
Under review as a conference paper at ICLR 2017

NEURAL CODE COMPLETION

Chang Liu∗, Xin Wang∗, Richard Shin, Joseph E. Gonzalez, Dawn Song
University of California, Berkeley

ABSTRACT

Code completion, an essential part of modern software development, yet can be
challenging for dynamically typed programming languages. In this paper we ex-
plore the use of neural network techniques to automatically learn code completion
from a large corpus of dynamically typed JavaScript code. We show different
neural networks that leverage not only token level information but also structural
information, and evaluate their performance on different prediction tasks. We
demonstrate that our models can outperform the state-of-the-art approach, which
is based on decision tree techniques, on both next non-terminal and next terminal
prediction tasks by 3.8 points and 0.5 points respectively. We believe that neural
network techniques can play a transformative role in helping software developers
manage the growing complexity of software systems, and we see this work as a
first step in that direction.

1 INTRODUCTION

As the scale and complexity of modern software libraries and tools continue to grow, code comple-
tion has become an essential feature in modern integrated development environments (IDEs). By
suggesting the right libraries, APIs, and even variables in real-time, intelligent code completion en-
gines can substantially accelerate software development. Furthermore, as many projects move to
dynamically typed and interpreted languages, effective code completion can help to reduce costly
errors by eliminating typos and identifying the right arguments from context.

However, existing approaches to intelligent code completion either rely on strong typing (e.g., Visual
Studio for C++), which limits their applicability to widely used dynamically typed languages (e.g.,
JavaScript and Python), or are based on simple heuristics and term frequency statistics which are
often brittle and are relatively error-prone. In particular, Raychev et al. (2016a) proposes the state-of-
the-art probabilistic model for code, which generalizes both simple n-gram models and probabilistic
grammar approaches. This approach, however, examines only a limited number of elements in the
source code when completing the code. Therefore, the effectiveness of this approach may not scale
well to large programs.

In this paper we explore the use of deep learning techniques to address the challenges of code com-
pletion for the widely used and dynamically typed JavaScript programming language. We formulate
the code completion problem as a sequential prediction task over the traversal of a parse-tree struc-
ture consisting of both non-terminal structural nodes and terminal nodes encoding program text. We
then present simple, yet expressive, LSTM-based (Hochreiter & Schmidhuber (1997)) models that
leverage additional side information obtained by parsing the program structure.

Compared to widely used heuristic techniques, deep learning for code completion offers the op-
portunity to learn rich contextual models that can capture language and even library specific code
patterns without requiring complex rules or expert intervention.

We evaluate our recurrent neural network architecture on an established benchmark dataset for the
JavaScript code completion. Our evaluations reveal several findings: (1) when evaluated on short
programs, our RNN-based models can achieve better performance on the next node prediction tasks
compared to the prior art (Bielik et al. (2016); Raychev et al. (2016a)), which are based on decision-
tree models; (2) our models’ prediction accuracies on longer programs, which is provided in the test
set, but were not evaluated upon by previous work, are better than our models’ accuracies on shorter

∗The first and second authors contributed equally and are listed in an alphabetical order.

1



Under review as a conference paper at ICLR 2017

Figure 1: Code Completion Example in In-
telliJ IDEA

abcde

return (function(modules) { …
function __webpack_require__(moduleId){ …

return module.exports;
}

__webpack_require__.m = modules;

__webpack_require__.c = installedModules;

__webpack_require__. p: 0.9464
c: 0.0300  
m: 0.0061

Figure 2: Correct prediction of the
program in Figure 1

programs; and (3) in the scenario that the code completion engine suggests a list of candidates, our
RNN-based models allow users to choose from a list of 5 candidates rather than inputting manually
for over 96% of all time when this is possible.

These promising results encourage more investigation into developing neural network approaches
for the code completion problem. We believe that our work not only highlights the importance
of the field of neural network-based code completion, but is also an important step toward neural
network-based program synthesis.

2 RELATED WORK

Existing approaches that build probabilistic models for code can typically be categorized as n-gram
models (Hindle et al., 2012; Nguyen et al., 2013; Tu et al., 2014), probabilistic grammars (Collins,
2003; Allamanis & Sutton, 2014; Allamanis et al., 2015; Maddison & Tarlow, 2014; Liang et al.,
2010), and log-bilinear models (Allamanis et al., 2015). Bielik et al. (2016) generalizes the PCFG
approach and n-gram approach, while Raychev et al. (2016a) further introduces decision tree ap-
proaches to generalize Bielik et al. (2016).

Raychev et al. (2014) and White et al. (2015) explore how to use recurrent neural networks (RNNs)
to facilitate the code completion task. However, these works only consider running RNNs on top of
a token sequence to build a probabilistic model. Although the input sequence considered in Raychev
et al. (2014) is produced from an abstract object, the structural information contained in the abstract
syntax tree is not directly leveraged by the RNN structure in both of these two works. In contrast,
we consider extending LSTM, a RNN structure, to leverage the structural information directly for
the code prediction task.

Recently there has been an increasing interest in developing neural networks for program synthe-
sis (Ling et al. (2016); Beltagy & Quirk (2016); Dong & Lapata (2016); Chen et al. (2016)). These
works all consider synthesizing a program based on inputs in other formats such as images or natural
language descriptions.

3 CODE COMPLETION VIA BIG CODE

In this section, we first introduce the problem of code completion and its challenges. Then we
explain abstract syntax trees (AST), which we use as the input for our problems. Lastly, we formally
define the code completion problem in different settings as several prediction problems based on a
partial AST.

3.1 CODE COMPLETION: AN EXAMPLE

Code completion is a feature in some integrated development environments (IDEs) to speed up
programmers’ coding process. Figure 1 demonstrates this feature in IntelliJ IDEA1. In this example,

1https://www.jetbrains.com/idea/

2

https://www.jetbrains.com/idea/


Under review as a conference paper at ICLR 2017

a part of a JavaScript program has been input to the IDE. When the dot symbol (i.e., “.”) is added
after webpack require , the IDE prompts with a list of candidates that the programmer is
most likely to input next. When a candidate matches the intention, the programmer can choose it
from the list rather than typing it manually. In this work, we define the code completion problem
as predicting the next symbol while a program is being written. We consider this problem as an
important first step toward completing an entire program.

Traditional code completion techniques are developed by the programming language community
to leverage context information for prediction. For example, when a programmer writes a Java
program and inputs a variable name and then a dot symbol, the code completion engine will analyze
the class of the variable and prompt the members of the class. In programming language literature,
such information is referred to as type information. Statically typed languages, such as C and Java,
enforces type checking at static time, so that the code completion engine can take advantage of full
type information to make prediction without executing the code.

In recent years, dynamically typed languages, such as Python or JavaScript, have become increas-
ingly popular. In these languages, type checking is usually performed dynamically while executing
a program. Thus, type information may be only partially available to the code completion engine
while the programmer is writing the code. Despite their popularity, the dynamic typing of these
languages makes code completion for them challenging. For example, in Figure 1, the next symbol
to be added is p. This symbol does not appear in the previous part of the program, and thus the code
completion engine in IntelliJ IDEA IDE cannot prompt with this symbol.

However, this challenge may be remedied by leveraging a large corpus of code, a.k.a., big code.
In fact, webpack require .p is a frequently used combination appearing in many programs
on Github.com, one of the largest repositories of source code. Therefore, a code completion
engine powered by big code is likely to learn this combination and to prompt p. In fact, our methods
discussed in later sections can predict this case very well (Figure 2),

3.2 ABSTRACT SYNTAX TREE

Regardless of whether it is dynamically typed or statically typed, any programming language has an
unambiguous context free grammar (CFG), which can be used to parse source code into an abstract
syntax tree (AST). Further, an AST can be converted back into source code easily. Therefore we
consider the input of our code completion problem as an AST, which is a typical assumption made
by most code completion engines.

An AST is a rooted tree. In an AST, each non-leaf node corresponds to a non-terminal in the CFG
specifying structure information. In JavaScript, non-terminals may be ExpressionStatement,
ForStatement, IfStatement, SwitchStatement, etc. Each leaf node corresponds to a
terminal in the CFG encoding program text. There are infinite possibilities for terminals. They can
be variable names, string or numerical literals, operators, etc.

Figure 3 illustrates a part of the AST of the code snippet in Figure 1. In this tree, a node without
a surrounding box (e.g., ExpressionStatement, etc.) denotes a non-terminal node. A node
embraced by an orange surrounding box (e.g., installedModules) denotes a terminal node. At
the bottom of the figure, there is a non-terminal node Property and a terminal node p. They have
not been observed by the editor, so we use green to indicate this fact. Note that each non-terminal
has at most one terminal as its child.

In a traditional code completion engine, the AST can be further processed by a type checker so that
type information will be attached to each node. In this work, however, we focus on dynamically
typed languages, and type information is not always available. Therefore, we do not consider the
type information provided by a compiler, and leave it for our future work.

3.3 PROBLEM SETUP

In this work, we consider the input to be a partial AST, and the code completion problem is to predict
the next node given the partial AST. In the following, we first define a partial AST, and then present
the code completion problems in different scenarios.

3



Under review as a conference paper at ICLR 2017

ExpressionStatement

AssignmentStatement

MemberStatement

Identifier

Property

Identifier

__webpack_require__

c

installedModules

ExpressionStatement

AssignmentStatement

MemberStatement

Identifier

__webpack_require__

Property p

Figure 3: AST example (part)

ExpressionStatement

AssignmentStatement

MemberStatement

Identifier

Property

Identifier

__webpack_require__

c

installedModules

ExpressionStatement

AssignmentStatement

MemberStatement

Identifier

__webpack_require__

Property p

Partial AST

Right-most node

Next node following 

the partial AST

Figure 4: Partial AST example

Input: a partial AST. Given a complete AST T , we define a partial AST to be a subtree T ′
of T , such that for each node n in T ′, its left set LT (n) with respect to T is a subset of T ′, i.e.,
LT (n) ⊆ T ′. Here, the left set LT (n) of a node n with respect to T is defined as the set of all nodes
in the in-order sequence during the depth-first search of T that are visited earlier than n .

Under this definition, in each partial AST T ′, there exists the right-most node nR, such that all
other nodes in T ′ form its left set LT (nR). The next node in the in-order depth-first search visiting
sequence after nR is also the first node not appearing in T ′. We call this node the next node following
the partial AST. Figure 4 illustrates these concepts using the example in Figure 3. In the rest of the
paper, we also refer to a partial AST as a query.

Next node prediction. Given a partial AST, the next node prediction problem, as suggested by
its name, is to predict the next node following the partial AST. Based on the node’s kind, i.e.,
whether its a non-terminal node or a terminal one, we can categorize the problem into the next non-
terminal prediction problem and the next terminal prediction problem. Although the next terminal
prediction problem may sound more interesting, the next non-terminal prediction problem is also
important, since it predicts the structure of the program. For example, when then next non-terminal
is ForStatement, the next token in the source program is the keyword for, which does not have
a corresponding terminal in the dataset. In this case, a model able to predict the next non-terminal
can be used by the code-completion engine to emit the keyword for. These two tasks are also
the same problems considered by previous works employing domain specific languages to achieve
heuristic-based code completion (Raychev et al. (2016b); Bielik et al. (2016)).

Predicting the next node versus predicting the next token. A natural alternative formulation
of the problem is predicting the next token given the token sequence that has been inputted so far.
Such a formulation, however, does not take advantage of the AST information, which is very easy to
acquire with a suitable parser. Predicting the next node allows taking advantage of such information
to enable more intelligent code completion.

In particular, predicting the next non-terminal allows completing the structure of a code block rather
than a single (keyword) token. For example, when the next token is a keyword for, the correspond-
ing next non-terminal is ForStatement, which corresponding to the following code block:

for( ___ ; ___ ; ___ ) {
// for-loop body

}

In this case, successfully predicting the next non-terminal node allows completing not only the next
key token for, but also tokens such as (, ;, ), {, and }. Such structure completion enabled by
predicting the next non-terminal is more compelling in modern IDEs.

Predicting the next terminal node allows completing identifiers, properties, literals, etc., which is
similar to the next token prediction. However, predicting the next terminal node can leverage the
information of the predicting node’s non-terminal parent, indicating what is being predicted, i.e., an
identifier, a property, or a literal, etc. For example, when completing the following expression:

4



Under review as a conference paper at ICLR 2017

__webpack_require_.

the code completion engine with AST information will predict a property of
webpack require , while the engine without AST information only learns two tokens
webpack require and a dot “.” and tries to predict the next token without any constraint.

In our evaluation, we show that by leveraging the information from the non-terminal parent can
significantly improve the performance.

In this work, we focus on the next node prediction task, and leave the comparison with next token
prediction as our future work.

Joint prediction. A more important problem than predicting only the next non-terminal or termi-
nal itself is to predict the next non-terminal and terminal together. We refer to this task to predict
both next non-terminal and terminal as the joint prediction problem. We hope code completion can
be used to generate the entire parsing tree in the end, and joint prediction is one step further toward
this goal than next node prediction.

Formally, the joint prediction problem that we consider is that, given a partial AST whose following
node is a non-terminal one, we want to predict both the next non-terminal and the next terminal.

There may be non-terminal nodes which do not have a terminal child (e.g., the
AssignmentStatement). In this case, we artificially add an EMPTY terminal as its child. Note
that this treatment is the same as in Bielik et al. (2016). We count it as a correct prediction if both
the next non-terminal and terminal are predicted correctly.

Denying prediction. There may be infinite possibilities for terminals, so it is impossible to predict
all terminals correctly. We consider an alternative scenario that, when it thinks that the programmer
will input a rare terminal, the code completion engine should have the ability to identify this case,
and deny predicting the next node(s).

In our problem, we build a vocabulary for frequent terminals. All terminals not in this vocabulary
are considered as an UNK terminal. In this case, when it predicts UNK for the next terminal, the code
completion model is considered as denying prediction. Since non-terminals’ vocabulary size is very
small, denying prediction is only considered for the next terminal prediction, but not for the next
non-terminal prediction.

4 MODELS

In this section, we present the basic models considered in this work. In particular, given a partial
AST as input, we first convert the AST into its left-child right-sibling representation, and serialize
it as its in-order depth first search sequence. Thus, we consider the input for the next non-terminal
prediction as a sequence of length k, i.e., (N1, T1), (N2, T2), ..., (Nk, Tk). Here, for each i, Ni is
a non-terminal, and Ti is the terminal child of Ni. For each non-terminal node Ni, we encode not
only its kind, but also whether the non-terminal has at least one non-terminal child, and/or one right-
sibling. In doing so, from an input sequence, we can reconstruct the original AST. This encoding is
also employed by Raychev et al. (2016a). We refer to each element in the sequence (e.g., (Ni, Ti))
as a token. As mentioned above, a non-terminal without a terminal child is considered to have an
EMPTY child.

This input sequence (N1, T1), (N2, T2), ..., (Nk, Tk) is the only input for all problems except the
next terminal prediction. For the next terminal prediction problem, besides the input sequence, we
also have the information about the parent of the current predicting terminal, which is a non-terminal,
i.e., Nk+1.

Throughout the rest of the discussion, we assume that both Ni and Ti employ one-hot encoding.
The vocabulary sets of non-terminals and terminals are separate.

4.1 NEXT NON-TERMINAL PREDICTION

Given an input sequence, our first model predicts the next non-terminal. The architecture is il-
lustrated in Figure 5. We refer to this model as NT2N, which stands for using the sequence of

5



Under review as a conference paper at ICLR 2017

LS
TM

LS
TM

LS
TM

AN1+BT1 AN2+BT2 ANk+BTk

N1 N2 NkT1 T2 Tk

h1 h2 hk WN

So
ft
m
ax Prediction

𝑁𝑘+1

ℎ0

𝑐0

ℎ1

𝑐1

ℎ𝑘−1

𝑐𝑘−1

Figure 5: Architecture (NT2N) for predicting the next non-terminal.

Non-terminal and Terminal pairs TO predict the next Non-terminal. We first explain each layer of
NT2N, and then introduce two variants of this model.

Embedding non-terminal and terminal. Given an input sequence, the embedding of each token
is computed as

Ei = ANi +BTi (1)

where A is a J × VN matrix and B is a J × VT matrix. Here J is the size of the embedding vector,
VN and VT are the vocabulary sizes of non-terminals and terminals respectively.

LSTM layer. Then the embedded sequence is fed into a LSTM layer to get the hidden state. In
particular, a LSTM cell takes an input token and a hidden state hi−1, ci−1 from the previous LSTM
cell as input, computes a hidden state hi, ci, and outputs hi, based on the following formulas:

qfo
g

 =

 σ
σ
σ

tanh

PJ,2J

(
xi

hi−1

)
ci = f � ci−1 + q � g
hi = o� tanh(ci)

Here, PJ,2J denotes a J×2J parameter matrix, where J is the size of the hidden state, i.e. dimension
of hi, which is equal to the size of embedding vectors. σ and � denote the sigmoid function and
pointwise multiplication respectively.

Softmax layer. Assume hk is the output hidden state of the last LSTM cell. hk is fed into a
softmax classifier to predict the next non-terminal. In particular, we have

N̂k+1 = softmax(WN × hk + bN )

where WN and bN are a matrix of size VN × J and a VN -dimensional vector respectively.

Using only non-terminal inputs. One variant of this model is to omit all terminal information
from the input sequence. In this case, the embedding is computed as Ei = ANi. We refer to this
model as N2N, which stands for using Non-terminal sequence TO predict the next Non-terminal.

Predicting the next terminal and non-terminal together. Based on NT2N, we can predict not
only the next non-terminal but also the next terminal, using

T̂k+1 = softmax(WT × hk + bT )

6



Under review as a conference paper at ICLR 2017

LS
TM

LS
TM

LS
TM

AN1+BT1 AN2+BT2 ANk+BTk

N1 N2 NkT1 T2 Tk

ℎ1 ℎ2 ℎ𝑘 WN

So
ftm

ax

Nk+1

WNT

+
Prediction
𝑇𝑘+1

ℎ0

𝑐0

ℎ1

𝑐1

ℎ𝑘−1

𝑐𝑘−1

Figure 6: Architecture (NTN2T) for predicting the next terminal.

where WT and bT are a matrix of size VT × J and a VT -dimensional vector respectively. In this
case, the loss function has an extra term to give supervision on predicting T̂ . We refer to this model
as NT2NT, which stands for using the sequence of Non-terminal and Terminal pairs TO predict the
next Non-terminal and Terminal pair.

4.2 NEXT TERMINAL PREDICTION

In the next terminal prediction problem, the partial AST does not only contain
(N1, T1), ..., (Nk, Tk), but also Nk+1. In this case, we can employ the architecture in Fig-
ure 6 to predict Tk+1. In particular, we first get the LSTM output hk in the same way as in NT2N.
The final prediction is based on

T̂k+1 = softmax(WThk +WNTNk+1 + bT )

where WNT is a matrix of size VT × VN , and WT and bT are the same as in NT2NT. We refer
to this model as NTN2T, which stands for Non-terminal and Terminal pair sequence and the next
Non-terminal TO predict the next Terminal.

Note that the model NT2NT can also be used for the next terminal prediction task, although the
non-terminal information Nk+1 is not leveraged. We will compare the two approaches later.

4.3 JOINT PREDICTION

We consider two approaches to predict the next non-terminal and the next terminal together. The
first approach is NT2NT, which is designed to predict the two kinds of nodes together.

An alternative approach is to (1) use a next non-terminal approach X to predict the next non-
terminal; and (2) feed the predicted non-terminal and the input sequence into NTN2T to predict
the next terminal. We refer to such an approach as X+NTN2T.

4.4 DENYING PREDICTION

We say a model denies prediction when it predicts the next terminal to be UNK, a special terminal
to substitute rare terminals. However, due to the large amount of rare terminals, the occurrences of
UNK may be much greater than any single frequent terminals. In this case, a model that can deny
prediction may tend to predict UNKs, and thus may predict for fewer queries than it should.

To mitigate this problem, we modify the loss function to be adaptive. Specifically, training a machine
learning model fθ is to optimize the following objective:

argminθ
∑
i

l(fθ(qi), yi)

where {(qi, yi)} is the training dataset consisting pairs of a query qi and its ground truth next token
yi. l is the loss function to measure the distance between the prediction ŷi = fθ(qi) and the ground

7



Under review as a conference paper at ICLR 2017

Training set
Programs 100,000
Queries 1.7× 108

Test set
Programs 50,000
Queries 8.3× 107

Overall
Non-terminal 44
Terminal 3.1× 106

Table 1: Statistics of the dataset

truth yi. We choose l to be the standard cross-entropy loss. We introduce a weight αi for each
sample (qi, yi) in the training dataset to change the objective to be as follows:

argminθ
∑
i

αil(fθ(qi), yi)

When training a model not allowed to deny prediction, we set αi = 0 for yi = UNK, and αi = 1
otherwise. In doing so, it is equivalent to remove all queries whose ground truth next token is UNK.

When training a model that allows denying prediction, we set all αi to be 1. To denote this case, we
put a notation “+D” at the end of the model, (e.g., NT2NT+D, etc.).

5 EVALUATION

5.1 DATASET

We use the JavaScript dataset2 provided by Raychev et al. (2016b) to evaluate different approaches.
The statistics of the dataset can be found in Table 1. Raychev et al. (2016a) provides an approach,
called PHOG, for the next token prediction. The reported accuracy results are based on a subset
of 5.3 × 107 queries from the full test set. Specifically, Raychev et al. (2016a) chose all queries in
each program containing fewer than 30,000 tokens.3 When we compare with their results, we use
the same testset. Otherwise, without a special specification, our results are based on the full test set
consisting of 8.3× 107 queries.

5.2 TRAINING DETAILS

Vocabulary In our dataset, there are 44 different kinds of non-terminals. Combining two more
bits of information to indicate whether the non-terminal has a child and/or a right sibling, there
are at most 176 different non-terminals. However, not all such combinations are possible: a
ForStatement must have a child. In total, the vocabulary size for non-terminals is 97. For
terminals, we sort all terminals in the training set by their frequencies. Then we choose the 50,000
most frequent terminals to build the vocabulary. We further add three special terminals: UNK for out-
of-vocabulary tokens, EOF indicating the end of program, and Empty for the non-terminal which
does not have a terminal. Note that about 45% terminals in the dataset are Empty terminals.

Training details. We use a single layer LSTM network with hidden unit size of 1500 as our base
model. To train the model, we use Adam (Kingma & Ba (2014)) with base learning rate 0.001. The
learning rate is multiplied by 0.9 every 0.2 epochs. We clip the gradients’ norm to 5. The batch
size is b = 80. We use truncated backpropagation through time, by unrolling the LSTM model
s = 50 times to take an input sequence of length 50 in each batch (and therefore each batch contains
b× s = 4000 tokens).

We divide each program into segments consisting of s consecutive tokens. The last segment of a pro-
gram, which may not be full, is padded with 〈EOF〉 tokens. We coalesce multiple epochs together.
We organize all training data into b buckets. In each epoch, we randomly shuffle all programs in
the training data to construct a queue. Whenever a bucket is empty, a program is popped from the
queue and all segments of the program are inserted into the empty bucket sequentially. When the
queue becomes empty, i.e., the current epoch finishes, all programs are re-shuffled randomly to re-
construct the queue. Each mini-batch is formed by b segments, i.e., one segment popped from each
bucket. When the training data has been shuffled for e = 8 times, i.e., e epochs are inserted into the

2http://www.srl.inf.ethz.ch/js150
3This detail was not explained in the paper. We contacted the authors to confirm it.

8

http://www.srl.inf.ethz.ch/js150


Under review as a conference paper at ICLR 2017

Program 1

Program 2

Program 3

B
u

c
k
e

ts
 𝑏

Program 4

Program 5

Unrolled sequence length 𝑠

The first 𝑠 tokens of a program
1 minibatch

Program 1

Program 2

Program 5

Epoch 1 Last Epoch

…
…

…

Figure 7: Training epoch illustration

Categories Previous work Our considered models
Raychev et al. (2016a) N2N NT2N NT2NT

One model accuracy 83.9% 79.4± 0.2% 84.8± 0.1% 84.0± 0.1%
Ensemble accuracy 82.3% 87.7% 86.2%

Table 2: Next non-terminal prediction results

bucket, we stop adding whole programs, and start adding only the first segment of each program:
when a bucket is empty, a program is chosen randomly, and its first segment is added to the bucket.
We terminate the training process when all buckets are empty at the same time. That is, all programs
from the first 8 epochs have been trained. This is illustrated in Figure 7.

The hidden states are initialized with h0, c0, which are two trainable vectors. The hidden states of
LSTM from the previous segment are fed into the next one as input if both segments belong to the
same program. Otherwise, the hidden states are reset to be h0, c0. We observe that resetting the
hidden states for every new program improves the performance a lot.

We initialize all parameters in h0, c0 to be 0. All other parameters are initialized with values uni-
formly randomly sampled from [−0.05, 0.05]. For each model, we train 5 sets of parameters using
different random initializations. We evaluate the ensemble of the 5 models by averaging 5 softmax
outputs. In our evaluation, we find that the ensemble improves the accuracy by 1 to 3 points in
general.

5.3 NEXT NODE PREDICTION

In this section, we present the results of our models on next node prediction, and compare them with
the counterparts in Bielik et al. (2016), which is the state-of-the-art on these tasks. Therefore, we
use the same testset consisting of 5.3 × 107 queries as in Bielik et al. (2016). In the following, we
first report results of next non-terminal prediction and of next terminal prediction, then evaluate our
considered models’ performance on programs with different lengths.

Next non-terminal prediction. The results are presented in Table 2. From the table, we can
observe that both NT2N and NT2NT can outperform Raychev et al. (2016a). In particular, an
ensemble of 5 NT2N models improves Raychev et al. (2016a) by 3.8 percentage points. We also
report the average accuracies of the 5 single models and the variance among them. We observe that
the variance is very small, i.e., 0.1%− 0.2%. This indicates that the trained models’ accuracies are
robust to random initialization.

Among the neural network approaches, NT2NT’s performance is lower than NT2N, even given
that the former is provided with more supervision. This shows that given the limited capacity of
the model, it may learn to trade off non-terminal prediction performance in favor of the terminal
prediction task it additionally needs to perform.

9



Under review as a conference paper at ICLR 2017

Categories Previous work Our considered models
Raychev et al. (2016a) NT2NT NTN2T

One model accuracy 82.9% 76.6± 0.1% 81.9± 0.1%
Overall 78.6% 83.4%

Table 3: Next terminal prediction results

Non-terminal Terminal
N2N NT2N NT2NT NTN2T NT2NT

Top 1 accuracy
Short programs (<30,000 non-terminals) 82.3% 87.7% 86.2% 83.4% 78.6%
Long programs (>30,000 non-terminals) 87.7% 94.4% 92.7% 89.0% 85.8%

Overall 84.2% 90.1% 88.5% 85.4% 81.2%
Top 5 accuracy

Short programs (<30,000 non-terminals) 97.9% 98.9% 98.7% 87.9% 86.4%
Long programs (>30,000 non-terminals) 98.8% 99.6% 99.4% 91.5% 90.5%

Overall 98.2% 99.1% 98.9% 89.2% 87.8%

Table 4: Next token prediction on programs with different lengths.

Next terminal prediction. The results are presented in Table 3. We observe that an ensemble
of 5 NTN2T models can outperform Raychev et al. (2016a) by 0.5 points. Without the ensemble,
its accuracies are around 82.1%, i.e., 0.8 points less than Raychev et al. (2016a). For the 5 single
models, we also observe that the variance on their accuracies is also very small, i.e., 0.1%. On
the other hand, we observe that NT2NT has much worse performance than NTN2T, i.e., by 4.8
percentage points. This shows that leveraging additional information about the parent non-terminal
of the current predicting terminal can improve the performance significantly.

Prediction accuracies on programs with different lengths. We examine our considered models’
performance over different subsets of the test set. In particular, we consider the queries in programs
containing no more than 30,000 tokens, which is the same as used in Bielik et al. (2016); Raychev
et al. (2016a). We also consider the rest of the queries in programs which have more than 30,000
tokens. The results are presented in Table 4.

We can observe that for both non-terminal and terminal prediction, accuracies on longer programs
are higher than on shorter programs. This shows that a LSTM-based model may become more
accurate when observing more code inputted by programmers.

We also report top 5 prediction accuracy. We can observe that the top 5 accuracy improves upon top
1 accuracy dramatically. This metric corresponds to the code completion scenario that an IDE may
pop up a list of few (i.e., 5) candidates for users to choose from. In particular, NT2N can achieve
99.1% top-5 accuracy on the non-terminal prediction task. On the other hand, NTN2T can also
achieve 89.2% accuracy on the terminal prediction task. In the test set, there are 7.4% of tokens
in the data whose ground truth is UNK, i.e., non-top 50,000 most frequent tokens. This means
that NTN2T can predict over 89.2/(100 − 7.4)% = 96.3% of all tokens whose ground truth is not
UNK. Therefore, this means that the users can choose from the popup list without typing the token
manually over 96% of all time that the code completion is possible if the completion is restricted to
the top 50,000 most frequent tokens in the dataset.

The effectiveness of different UNK thresholds. We evaluate the effectiveness of how to choose
the threshold to cut for UNK terminals on the accuracy. We randomly sample 1/10 of the training
dataset and the test dataset and vary the thresholds to cut for UNK terminals from 10000 to 80000.
We plot the percentage of UNK terminals in both the full test set and its subset in Figure 8. We can
observe that the distributions of UNK terminals are almost the same in both sets. Further, when the
threshold is 10000, i.e., all terminals out of the top 10000 most frequent ones are turned into UNKs,
there are more than 11% UNK queries (i.e., queries with ground truth being UNK) in the test set.
When the threshold increases to 50000 or more, this number drops to 7% to 6%. The variance of the
UNK queries’ percentages is not large when threshold of UNK is varied from 50000 to 80000.

10



Under review as a conference paper at ICLR 2017

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8P
e

rc
e

n
ta

g
e

 o
f 

U
N

K
 t
o

k
e

n
s

UNK threshold (Unit: 10,000)

Percentage of UNK tokens vs UNK threshold

Entire dataset Sampled subset

Figure 8: Percentage of UNK tokens in the
entire test data and the sampled subset of the
test data by varying the UNK threshold from
10000 to 80000.

73

73.5

74

74.5

75

75.5

1 2 3 4 5 6 7 8

A
c
c
u

ra
c
y

UNK threshold (Unit: 10,000)

Accuracy vs UNK threshold

Figure 9: Accuracies of different models
trained over the sampled subset of train-
ing data by varying the UNK threshold from
10000 to 80000.

NT2NT N2N+NTN2T NT2N+NTN2T
Top 1 accuracy 73.9% 72.0% 77.7%

Table 5: Predicting non-terminal and terminal together

We train one NTN2T model for each threshold, and evaluate it using the sampled test set. The
accuracies of different models are plotted in Figure 9. The trend of different models’ accuracies
is similar to the trend of the percentage of non-UNK tokens in the test set. This is expected, since
when the threshold increases the model has more chance to make correct predictions for original
UNK queries. However, we observe that this is not always the case. For example, the accuracies of
models trained with thresholds being 30000 and 40000 are almost the same, i.e., the difference is
only 0.02%. We make similar observations among the models trained with thresholds being 60000,
70000, and 80000. Notice that we have observed above that when we train 5 models with different
random initialization, the variance of the accuracies of these models is within 0.1%. Therefore, we
conclude that when we increase the UNK threshold from 30000 to 40000 and from 60000 to 80000,
the accuracies do not change significantly. One potential explanation is that when increasing the
UNK threshold, while it has more chance to predict those otherwise UNK terminals, a model may
also more likely make mistakes when it needs to choose the next terminal from more candidates.

5.4 JOINT PREDICTION

In this section, we evaluate different approaches to predict the next non-terminal and terminal to-
gether for the joint prediction task. In fact, NT2NT is designed for this task. Alternative approaches
can predict the next non-terminal first, and then predict the next terminal based on the predicted next
non-terminal. We choose NTN2T method as the second step to predict the next terminal, and we
examine two different approaches as the first step to predict the next non-terminal: N2N and NT2N.
Therefore, we compare three methods in total.

The top 1 accuracy results are presented in Table 5. N2N+NTN2T is less effective than
NT2N+NTN2T, as expected, since when predicting the non-terminal in the first step, N2N is less
effective than NT2N as we have shown in Table 4. On the other hand, NT2NT’s performance is
better than N2N+NTN2T, but is worse than NT2N+NTN2T.

We observe that for all these three combinations, we have

Pr(T̂k+1 = Tk+1 ∧ N̂k+1 = Nk+1) > Pr(T̂k+1 = Tk+1)Pr(N̂k+1 = Nk+1)

These facts indicate that the events of the next non-terminal and terminal being predicted correctly
are not independent, but very relevant to each other instead. This is also the case for NT2NT, even
though NT2NT predicts the next non-terminal and the next terminal independently conditional upon
the LSTM hidden states.

11



Under review as a conference paper at ICLR 2017

NT2NT NT2NT+D NTN2T NTN2T+D
Overall accuracy 81.2% 85.1% 85.4% 89.9%

Accuracy on non-UNK terminals 87.6% 87.5% 92.2% 91.8%
Deny prediction rate 0% 5.2% 0% 6.1%

Table 6: Deny prediction results. Top 1 accuracy is computed as the percentage of all queries
(including the ones whose ground truth is UNK) that can be predicted correctly, i.e., the prediction
matches the ground truth even when the ground truth is UNK. Accuracy on non-UNK terminals
measures the accuracy of each model on all non-UNK terminals. Deny rate is calculated as the
percentage of all queries that a model denies prediction. Prediction accuracy is the top 1 accuracy
over those queries that a model does not deny prediction, i.e., the prediction is not UNK.

70

72

74

76

78

80

82

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
c
c
u

ra
c
y

α

Accuracy vs α

non-UNK terminals

Overall

Figure 10: Overall accuracies and accuracies on non-UNK terminals by varying α.

5.5 DENYING PREDICTION

We compare the models which do not deny prediction (i.e., NT2NT and NTN2T) and those which
do (i.e., NT2NT+D and NTN2T+D). Results are presented in Table 6. For a reference, in the test set,
there are 7.42% UNK queries. We can observe that deny prediction models (i.e., +D models) have
higher accuracies than the corresponding original models. This is expected. Since deny prediction
models allow predicting UNK terminals, while NT2NT and NTN2T fail on all UNK queries, +D will
succeed on most of them. We further evaluate the accuracy on non-UNK terminals. One may expect
that since +D models may prefer to predict UNK, a standard model should have a higher accuracy
on non-UNK terminals than its deny prediction counterpart. The results show that this is indeed the
case, but the margin is very small, i.e., 0.1% for NT2NT and 0.3% for NTN2T. This means that,
allowing denying prediction does not necessarily sacrifice a model’s ability on predicting non-UNK
terminals.

We are also interested in how frequent a +D model will deny prediction. We can observe that
NTN2T+D will deny prediction for only 6.1% of all queries, which is even less than the percentage
of UNK queries (i.e., 7.42%). This shows that although we allow the model to deny prediction, it
is conservative when executing this privilege. This partially explains why NTN2T+D’s accuracy on
non-UNK terminals is not much less than NTN2T’s.

Effectiveness of the value of α. We are interested in how the hyperparameter α in a +D model
affects its accuracy. We train 11 different NTN2T+D models on the 1/10 subset of the training set,
which is used above to examine the effectiveness of UNK thresholds, by varying α from 0.0 to 1.0.
Notice that α = 0.0, this model becomes a standard NTN2T model.

We plot both overall accuracies and accuracies on non-UNK terminals in Figure 10. We observe the
same effect as above: 1) the overall accuracy for α = 1 is 6% higher than the one for α = 0; and
2) the accuracy on non-UNK terminals for α = 1 is less than the one for α = 0, but the margin is
not large (i.e., less than 1%). When we increase α from 0 to 0.3, we can observe that the overall
accuracy steeply increases. When we further increase α, however, the overall accuracy becomes
steady. This is also the case for accuracy on non-UNK terminals. The result of this experiment

12



Under review as a conference paper at ICLR 2017

shows that how to set α is a trade-off between the overall accuracy and the accuracy on non-UNK
terminals and how to choose α depends on the application.

5.6 RUNTIME

We evaluate our models’ runtime performance. Our models are implemented in TensorFlow (Abadi
et al. (2016)). We evaluate our models on a machine equipped with 16 Intel Xeon CPUs, 16 GB
RAM, and a single GPU Tesla K80. All queries from the same program are processed incrementally.
That is, given two queries A,B, if A has one more node than B, then the LSTM outputs for B will
be reused for processing A, so that only the additional node in A needs to be processed. Note that
this is consistent with the practice where programs are written incrementally from beginning to end.
For each model, we feed in one query at a time into the model. There are 3939 queries in total
coming from randomly chosen programs. We measure the overall response latency for each query.
We observe that the query response time is consistent across all queries. On average, each model
takes around 16 milliseconds to respond a query on GPU, and around 33 milliseconds on CPU.
Note that these numbers are from just a proof of concept implementation and we have not optimized
the code. Considering that a human being usually does not type in a token within 30 milliseconds,
we conclude that our approach is efficient enough for potential practical usage. We emphasize that
these numbers do not directly correspond to the runtime latency when the techniques are deployed
to a code completion engine, since the changes of AST serialization may not be sequential while
users are programming incrementally. This analysis, however, only provides an evidence to show
the feasibility of applying our approach toward a full-fledged code completion engine.

6 CONCLUSION

In this paper we introduce, motivate, and formalize the problem of automatic code completion.
We describe LSTM-based approaches that capture parsing structure readily available in the code
completion task. We introduce a simple LSTM architecture to model program context. We then ex-
plore several variants of our basic architecture for different variants of the code completion problem.
We evaluate our techniques on a challenging JavaScript code completion benchmark and compare
against the state-of-the-art code completion approach. We demonstrate that deep learning techniques
can achieve better prediction accuracy by learning program patterns from big code. In addition, we
find that using deep learning techniques, our models perform better for longer programs than for
shorter ones, and when the code completion engine can pop up a list of candidates, our approach
allows users to choose from the list instead of inputting the token over 96% of all time that this is
possible. We also evaluate our approaches’ runtime performance and demonstrate that deep code
completion has the potential to run in real-time as users type. We believe that deep learning tech-
niques can play a transformative role in helping software developers manage the growing complexity
of software systems, and we see this work as a first step in that direction.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments. This material is based upon work
partially supported by the National Science Foundation under Grant No. TWC-1409915, and a
DARPA grant FA8750-15-2-0104. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation and DARPA.

REFERENCES

Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Miltiadis Allamanis and Charles Sutton. Mining idioms from source code. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 472–
483. ACM, 2014.

13



Under review as a conference paper at ICLR 2017

Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Suggesting accurate method
and class names. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 38–49. ACM, 2015.

I. Beltagy and Chris Quirk. Improved semantic parsers for if-then statements. In ACL, 2016.

Pavol Bielik, Veselin Raychev, and Martin Vechev. PHOG: Probabilistic Model for Code. In ICML,
2016.

Xinyun Chen, Chang Liu, Richard Shin, Dawn Song, and Mingcheng Chen. Latent attention for
if-then program synthesis. In NIPS, 2016.

Michael Collins. Head-driven statistical models for natural language parsing. Computational lin-
guistics, 29(4):589–637, 2003.

Li Dong and Mirella Lapata. Language to logical form with neural attention. In ACL, 2016.

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the natural-
ness of software. In 2012 34th International Conference on Software Engineering (ICSE), pp.
837–847. IEEE, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Percy Liang, Michael I Jordan, and Dan Klein. Learning programs: A hierarchical bayesian ap-
proach. In Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pp. 639–646, 2010.

Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomás Kociský, Andrew Senior, Fumin
Wang, and Phil Blunsom. Latent predictor networks for code generation. CoRR, 2016. URL
http://arxiv.org/abs/1603.06744.

Chris J Maddison and Daniel Tarlow. Structured generative models of natural source code. In ICML,
2014.

Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. A statistical
semantic language model for source code. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pp. 532–542. ACM, 2013.

Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical language models.
In ACM SIGPLAN Notices, volume 49, pp. 419–428. ACM, 2014.

Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with decision
trees. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 731–747. ACM, 2016a.

Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. Learning programs from noisy
data. In POPL, 2016b.

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. On the localness of software. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 269–280. ACM, 2014.

Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshyvanyk. Toward deep
learning software repositories. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, 2015.

14

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1603.06744

	Introduction
	Related Work
	Code Completion Via Big Code
	Code completion: an example
	Abstract syntax tree
	Problem setup

	Models
	Next non-terminal prediction
	Next terminal prediction
	Joint prediction
	Denying prediction

	Evaluation
	Dataset
	Training Details
	Next node prediction
	Joint prediction
	Denying prediction
	Runtime

	Conclusion

