
Neural Symbolic Machines:
Learning Semantic Parsers on Freebase

with Weak Supervision

Anonymized for review

Abstract

Extending the success of deep neural networks to high level tasks like natural
language understanding and symbolic reasoning requires program induction and
learning with weak supervision. Recent neural program induction approaches have
either used primitive computation component like Turing machine or differentiable
operations and memory trained by backpropagation. In this work, we propose the
Manager-Programmer-Computer framework to integrate neural networks with op-
erations and memory that are abstract, scalable and precise but non-differentiable,
and a friendly neural computer interface. Specifically, we introduce the Neural
Symbolic Machines. It contains a sequence-to-sequence neural "programmer" that
takes in natural language input and outputs a program as a sequence of tokens,
and a non-differentiable "computer" that is a Lisp interpreter with code assistance
using syntax check and denotations of partial programs. This integration enables
the model to effectively learn a semantic parser from weak supervision over a
large knowledge base. Our model obtained new state-of-the-art performance on
WEBQUESTIONSSP, a challenging semantic parsing dataset.

1 Introduction

Deep neural networks have achieved impressive performance in classification and structured pre-
diction tasks with full supervision like speech recognition and machine translation. Extending the
success to high level tasks like natural language understanding and symbolic reasoning requires the
ability to perform program induction and learn with weak supervision.

There has been a lot of recent progress in neural program induction [4, 7, 9, 6, 13], which learns
programs by using a neural sequence model to control a computation component. However, the
computation components used by current models are either primitive like Turing machine or uses
differentiable operations and memory so that it can be trained by backpropagation. This makes it
difficult to utilize powerful operations, e.g. querying a large knowledge base, and efficient discrete
memory similar to a real computer, thus limits the current applications to only synthetic tasks.

To better utilize powerful computation components, we propose a Manager-Programmer-Computer
framework for neural program induction, which integrates three components:

1. A "manager" that provides weak supervision through input and a reward signal indicating
how well a task is performed. Unlike full supervision, this weak supervision is much easier
to obtain at large scale.

2. A "programmer" that takes natural language as input and generates a program that is a
sequence of tokens. The programmer learns from the reward signal and must overcome the
hard search problem of finding good programs. (See section 2.2 for an example).

3. A "computer" that executes the program. It can use all the operations / functions that
can be implemented in a high level programming language like Lisp. These operations
are abstract, scalable and precise, which is hard to achieve by neural networks. But they
are also not differentiable, thus require reinforcement learning. It also provides a friendly

neural computer interface to help the programmer reduce the search space by detecting and
eliminating invalid choices. (See section 2.1 for an example).

Within the MPC framework, we implemented the Neural Symbolic Machine (NSM) and applied it
to semantic parsing. NSM contains a sequence-to-sequence neural network model ("programmer")
augmented with a key-value memory to save and reuse intermediate results for compositionality, and
a non-differentiable Lisp interpreter ("computer") that executes programs against a large knowledge
base and helps reduce the search space using syntax check and the denotations of partial programs.
To efficiently train NSMs with weak supervision, we adopt a hybrid training procedure by mixing
maximum likelihood training and REINFORCE training.

Compared to existing neural program induction approaches, the powerful operations and friendly
interface of the "computer" greatly reduce the burden of the "programmer" and enable the model
to perform competitively on real applications. On the challenging semantic parsing dataset WE-
BQUESTIONSSP [12], NSMs obtain new state-of-the-art results with weak supervision. Compared to
previous work, it does not require any feature engineering or domain-specific knowledge.

2 Neural Symbolic Machines

Now we describe in details a Neural Symbolic Machine that falls into the MPC framework, and how
it is applied to learn semantic parsing from weak supervision.

Semantic parsing is defined as follows: given a knowledge base (KB) K, and a question q =
(w1, w2, ..., wk), produce a program or logical form z that when executed against K generates the
right answer y. Let E denote a set of entities (e.g., ABELINCOLN)1, and let P denote a set of
properties (or relations, e.g., PLACEOFBIRTHOF). A knowledge base K is a set of assertions
(e1, p, e2) ∈ E × P × E , such as (HODGENVILLE, PLACEOFBIRTHOF, ABELINCOLN)).

2.1 "Computer": Lisp interpreter with code assistance

We adopt the Lisp programming language with predefined functions listed in 1 as our semantic
representation, which is equivalent to the limited subset of λ-calculus in [11] but easier for a
sequence-to-sequence model to generate. A program C is a list of expressions (c1...cL). Each
expression is either a special token "RETURN" indicating the end of the program, or a list of tokens
enclosed by parentheses "(F A0 ... AK)", where Ak is an argument, and can be either a relation
p ∈ P or a variable v that represents a set of entities or values obtained by executing a previous
expression or an entity resolved from the natural language input. F is one of the functions in Table 1,
which take as input a list of arguments of specific types, and, when executed, returns a new variable
representing the denotation of this expression in K.

(Hop v p)⇒ {e2|e1 ∈ v, (e1, p, e2) ∈ K}
(ArgMax v p)⇒ {e1|e1 ∈ v,∃e2 ∈ E : (e1, p, e2) ∈ K,∀e : (e1, p, e) ∈ K, e2 ≥ e}
(ArgMin v p)⇒ {e1|e1 ∈ v,∃e2 ∈ E : (e1, p, e2) ∈ K,∀e : (e1, p, e) ∈ K, e2 ≤ e}

(Equal v1 v2 p)⇒ {e1|e1 ∈ v1,∃e2 ∈ v2 : (e1, p, e2) ∈ K}
Table 1: Predefined functions. v represents a variable. p represents a predicate in Freebase.

To provide a better neural computer interface, the interpreter provides code assistance by producing
a list of syntactically valid tokens for the programmer to pick from at each step. For example, if
the previous generated token is "(", the next token must be a function, and if the previous token is
Hop, the next token must be a variable. More importantly, the interpreter also uses the denotation
of partially executed programs to restrict the choices at each step. For example, given that the
previously generated tokens are "(", "Hop", "v", the next available token is restricted to the set of
predicates {p|e ∈ v,∃e′ : (e, p, e′) ∈ K} that are reachable from entities in v. By providing this
"code assistance", the interpreter reduces the search space by orders of magnitude, and enables
weakly supervised training on a large knowledge base.

1We also consider numbers (e.g., “1.33”) and date-times (e.g., “1999-1-1”) as entities.

2

2.2 "Programmer": key-value memory augmented Seq2Seq model

Similar to other neural program induction approaches, we use a sequence-to-sequence model for the
neural "programmer", and we augment it with a key-value memory to save and reuse the intermediate
results. We will go over each part below.

A typical sequence-to-sequence model consists of two RNNs, an encoder and a decoder. We used a
1-layer GRU for both the encoder and decoder. Given a sequence of words w1, w2...wm, each word
wt is mapped to a multi-dimensional embedding qt (details in Section 3). Then, the encoder reads in
these embeddings and updates its hidden state step by step using: ht+1 = GRU(ht, qt, θEncoder),
where θEncoder are the GRU parameters. The decoder updates its hidden states ut by ut+1 =
GRU(ut, ct−1, θDecoder), where ct−1 is the embedding of last step’s output token at−1, and θDecoder

are the GRU parameters. The last hidden state of the encoder hT is used as the decoder’s initial state.
We adopt a dot-product attention similar to that of [3]. The tokens of the program a1, a2...an are
generated one by one using the attention context vector, and a softmax over the vocabulary available
for each step (details in Section 2.1).

Key Value

R1 m.USA
Execute
(Argmax R2 Population) Execute

Return

m.NYCKey Value

... ...

R3 m.NYC

Key Value

R1 m.USA

R2 (list of US cities)

Execute
(Hop R1 !CityIn)

Hop R1 !CityIn()

Largest city (Hop R1in US GO !CityIn Argmax R2()Population)

R2 Population ReturnArgmax)(

Entity
Resolver

Figure 1: Semantic Parsing with NSM. The keys of the key-value memory table are the output of
sequence model at certain encoding or decoding steps. For illustration purpose we show the denota-
tions of values in the key-value tables. However, the sequence model never see these denotations, and
the output tokens are just variable symbols such as “R1”. A special token “GO” indicates the start of
decoding, and “RETURN” indicates the end of decoding.

To achieve compositionality, we augment the model with a key-value memory (Figure 1). It enables
the model to save the result of executing an expression and reuse it in later expressions. Each entry in
the key-value memory has two components: a continuous multi-dimensional key embedding, and a
corresponding symbolic value (e.g., “R1”), which represents an intermediate result in the computer,
and has the form of a list of entities in the knowledge base. Note that although the key embeddings are
continuous and differentiable, the value is symbolic and non-differentiable, which makes it different
from other memory-augmented neural networks [10]. During encoding if a token ("US") is the last
token of a resolved entity (by an entity resolver), then the resolved entity id (M.USA) is saved in a
new variable in the memory, and the key for this variable is the average GRU output of the tokens
spanned by this entity. During decoding if an expression is completely finished (the decoder reads
in ")") then it gets executed, and the result is added as a new variable in the memory. This variable
is keyed by the GRU output of that step. Every time a new variable is pushed into the memory, the
variable token is added to the vocabulary of the decoder. The answer returned by the programmer is
the value of the last variable produced by the programmer.

2.3 Training NSM with Weak Supervision

Similar to [13], NSM uses non-differentiable operations for which back-propagation cannot be
applied. So we use REINFORCE for effective training. While [13] rely on curriculum learning to
manage the challenges of training with REINFORCE, we adopt a hybrid approach, which combines
REINFORCE with maximum likelihood training by taking the best program (the program that
achieves the highest F1 score with the shortest length) found by the "programmer" for each question
as a pseudo target. The details of the hybrid training is not central to our contribution, and will be
omitted here due to space limit.

3

3 Experiments and analysis

3.1 The WebQuestions Task

Modern semantic parsers [2], which map natural language utterances to executable logical forms,
have been successfully trained over large knowledge bases from weak supervision[11], but require
substantial feature engineering. Recent attempts to train an end-to-end neural network for semantic
parsing [3, 5] have either used strong supervision (full logical forms), or have employed synthetic
datasets.

We apply NSM to learn a semantic parser with weak supervision and no manual engineering. we
used the challenging semantic parsing dataset WEBQUESTIONSSP [12], which consists of 3,098
question-answer pairs for training and 1,639 for testing. These questions were collected using Google
Suggest API and the answers were originally obtained [1] using Amazon Mechanical Turk and
updated by annotators who are familiar with the design of Freebase [12]. We further separate out 620
questions in the training set as validation set. For query pre-prosessing we used an in-house named
entity linking system to find the entities in a question. The quality of the entity resolution is similar to
that of [11] with about 94% of the gold root entities being included in the resolution results. Similar
to [3], we also replaced named entity tokens with a special token "ENT". For example, the question
"who plays meg in family guy" is changed to "who plays ENT in ENT ENT".

Following [11] we use the last public available snapshot of Freebase KB. Since NSM training requires
random access to Freebase during decoding, we preprocess Freebase by removing predicates that are
not related to world knowledge (starting with "/common/", "/type/", "/freebase/")2, and removing all
text valued predicates, which are rarely the answer. This results in a graph with 23K relations, 82M
nodes, and 417M edges.

3.2 Model details

The dimension of encoder hidden state, decoder hidden state and key embeddings are all 50. The
embeddings for the functions and special tokens (e.g., "UNK", "GO") are randomly initialized by a
truncated normal distribution with mean=0.0 and stddev=0.1. All the weight matrices are initialized
with a uniform distribution in [−

√
3
d ,
√
3
d] where d is the input dimension.

For pretrained word embeddings, we used the 300 dimension GloVe word embeddings trained on
840B common crawl corpus [8]. On the encoder side, we added a projection matrix to transform
the pretrained embeddings into 50 dimension. On the decoder side, we used the same GloVe word
embeddings to construct the relation embeddings from words in the relation names.

3.3 Result and Discussion

We evaluate performance using the offical measures for WEBQUESTIONSSP. Because the answer to
a question can contain multiple entities or values, precision, recall and F1 are computed based on the
output for each individual question. The average F1 score is reported as the main evaluation metric.
The accuracy@1 measures the percentage of questions that are answered exactly. The comparison
with previous state-of-the-art [12, 11] is shown in Table 2. Besides the better performance, our model
does not rely on domain-specific rules or feature engineering.

Model Avg. Prec. Avg. Rec. Avg. F1 Acc.
STAGG 67.3 73.1 66.8 58.8
NSM – our model 69.5 76.6 68.3 57.4

Table 2: Comparison to previous state-of-the-art, average F1 is the main evaluation metric. Our
model achieves better results without hand-crafted rules and feature engineering.

The improvement is mainly because the STAGG model [11] only allow 2 hops if the entity in the
middle is a CVT, while we search all possible traces within 2 hops. We can effectively explore this
much larger space because our search is guided by the neural "programmer" with the help of the
neural computer interface.

2Except that we kept “/common/topic/notable_types”.

4

References
[1] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase

from question-answer pairs. In EMNLP, volume 2, page 6, 2013.

[2] Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In ACL (1), pages
1415–1425, 2014.

[3] Li Dong and Mirella Lapata. Language to logical form with neural attention. In Association for
Computational Linguistics (ACL), 2016.

[4] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[5] Robin Jia and Percy Liang. Data recombination for neural semantic parsing. In Association for
Computational Linguistics (ACL), 2016.

[6] Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint
arXiv:1511.08228, 2015.

[7] Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural programmer: Inducing latent
programs with gradient descent. CoRR, abs/1511.04834, 2015.

[8] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In EMNLP, 2014.

[9] Scott Reed and Nando de Freitas. Neural programmer-interpreters. In ICLR, 2016.

[10] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

[11] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing via
staged query graph generation: Question answering with knowledge base. In Association for
Computational Linguistics (ACL), 2015.

[12] Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-Wei Chang, and Jina Suh. The value of
semantic parse labeling for knowledge base question answering. In Association for Computa-
tional Linguistics (ACL), 2016.

[13] Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines. arXiv
preprint arXiv:1505.00521, 2015.

5

	Introduction
	Neural Symbolic Machines
	"Computer": Lisp interpreter with code assistance
	"Programmer": key-value memory augmented Seq2Seq model
	Training NSM with Weak Supervision

	Experiments and analysis
	The WebQuestions Task
	Model details
	Result and Discussion

