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ABSTRACT

Modern neural network architectures take advantage of increasingly deeper lay-
ers, and various advances in their structure to achieve better performance. While
traditional explicit regularization techniques like dropout, weight decay, and data
augmentation are still being used in these new models, little about the regulariza-
tion and generalization effects of these new structures have been studied. Besides
being deeper than their predecessors, could newer architectures like ResNet and
DenseNet also benefit from their structures’ implicit regularization properties? In
this work, we investigate the skip connection’s effect on network’s generalization
features. Through experiments, we show that certain neural network architectures
contribute to their generalization abilities. Specifically, we study the effect that
low-level features have on generalization performance when they are introduced
to deeper layers in DenseNet, ResNet as well as networks with ‘skip connections’.
We show that these low-level representations do help with generalization in mul-
tiple settings when both the quality and quantity of training data is decreased.

1 INTRODUCTION

Deep models have achieved significant success in many applications. However, deep models are
hard to train and require longer times to converge. A solution by construction is copying the learned
layers from the shallower model and setting additional layers to identity mapping. Skip connection
proposed in the Residual Network He et al. (2016), shows the new insight of innovation in network
structure for computer vision.

In the following years, more new and multi-layer-skipping structures have been proposed
and proved to have better performance, among which one typical example is DenseNet (Huang
et al., 2016). ResNet (He et al., 2016), HighwayNet (Rupesh Kumar Srivastava & Schmidhuber,
2015) and FractalNets (Larsson et al., 2016) have all succeeded by passing the deep information
directly to the shallow layers via shortcut connection. Densenet further maximize the benefit of
shortcut connections to the extreme. In DenseNet (more accurately in one dense block) every two
layers has been linked, making each layer be able to use the information from all its previous layers.
In doing this, DenseNet is able to effectively mitigate the problem of gradient vanishing or degra-
dation, making the input features of each layer various and diverse and the calculation more efficient.

Concatenation in Dense Block: the output of each layer will concatenate with its own input
and then being passed forward to the next layer together. This makes the input characteristics of the
next layer diversified and effectively improves the computation and helps the network to integrate
shallow layer features to learn discriminative feature. Meanwhile, the neurons in the same Dense
block are interconnected to achieve the effect of feature reused. This is why DenseNet does not
need to be very wide and can achieve very good results.

Therefore, shortcut connections form the multi-channel model, making the flow of informa-
tion from input to output unimpeded. Gradient information can also be fed backward directly from
the loss function to the the various nodes.

In this paper we make the following contributions:
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• We design experiments to illustrate that on many occasions it is worth adding some skip
connections while sacrificing some of the network width. Every single skip connection
replacing some of width is able to benefit the whole network’s learning ability. Our
‘connection-by-connection’ adding experiment results can indicate this well.

• We perform experiments to show that networks that reuse low-level features in subsequent
layers perform better than a simple feed-forward model. We degrade both the quantity
and the quality of the training data in different settings and compare the validation per-
formances of these models. Our results suggest that while all models are able to achieve
perfect training accuracy, both DenseNet and ResNet are able to exhibit better generaliza-
tion performance given similar model complexities.

• We investigate solutions learned by the three types of networks in both a regression and
classification involving task in low dimensions and compare the effects of both the dense
connections and the skip connections. We show that the contribution of the feature maps
reintroduced to deeper layers via the connections allow for more representational power.

2 THE EFFECTS OF SKIP CONNECTIONS

Skip connections are the main features of DenseNet and ResNet, which is convenient to make gra-
dient flow easily and overcome the overfitting. For this reason, it is interesting and necessary to dive
more in the effects of skip connections on the performance.

In the original DenseNet paper (Huang et al., 2016), three dense blocks are connected sequentially
and in each dense block all of the convolutional layers have direct paths connected with each other.

In our implementation, there are 8 layers which leads to a total of 28 skip connections within each
dense block. We increase the number of skip connections from 0 to 28 and test the validation
accuracy on CIFAR100 trained with 10k and 50k samples. The total numbers of parameters in these
models are set to the same (92k) by controlling the depths of convolutional filters in each dense
block.

Figure 1 shows the variation of validation accuracy with changing number of skip connections. De-
spite some fluctuations in numerical values, the overall trend of validation accuracy goes up, showing
the increasing number of skip connections have positive effects on the generalization performance
of neural networks.

Experiments are conducted to test the effect of skip connections in the next section. We will change
the number of skip connections in network smoothly.

The increasing process of the number of skip connections can be described as follows: For each
layer, first of all the connections to their previous layers which is 2 layers away is added. Then the
connections linking layers farther away from each other is added.

3 EXPERIMENTS

3.1 GENERALIZATION PERFORMANCE IN TROUBLESOME DATASET

In this section the generalization performances of three different network structures, Cascade Net-
work(simple layer-wise CNN), ResNet and DenseNet, using MNIST and CIFAR100 dataset are
measured. The experiments are done by modifying these datasets either by decreasing the number
of training samples or by adding noise to groundtruth labels so as to test which network structure
shows better performance under these ‘harsh training conditions’.

3.1.1 TRAINING WITH DECREASED SAMPLES

Neural networks is prone to overfitting if the training data fed into the network is insufficient. In
order to compare generalization performances of the three networks with different connectivity pat-
terns, the appropriate depth and parameters for these networks are selected carefully for better com-
parisons.
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(a) Training with 10k samples in CIFAR100 (b) Training with 50k samples in CIFAR100

Figure 1: Validation accuracy with different number of skip connections in CIFAR 100.

(a) Absolute validation accuracy (b) Relative validation accuracy (c) Absolute validation accuracy

Figure 2: Validation accuracy with different network architectures in CIFAR100. (a) Absolute vali-
dation accuracy with same number of parameters. (b) Relative validation accuracy with same num-
ber of parameters. (c) Absolute validation accuracy with different number of parameters.

The depths of the networks range from 44 to 46 layers due to the fact that it has a fair learning
capacity. We haven’t chosen the standard DenseNet or ResNet with over a hundred layers as de-
scribed in the original papers because the plain Cascade Network will suffer from severer gradient
vanishing problems as the number of layers increases. The numbers of channels of each layer are
carefully picked so that sizes of the three model’s parameters are nearly the same (560k to 580k in
our experiment) to ensure fairness of our comparisons.

Figure 2(a) shows the absolute validation accuracy of the three networks with varying sizes of train-
ing data. It can be seen that with a large number of skip connections, DenseNet outperforms other
network structures on all sizes of training data. The three curves are then normalized in Figure 2(b)
for better visual comparison, which is done by scaling each line’s maximum value in Figure 2(a) to
100%.

In Figure 2(c), the width of each network is specially designed so that when the entire training set is
used for training the three networks, similar performance could be reached, which is all around 50%.
From the figure it can be noticed that while Cascade Net (Plain Net) has much more parameters, it is
the least robust to the decreasing number of training samples. On the contrary, the DenseNet, with
more skip connections, has the fewest parameters but the highest robustness.

With the decrease number of training samples, the performance of DenseNet drops more moder-
ately than the others shown in Figure 2. The architecture can benefit the network’s stability and its
generalization. As a consequence, the dense connection can be a good method of generalization.

The similar results have been achieved in MNIST, where the only difference is that the networks
contains only fully connected layers without any convolution layers. Considering the potential over
fitting problem of deep Linear network and the simplicity of the dataset, we construct just 6 layers
for Cascade Net and DenseNet. Same as CIFAR dataset, we vary the widths in order to achieve
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Figure 3: The absolute validation accuracy with varying training data size of different network
structures in MNIST dataset

Figure 4: The validation accuracy with varying noise rate of different network structures in MNIST
dataset

similar numbers of parameters among the three network architectures. Figure 3 illustrates that the
dense skip connections have made the network more robust against the paucity of the training data
size.

We can conclude from the above experiments that for deep neural networks both with and without
convolution layers, the skip connections can effectively act as an implicit regularizer in network
training process, making networks generalize better.

3.1.2 TRAINING WITH NOISE IN DATASET

To test the skip connections’ ‘adapting skills’, we have tried to add some noise to training dataset.
The noise is added by directly setting some pixels in some channels as 0. The result is as the noise
grows bigger, the decrease in DenseNet’s performance will be smaller than others. As shown in
Figure 4, network with dense connections is more robust to noise.

3.2 VISUALIZATION OF GENERALIZATION EFFECTS IN ONE DIMENSION

In this section we visualize the generalization effects of network structures using the simple 1-
dimensional curve fitting problem. The network has to learn a function f that maps scalar value x to
scalar value f(x). Network with better regularization capability should have smoother output in the
hidden layers and may thus avoid the over-fitting problem, producing greater generalization ability.

We use the simple networks which contains only fully-connected layer and the nonlinear layers to
fit the Sinc Function defined as: f(x) = sin x

x in range of (−15, 15). Three kinds of networks
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are implemented using their main characteristics: the Cascade Net uses a smooth linear model, the
ResNet in which several skip connection is added, and the DenseNet which has only one dense block
and between every two layers there is one direct connection.
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Figure 5: Learning process of sinc curve (training data number for DenseNet is 30 while for Plain
Net is 400)

In order to analyze the results more in detail, we both plot the network’s final learned curve and
extract the output from each layer.

The parameters of all 3 kinds of networks of the same depth are controlled as near as possible, by
adjusting the ‘width’ (‘growth rate’). For example, when growth rate is 2 for DenseNet and 4 for
Plain Net, their parameters are 98 and 113 respectively. Though the Plain Net has more parameters,
its results are unsatisfactory.

Top sequence of subplots in Figure 5 are the learning process of 7-layer dense net with a training
sample of 30 points. Each subplot is the output of each layer (as the growth rate is 2 there are 2
curves in each plot). Also, while there is only 30 training data points, it can still learn well. In the
7th subplot, the blue curve is the standard sinc curve and the green one is its learned version where
it can be seen that the two are almost identical. The last plot is the training loss changing with the
epochs.

As for the ordinary Plain Net, the result with 30 training data points or even 200 training data points
is always very bad without fitting the small waves of both sides.

The output 4 curves from each layer is also as simple but the final results are bad. It couldn’t learn
the trivial wave. The thing that is also not satisfactory is in its training loss which drops quickly
at the beginning but cannot be smaller later. When more training data are fed to the Plain Net,
sometimes it can do a good job. However, most times it still cannot learn more information, like in
bottom sequence of subplots in Figure 5 with 400 training data, it is still quite hard for this Plain Net
to compete with the dense one.

Figure 6: Loss with depth—statistical results of noisy training data (training data number: 60).

Then some advancements are made:
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Figure 7: 15-layer Nets’ learning process of sinc curve (noise training data number: 60).

• The ResNet is added to them to compare together. At least residual net is of most competi-
tiveness to DenseNet.

• Some noise is added to the training data (the training data points are with a small fluctuation
from its original sinc curve). With the noise, it is more interesting to see the networks’
generalization. The results are similar as the circumstance with no noise.

• Same experiments are conducted many a time which enables us to plot some statistical
results. In Figure 6, x-axis is the depth and y-axis is the final loss. The middle point is
the mean loss in 10 experiments, the line segments represent the deviation in these same
experiments.

Still, in these experiments it is designed to make sure that in each depth the parameter number of
two kinds of nets are similar through adjusting the growth rate. On one hand, it can be seen that
DenseNet is better when deeper. On the other, the Plain Net learns nothing when it is too deep. It is
due to the gradient vanishing as will be discussed later.

No matter in the mean loss or the deviation, the dense net is smaller than the other two. And It can
generalize even much better than residual net relatively when the nets are shallow.

We can have a closer look at 15-layer nets of each type in Figure 7. In order to make the parameters
numbers of 3 types nearly identical to each other, the Plain Net and the ResNet each has 8 lines
of output of previous layer while the DenseNet has only 3 lines (growth rate of each layer). In
the figure, only 3 of them are chosen to be displayed to have a more equitable comparison with
DenseNet. Instead of showing every layer’s output we exhibit the 3th, 5th, 7th, 9th, 11th, 13th and
the final layer’s output. Also, the training data plotted on the final output is 60 points with trivial
deviation from the standard sinc curve, together with the network’s learnt curve.

• Plain Net:
The worst one as can be seen on the top row in Figure 7: gradient vanishing is severe and
finally it learns just a little profile of the curve which makes no sense at all.

• Net with residual connection:
This is much better than the Plain Net (the middle row of Figure 7. It can fit the curve well
in subplot 20. However, the middle output seems a bit complicated and its final fitting is
not perfect either.
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(a) Curve Fitting, transition from Plain Net to Most Dense Net (b) Validation Loss of the networks with
different density

Figure 8: Validation accuracy with different network architectures in CIFAR100. (a) Absolute vali-
dation accuracy with same number of parameters. (b) Relative validation accuracy with same num-
ber of parameters. (c) Absolute validation accuracy with different number of parameters.

• Net with dense connection:
To make number of parameters similar to the two nets above, its growth rate is only 3. It
can also fit the curve even better and the output of previous layers is the simplest as the
bottom row of Figure 7.

For better investigate the effects of ‘skip connection’, a more detailed experiment has been con-
ducted.

In previous experiments, we only compare no more than 3 kinds of different network architectures,
which may not be concrete enough. Thus, we exploit more forms of networks by split the numbers
of skip connections. Their ‘density’ is between the two extreme. The skip connections are added one
by one, where each defines a different network architecture. Network widths are chosen accordingly
to make the numbers of parameters not differ much. The depth is 7 for all architectures, which
means there will be at most 21 ‘skip connections’. As can be seen in Figure 8(a), the fitting effect
is becoming better as the network becomes ‘denser’. The corresponding loss is displayed in Figure
8(b). From these two figures, the representational power of skip connections is conspicuous.

3.3 VISUALIZATION OF GENERALIZATION EFFECTS IN TWO DIMENSIONS

We move on to analyzing the three styles of networks above in a two-dimensional classification
problem. The networks have to learn a decision boundary from a non-linearly separable data set.
We again restrict our depth to eight layers with the number parameters across the Dense, Resid-
ual, and the Plain networks being 614, 712, and 712, respectively. The parameters for the Dense
network is controlled by adjusting the growth rate of each layer. Using the same hyper-parameters
and number of training epochs, we attain the intermediate decision boundaries across each layer
of each network to see the progression of complexity with increasing depth. Similar to the one-
dimensional experiments, networks that generalize better tend to learn smooth decision boundaries
in the presence of noise rather than over-fitting to all data points.

To visualize the intermediate results of the networks, we feed a grid of evenly separated data points
in the vicinity of our original two-dimensional data points and record the raw outputs after being
activated by the activation function in each of the layers. Since only the last layer, i.e., the output
layer, has two-dimensional outputs, we choose one of the dimensions in each layer to visualize.
The top row in Figure 9 shows the progression of a densely connected network in the style of
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Figure 9: Intermediate decision boundaries for three different models.

DenseNet(Huang et al., 2016). Notice that in the Dense network, which achieves the lowest lost in
the test set, every layer receives inputs from all preceding layers, and is, therefore, able to make use
of low-level features even at the last layer stage. The first row of the figure shows the intermediate
features received by the eighth layer, which includes the linear features like those from the first layer,
all the way to higher-level features from the third and the fifth. We decide to show this last layer for
this network since it encompasses learning from all previous stages.

The benefits of dense connections, however, is not present in the Residual and the Plain networks.
The second and third rows of Figure 9 show the features learned in the first, third, and the fifth
layers.

4 CONCLUSION

By introducing skip connections, modern neural network has proved better performance in computer
vision area. This paper investigates how skip connections works in vision task and how they effect
the learning power of networks. For this reason, we have design some experiments and verify that
networks with skip connections can do the regression best among tested network architectures. It in-
dicates that we can get the insights of this interesting architecture and its tremendous learning power.
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