + 1-dimensional in synchronous case and K + 2-dimensional in
asynchronous case. The base series in all processes was a stationary AR(10) series. Although that series has the
true order of 10, in the experimental setting the input data included past 60 observations. The rationale behind
that is twofold: not only is the data observed in irregular random times but also in real–life problems the order
of the model is unknown. Figure 6 (available in Appendix D) presents samples from the two of the simulated
series.

6

Under review as a conference paper at ICLR 2018

Electricity data
The household electricity dataset4 contains measurements of 7 different quantities related to elec-
tricity consumption in a single household, recorded every minute for 47 months, yielding over 2
million observations. Since we aim to focus on asynchronous time-series, we alter it so that a single
observation contains only value of one of the seven features, while durations between consecutive
observations range from 1 to 7 minutes5.The regression aim is to predict all of the features at the
next time step.

Non-anonymous quotes
The proposed model was designed primarily for forecasting incoming non-anonymous quotes re-
ceived from the credit default swap market. The dataset contains 2.1 million quotes from 28 differ-
ent sources, i.e. market participants. Each quote is characterized by 31 features: the offered price,
28 indicators of the quoting source, the direction indicator (the quote refers to either a buy or a sell
offer) and duration from the previous quote. For each source and direction we aim at predicting the
next quoted price from this given source and direction considering the last 60 quotes. We formed 15
separate prediction tasks; in each task the model was trained to predict the next quote by one of the
fifteen most active market participants6.

This dataset, which is proprietary, motivated the aforementioned construction of artificial asyn-
chronous time series datasets based on its statistical features for reproducible research purpose.

5.2 RESULTS

Table 1 presents the detailed results from the artificial and electricity datasets. The proposed net-
works outperform significantly the benchmark networks on the asynchronous, electricity and quotes
datasets. For the synchronous datasets, on the other hand, SOCNN almost matches the results of
the benchmarks. This similar performance could have been anticipated - the correct weights of the
past values in synchronous artificial datasets are far less nonlinear than in case when separate di-
mensions are observed asynchronously. For this reason, the significance network’s potential is not
fully utilized. We can also observe that the depth of the offset network has negligible or negative

Table 1: Detailed results for all datasets. For each model, we present the mean squared error obtained
on the out-of-sample test set. The best results for each dataset are marked by bold font. SOCNN1
(SOCNN1+) denote proposed models with one (10 or 7) offset sub-network layers. For quotes
dataset the presented values are averaged mean-squared errors from 6 separate prediction tasks,
normalized according to the error obtained by VAR model.

model VAR CNN ResNet LSTM SOCNN1 SOCNN1+

Synchronous 16 0.841 0.152 0.150 0.152 0.154 0.173
Synchronous 64 0.364 0.028 0.028 0.028 0.029 0.031
Asynchronous 16 0.577 0.040 0.032 0.027 0.017 0.020
Asynchronous 64 0.318 0.041 0.046 0.050 0.032 0.034
Electricity 0.729 0.366 0.359 0.463 0.158 0.158
Quotes 1.000 0.891 2.245 0.841 0.374 –

impact on the results achieved by the SOCNN network. This means that the significance network
has crucial impact on the performance, which is in-line with the potential drawbacks of the LSTM
network discussed in Section 3: obtaining proper weights for the past observations is much more
challenging than getting good predictors from the single past values.

4Available at UCI Machine Learning Repository website
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption

5The exact details of preprocessing can be found in Appendix E.1.
6This separation is related to data normalization purposes and different magnitudes of the levels of pre-

dictability for different market participants. The quotes from the remaining 13 participants were not selected
for prediction as their market presence was too short or too irregular to form reliable training, validation and
test samples.

7

https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption

Under review as a conference paper at ICLR 2018

Table 2: MSE for different values
of α for two artificial datasets.

α Async 16 async 64

0.0 0.0284 0.0624
0.01 0.0253 0.0434
0.1 0.0172 0.0323

0 500 1000 1500 2000 2500 3000 3500
time (seconds)

0.2

0.4

0.6

0.8

1.0

1.2

m
ea

n
sq

ua
re

d
er

ro
r

electricity data

CNN
LSTM
ResNet
SOCNN = 0
SOCNN = 0.01

0 10 20 30 40 50 60 70 80 90
epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
ea

n
sq

ua
re

d
er

ro
r

asynchronous aritficial (64-dim)

CNN
LSTM
ResNet
SOCNN = 0
SOCNN = 0.01

Figure 4: Learning curves for CNNs and SOCNNs with differ-
ent auxiliary weights for two datasets. The solid lines indicate
the test error while the dashed lines indicate the training error.
Note the different scales on the horizontal axes.

For Quotes dataset, the proposed model was the best one for all 15 tasks and the only one to always
beat VAR model. Surprisingly, for each of the other networks it was difficult to excel the benchmark
set by simple linear model. We also found benchmark networks to have very unstable test loss
during training in some cases, despite convergence of the training error. Especially, for one of the
tasks LSTM and ResNet obtained very high test errors7. The auxiliary loss was usually found to
have minor importance, though in some cases it led to best results.

The small positive auxiliary weight helped achieve more stable test error throughout training in many
cases. The higher weights of auxiliary loss considerably improved the test error on asynchronous
datasets (See Table 2); however for other datasets its impact was negligible. In general, the proposed
SOCNN had significantly lower variance of the test and validation errors, especially in the early
stage of the training process and for quotes dataset. Figure 4 presents the learning curves for two
different artificial datasets.

Model robustness
To understand better why SOCNN obtained better results than the other networks, we check how
these networks react to the presence of additional noise in the input terms8. Figure 5 presents
changes in the mean squared error and significance and offset network outputs with respect to the
level of noise. SOCNN is the most robust out of the compared networks and, together with single-
layer LSTM, least prone to overfitting. Despite the use of dropout and cross-validation, the other
models tend to overfit the training set and have non-symmetric error curves on test dataset.

6 4 2 0 2 4 6
added noise (in standard deviations)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m
se

train set

CNN
LSTM1
LSTM2
SOCNN10+1
significance
|offset|/10

6 4 2 0 2 4 6
added noise (in standard deviations)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
se

test set

CNN
LSTM1
LSTM2
SOCNN10+1
significance
|offset|/10

Figure 5: Experiment comparing robustness of the considered networks for Asynchronous 16
dataset. The plots show how the error would change if an additional noise term was added to the
input series. The dotted curves show the total significance and average absolute offset (not to scale)
outputs for the noisy observations. Interestingly, significance of the noisy observations increases
with the magnitude of noise; i.e. noisy observations are far from being discarded by SOCNN.

7The exact results for all tasks for Quotes dataset can be found in Appendix F.
8The details of the added noise terms are presented in the Appendix B.

8

Under review as a conference paper at ICLR 2018

6 CONCLUSION AND DISCUSSION

In this article, we proposed a weighting mechanism that, coupled with convolutional networks,
forms a new neural network architecture for time series prediction. The proposed architecture is
designed for regression tasks on asynchronous signals in the presence of high amount of noise. This
approach has proved to be successful in forecasting financial and artificially generated asynchronous
time series outperforming popular convolutional and recurrent networks.

The proposed model can be further extended by adding intermediate weighting layers of the same
type in the network structure. Another possible generalization that requires further empirical studies
can be obtained by leaving the assumption of independent offset values for each past observation,
i.e. considering not only 1x1 convolutional kernels in the offset sub-network.

Finally, we aim at testing the performance of the proposed architecture on other real-life datasets
with relevant characteristics. We observe that there exists a strong need for common ‘econometric’
datasets benchmark and, more generally, for time series (stochastic processes) regression.

ACKNOWLEDGEMENTS

Authors thank Engineering and Physical Sciences Research Council (EPSRC) for financial support
for this research.

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A system for large-
scale machine learning, May 2016. URL http://arxiv.org/abs/1605.08695.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic
language model. J. Mach. Learn. Res., 3:1137–1155, March 2003. ISSN 1532-4435. URL
http://portal.acm.org/citation.cfm?id=944966.

Anastasia Borovykh, Sander Bohte, and Cornelis W. Oosterlee. Conditional time series forecasting
with convolutional neural networks, March 2017. URL http://arxiv.org/abs/1703.
04691v1.pdf.

Joël Bun, Jean-Philippe Bouchaud, and Marc Potters. Cleaning large correlation matrices: tools
from random matrix theory. Physics Reports, 666:1–109, 2017.

Kyunghyun Cho, Aaron Courville, and Yoshua Bengio. Describing multimedia content using
attention-based Encoder–Decoder networks. IEEE Transactions on Multimedia, 17(11):1875–
1886, July 2015. ISSN 1520-9210. doi: 10.1109/tmm.2015.2477044. URL http://dx.doi.
org/10.1109/tmm.2015.2477044.

François Chollet. Keras. https://github.com/fchollet/keras, 2015.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling, December 2014. URL http://
arxiv.org/abs/1412.3555.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international conference on
Machine learning, pp. 160–167. ACM, 2008.

Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative
Finance, 1(2):223–236, 2001.

John P Cunningham, Zoubin Ghahramani, Carl Edward Rasmussen, ND Lawrence, and M Girolami.
Gaussian processes for time-marked time-series data. In AISTATS, volume 22, pp. 255–263, 2012.

9

http://arxiv.org/abs/1605.08695
http://portal.acm.org/citation.cfm?id=944966
http://arxiv.org/abs/1703.04691v1.pdf
http://arxiv.org/abs/1703.04691v1.pdf
http://dx.doi.org/10.1109/tmm.2015.2477044
http://dx.doi.org/10.1109/tmm.2015.2477044
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555

Under review as a conference paper at ICLR 2018

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks, December 2016. URL http://arxiv.org/abs/1612.08083.
pdf.

Eugene F Fama. Efficient capital markets: A review of theory and empirical work. The journal of
Finance, 25(2):383–417, 1970.

John Cristian Borges Gamboa. Deep learning for time-series analysis. arXiv preprint
arXiv:1701.01887, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATSâ10). Society for Artificial Intelligence and Statistics, 2010. URL http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.207.2059.

Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou. Efficient
softmax approximation for GPUs, December 2016. URL http://arxiv.org/abs/1609.
04309.pdf.

James Douglas Hamilton. Time series analysis, volume 2. Princeton university press Princeton,
1994.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, December 2015. URL http://arxiv.org/abs/1512.03385.pdf.

J. B. Heaton, N. G. Polson, and J. H. Witte. Deep learning in finance, February 2016. URL http:
//arxiv.org/abs/1602.06561.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term memory. Neural Computation, 9
(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Yunseong Hwang, Anh Tong, and Jaesik Choi. Automatic construction of nonparametric relational
regression models for multiple time series. In Proceedings of the 33rd International Conference
on Machine Learning, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift, March 2015. URL http://arxiv.org/abs/1502.
03167v2.pdf.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring
the limits of language modeling, February 2016. URL http://arxiv.org/abs/1602.
02410.pdf.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. January 2015. URL
http://arxiv.org/abs/1412.6980.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Laurent Laloux, Pierre Cizeau, Marc Potters, and Jean-Philippe Bouchaud. Random matrix theory
and financial correlations. International Journal of Theoretical and Applied Finance, 3(03):391–
397, 2000.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, November 1998. ISSN 00189219. doi:
10.1109/5.726791. URL http://dx.doi.org/10.1109/5.726791.

Steven Cheng-Xian Li and Benjamin M Marlin. A scalable end-to-end gaussian process adapter
for irregularly sampled time series classification. In Advances in Neural Information Processing
Systems, pp. 1804–1812, 2016.

10

http://arxiv.org/abs/1612.08083.pdf
http://arxiv.org/abs/1612.08083.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.207.2059
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.207.2059
http://arxiv.org/abs/1609.04309.pdf
http://arxiv.org/abs/1609.04309.pdf
http://arxiv.org/abs/1512.03385.pdf
http://arxiv.org/abs/1602.06561.pdf
http://arxiv.org/abs/1602.06561.pdf
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1502.03167v2.pdf
http://arxiv.org/abs/1502.03167v2.pdf
http://arxiv.org/abs/1602.02410.pdf
http://arxiv.org/abs/1602.02410.pdf
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1109/5.726791

Under review as a conference paper at ICLR 2018

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/
ml.

Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond
mean square error, February 2016. URL http://arxiv.org/abs/1511.05440.pdf.

Paul D McNelis. Neural networks in finance: gaining predictive edge in the market. Academic
Press, 2005.

Michael C Mozer. Neural net architectures for temporal sequence processing. In Santa Fe Institute
Studies in the Sciences of Complexity, volume 15, pp. 243–243, 1993.

Dejan Petelin, Jan Šindelář, Jan Přikryl, and Juš Kocijan. Financial modeling using gaussian process
models. In Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 2011 IEEE
6th International Conference on, volume 2, pp. 672–677. IEEE, 2011.

Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In Interspeech, pp. 338–342, 2014.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

Christopher A Sims. Money, income, and causality. The American economic review, 62(4):540–552,
1972.

Christopher A Sims. Macroeconomics and reality. Econometrica: Journal of the Econometric
Society, pp. 1–48, 1980.

Justin Sirignano. Extended abstract: Neural networks for limit order books, February 2016. URL
http://arxiv.org/abs/1601.01987.

Rupesh K. Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks, November 2015.
URL http://arxiv.org/abs/1505.00387.

Felipe Tobar, Thang D Bui, and Richard E Turner. Learning stationary time series using gaussian
processes with nonparametric kernels. In Advances in Neural Information Processing Systems,
pp. 3501–3509, 2015.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A generative model for
raw audio, September 2016a. URL http://arxiv.org/abs/1609.03499.

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray
Kavukcuoglu. Conditional image generation with PixelCNN decoders, June 2016b. URL http:
//arxiv.org/abs/1606.05328.

Dirk Weissenborn and Tim Rocktäschel. MuFuRU: The Multi-Function recurrent unit, June 2016.
URL http://arxiv.org/abs/1606.03002v1.pdf.

Andrew Wilson and Zoubin Ghahramani. Copula processes. In Advances in Neural Information
Processing Systems, pp. 2460–2468, 2010.

APPENDIX A NONLINEARITY IN THE ASYNCHRONOUSLY SAMPLED
AUTOREGRESSIVE TIME SERIES

Lemma 1. Let X(t) be an AR(2) time series given by

X(t) = aX(t− 1) + bX(t− 2) + ε(t), (15)

where (ε(t))t=1,2,... are i.i.d. error terms. Then

E[X(t)|X(t− 1), X(t− k)] = akX(t− 1) + bkX(t− k), (16)

for any t > k ≥ 2, where ak, bk are rational functions of a and b.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1511.05440.pdf
http://arxiv.org/abs/1601.01987
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.03002v1.pdf

Under review as a conference paper at ICLR 2018

Proof. The proof follows a simple induction. It is sufficient to show that

wkX(t) = vkX(t− 1) + bk−1X(t− k) + Ek(t), k ≥ 2, (17)

where wk = wk(a, b), vk = vk(a, b) are polynomials given by

(w2, v2) = (1, a) (18)
(wk+1, vk+1) = (−vk,−(bwk + avk)), k ≥ 2, (19)

and Ek(t) is a linear combination of {ε(t − i), i = 0, 1, . . . , k − 2}. Basis of the induction is
trivially satisfied via 15. In the induction step, we assume that 17 holds for k. For t > k+1 we have
wkX(t− 1) = vkX(t− 2) + bk−1X(t− k− 1) +Ek(t− 1). Multiplying sides of this equation by
b and adding avkX(t− 1) we obtain

(avk + bwk)X(t− 1) = vk(aX(t− 1) + bX(t− 2)) + bkX(t− k − 1) + bE(t− 1). (20)

Since aX(t− 1) + bX(t− 2) = X(t)− ε(t) we get

−vk+1X(t− 1) = −wk+1X(t) + bkX(t− k − 1) + [bEk(t− 1)− vkε(t)] (21)

As Ek+1(t) = bEk(t − 1) − vkε(t) is a linear combination of {ε(t − i), i = 0, 1, . . . , k − 1}, the
above equation proves 17 for k = k + 1.

APPENDIX B ROBUSTNESS OF THE PROPOSED ARCHITECTURE

To see how robust each of the networks is, we add noise terms to part of the input series and evaluate
them on such datapoints, assuming unchanged output. We consider varying magnitude of the noise
terms, which are added only to the selected 20% of past steps at the value dimension9. Formally the
procedure is following:

1. Select randomly Nobs = 6000 observations (Xn, yn) (half of which coming from training
set and half from test set).

2. Add noise terms to the observations X̃n

p
:= Xn + Ξn · γp, for {γp}128p=1 evenly distributed

on [−6σ, 6σ], where σ is a standard deviation of the differences of the series being predicted
and

(Ξn)tj =

{
ξn ∼ U [0, 1] if j = 0, t ∈ [0, 5, . . . , 55]
0 otherwise. (22)

3. For each p evaluate each of the trained models on dataset
{
X̃n

p
, yn

}Nobs

n=1
, separately for

n’s originally coming from training and test sets.

APPENDIX C TRAINING DETAILS

C.1 NETWORK SETTINGS

To evaluate the model and the significance of its components, we perform a grid search over some
of the hyperparameters, more extensively on the artificial and electricity datasets. These include the
offset sub-network’s depth (we consider depths of 1 and 10 for artificial and electricity datasets; 1
for Quotes data) and the auxiliary weight α (compared values: {0, 0.1, 0.01}). For all networks we
have chosen LeakyReLU activation function (23)

σLeakyReLU (x) = x if x ≥ 0, ax otherwise. (23)

with leak rate a = .1 as an activation function.
9The asynchronous series has one dimension representing the value of the quote, one representing duration

and others representing indicators of the source. See ?? for details.

12

Under review as a conference paper at ICLR 2018

C.2 BENCHMARK NETWORKS

We compare the performance of the proposed model with CNN, ResNet, multi-layer LSTM net-
works and linear (VAR) model. The benchmark networks were designed so that they have a compa-
rable number of parameters as the proposed model. Consequently, LeakyReLU activation function
(23) with leak rate .1 was used in all layers except the top ones where linear activation was applied.
For CNN we provided the same number of layers, same stride (1) and similar kernel size struc-
ture. In each trained CNN, we applied max pooling with the pool size of 2 every two convolutional
layers10. Table 3 presents the configurations of the network hyperparameters used in comparison.

Table 3: Configurations of the trained models. f - number of convolutional filters/memory cell
size in LSTM, ks - kernel size, p - dropout rate, clip - gradient clipping threshold, conv - (k × 1)
convolution with kernel size k indicated in the ks column, conv1 - (1× 1) convolution. Apart from
the listed layers, each network has a single fully connected layer on the top. Kernel sizes (3, 1) ((1,
3, 1)) denote alternating kernel sizes 3 and 1 (1, 3 and 1) in successive convolutional layers

Artificial & Electricity Datasets

Model layers f ks p clip

SOCNN 10conv + {1, 10}conv1 {8, 16} {(3, 1), 3} 0 {1, .001}
CNN 7conv + 3pool {16, 32} {(3, 1), 3} {0, .5} {1, .001}
LSTM {1, 2, 3, 4} {16, 32} - {0, .5} {1, .001}
ResNet 22conv + 3pool 16 (1, 3, 1) {0, .5} {1, .001}
Quotes Dataset

Model layers f ks p clip

SOCNN 7conv + {1, 7}conv1 8 {(3, 1), 3} .5 .01
CNN 7conv + 3pool {16, 32} {(3, 1), 3} .5 .01
LSTM {1, 2, 3} {32} - .5 .000111

ResNet 22conv + 3pool 16 (1, 3, 1) .5 .01

C.3 NETWORK TRAINING

The training and validation sets were sampled randomly from the first 80% of timesteps in each
series, with ratio 3 to 1. The remaining 20% of data was used as a test set. All models were trained
using Adam optimizer (Kingma & Ba, 2015) which we found much faster than standard Stochastic
Gradient Descent in early tests. We used batch size of 128 for artificial data and 256 for quotes
dataset. We also applied batch normalization (Ioffe & Szegedy, 2015) in between each convolution
and the following activation. At the beginning of each epoch, the training samples were shuffled.
To prevent overfitting we applied dropout and early stopping12. Weights were initialized following
the normalized uniform procedure proposed by Glorot & Bengio (2010). Experiments were carried
out using implementation relying on Tensorflow (Abadi et al., 2016) and Keras front end (Chollet,
2015). For artificial data we optimized the models using one K20s NVIDIA GPU while for quotes
dataset we used 8-core Intel Core i7-6700 CPU machine only.

APPENDIX D ARTIFICIAL DATA GENERATION

We simulate a multivariate time series composed ofK noisy observations of the same autoregressive
signal. The simulated series are constructed as follows:

10Hence layers 3, 6 and 9 were pooling layers, while layers 1, 2, 4, 5, . . . were convolutional layers.
11We found LSTMs very unstable on quotes dataset without gradient clipping or with higher clipping bound-

ary.
12Whenever 10 consecutive epochs did not bring improvement in the validation error, the learning rate was

reduced by a factor of 10 and the best weights obtained till then were restored. After the second reduction and
another 10 consecutive epochs without improvement, the training was stopped. The initial learning rate was set
to .001.

13

Under review as a conference paper at ICLR 2018

1. We simulate univariate stationary AR(10) time series x with randomly chosen weights.

2. The series is copied K times and each copy x(k) is associated with a separate noise process
ε(k). We consider Gaussian or Binomial noise of different scales; for each copy it is either
added to or multiplied by the initial series (x(k) = x+ ε(k) or x(k) = x× ε(k)).

3. We simulate a random time process T where differences between consecutive events are
iid exponential random variables.

4a. The final series is composed of K noisy copies of the original process observed at times
indicated by the random time process, and a duration between observations.

4b. At each time T (t) indicated by the random time process T , one of the noisy copies k is
drawn and its value at this time x(k)T (t) is selected to form a new noisy series x∗. The final
multivariate series is composed of x∗, the series of durations between observations and K
indicators of which observation was drawn at each time.

Assume that (xt)t=1,2,... is a stationary AR(ν) series and consider the following (random) noise
functions

ε0(x, c, p) = x+ c(2ε− 1), ε ∼ Bernoulli(p),
ε1(x, c, p) = x(1 + c(2ε− 1)), ε ∼ Bernoulli(p),
ε2(x, c, p) = x+ cε, ε ∼ N (0, 1),

ε3(x, c, p) = x(1 + cε), ε ∼ N (0, 1). (24)

Note that argument p of ε2 and ε3 is redundant and was added just for notational convenience.

Let Nt ∼ Exp(λ) be a series of i.i.d. exponential random variables with some constant rate λ and
let T (t) =

∑t
s=1dNs + 1e. Then T (t) is a strictly increasing series of times, at which we will

observe the noisy observations.

Let p1, p2, . . . , pK ∈ (0, 1) and define

X
(k)
t :=

{
εk(mod 4)(xT (t), 2

−bk/8c, pk), k = 1, . . . ,K,
T (t), k = K + 1.

(25)

Let I(t) be a series of i.i.d. random variables taking values in {1, 2, . . . ,K} such that P(I(t) =

0 10 20 30 40 50
timesteps

0.2

0.1

0.0

0.1

0.2

0.3

0.4
synchronous dataset 16x100K

source B
source C
source F

source L
source N
source O

0 200 400 600 800 1000
timesteps

1.6

1.8

2.0

2.2

2.4

2.6

2.8
asynchronous dataset 16x100K

source B
source C
source F

source L
source N
source O

Figure 6: Simulated synchronous (left) and asynchronous (right) artificial series. Note the different
durations between the observations from different sources in the latter plot. For clarity, we present
only 6 out of 16 total dimensions.

K) ∝ qK for some q > 0. Define

X̄
(k)
t :=

1, k ≤ K and k = I(t),
0, k ≤ K and k 6= I(t),

X
(I(t))
t , k = K + 1,

T (t), k = K + 2.

(26)

14

Under review as a conference paper at ICLR 2018

We call {Xt}Nt=1 and {X̄t}Nt=1 synchronous and asynchronous time series, respectively. We simulate
both of the processes for N = 10, 000 and each K ∈ {16, 64}.

APPENDIX E HOUSEHOLD ELECTRICITY DATASET

E.1 SAMPLING

The original dataset has 7 features: global active power, global reactive power, voltage, global
intensity, sub-metering 1, sub-metering 2 and sub-metering 3, as well as information on date and
time. We created asynchronous version of this dataset in two steps:

1. Deterministic time step sampling. The durations between the consecutive observations
are periodic and follow a scheme [1min, 2min, 3min, 7min, 2min, 2min, 4min, 1min,
2min, 1min]; the original observations in between are discarded. In other words, if
the original observations are indexed according to time (in minutes) elapsed since the
first observation, we keep the observations at indices n such that n mod 25 ≡ k ∈
[0, 1, 3, 6, 13, 15, 17, 21, 22, 24].

2. Random feature sampling. At each remaining time step, we choose one out of seven fea-
tures that will be available at this step. The probabilities of the features were chosen to be
proportional to [1, 1.5, 1.52, 1.56] and randomly assigned to each feature before sampling
(so that each feature has constant probability of its value being available at each time step.

At each time step the sub-sampled dataset is 10-dimensional vector that consists information about
the time, date, 7 indicator features that imply which feature is available, and the value of this feature.
The length of the sub-sampled dataset is above 800 thousand, i.e. 40% of the original dataset’s
length.

The schedule of the sampled timesteps and available features is attached in the data folder in the
supplementary material.

E.2 SIGNIFICANCE AND OFFSET ACTIVATIONS

In Figure 7 we present significance and offset activations for three input series, from the network
trained on electricity dataset. Each row represents activations corresponding to past values of a
single feature.

APPENDIX F DETAILED RESULTS FOR QUOTES DATASET

0 2 4 6 8 10 12 14 16 18 20 22 24

significance network output (log-weights)

0 2 4 6 8 10 12 14 16 18 20 22 24
- Sub_metering_3 -
- Sub_metering_2 -
- Sub_metering_1 -
- Global_intensity -

- Voltage -
- Global_reactive_power -
- Global_active_power -

offset network output

0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
- Sub_metering_3 -
- Sub_metering_2 -
- Sub_metering_1 -
- Global_intensity -

- Voltage -
- Global_reactive_power -
- Global_active_power -

0 2 4 6 8 10 12 14 16 18 20 22 24
lag

0 2 4 6 8 10 12 14 16 18 20 22 24
lag

- Sub_metering_3 -
- Sub_metering_2 -
- Sub_metering_1 -
- Global_intensity -

- Voltage -
- Global_reactive_power -
- Global_active_power -

7.5

6.0

4.5

3.0

1.5

0.0

0.08

0.04

0.00

0.04

0.08

Figure 7: Activations of the significance and offset sub-networks for the network trained on Electric-
ity dataset. We present 25 most recent out of 60 past values included in the input data, for 3 separate
datapoints. Note the log scale on the left graph.

15

Under review as a conference paper at ICLR 2018

Table 4: Detailed results for each prediction task for the quotes dataset. Each task involves prediction
of the next quote by one of the banks. Numbers represent the mean squared errors on out-of-sample
test set.

task CNN VAR LSTM ResNet SOCNN

bank A 0.993 1.123 0.999 1.086 0.530
bank B 1.225 2.116 1.673 31.598 0.613
bank C 3.208 3.952 2.957 3.805 0.617
bank D 3.634 4.134 3.436 4.635 0.649
bank E 3.558 4.367 3.344 3.717 1.154
bank F 8.541 8.150 7.880 8.274 1.553
bank G 0.248 0.278 0.132 1.462 0.063
bank I 4.777 4.853 3.933 4.936 0.400
bank J 1.094 1.172 1.097 1.216 0.773
bank K 2.521 4.307 2.573 4.731 0.926
bank L 1.108 1.448 1.186 1.312 0.743
bank M 1.743 1.816 1.741 1.808 1.271
bank N 3.058 3.232 2.943 3.229 1.509
bank O 0.539 0.532 0.420 0.566 0.218
bank P 0.447 0.354 0.470 0.510 0.283

16

	Introduction
	Related work
	Time series forecasting
	Gating and weighting mechanisms

	Motivation
	Model Architecture
	Experiments
	Datasets
	Results

	Conclusion and discussion
	Appendices
	Appendix Nonlinearity in the asynchronously sampled autoregressive time series
	Appendix Robustness of the proposed architecture
	Appendix Training details
	Network settings
	Benchmark networks
	Network Training

	Appendix Artificial data generation
	Appendix Household electricity dataset
	Sampling
	Significance and offset activations

	Appendix Detailed results for Quotes dataset

