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1 OVERVIEW

This paper considers entropy bonus, which is used to encourage exploration in policy gradient. In
the case of high-dimensional action spaces, calculating the entropy and its gradient requires enumer-
ating all the actions in the action space and running forward and backpropagation for each action,
which may be computationally infeasible. We develop several novel unbiased estimators for the
entropy bonus and its gradient. We apply these estimators to several models for the parameter-
ized policies, including Independent Sampling, CommNet, Autoregressive with Modified MDP, and
Autoregressive with LSTM. Finally, we test our algorithms on a multi-hunter multi-rabbit grid en-
vironment. The results show that our entropy estimators substantially improve performance with
marginal additional computational cost.

2 ENTROPY BONUS APPROXIMATION FOR LARGE ACTION SPACE

Consider an MDP with a d-dimensional action space A = A1 × A2 × . . . × Ad, and denote
a = (a1, . . . , ad) for an action in A. To abbreviate notations, we write pθ(a) for the parame-
terized policy πθ(a|st) and ai for (a1, a2, . . . , ai). We consider auto-regressive models whereby
the sample components ai, i = 1, . . . , d are sequentially generated. In particular, after obtaining
a1, a2, . . . , ai−1, we will generate ai ∈ Ai from some parameterized distribution pθ(·|ai−1) defined
over the one-dimensional set Ai. After generating the distribution pθ(·|ai−1), i = 1, . . . , d and the
action components a1, . . . , ad sequentially, we then define pθ(a) =

∏d
i=1 pθ(ai|ai−1).

In policy gradient, we consider a set of parameterized policies πθ(·|s), θ ∈ Θ, and attempt to find
a good θ within a parameter set Θ. The parameters θ are updated by performing stochastic gradient
ascent on the expected reward. One example of such an algorithm is REINFORCE (Williams &
Peng (1991)) where an entropy bonus term is typically added to the gradient update to encourage
exploration. However, in high-dimensional action space settings, calculating the entropy requires
enumerating over the whole action space which is typically computationally infeasible.

2.1 ENTROPY ESTIMATION

During training within an episode, for each state st, the policy generates an action a. We refer to
this generated action as the episodic sample. A crude approximation of the entropy bonus is:

Hcrude
θ (a) = − log pθ(a) = −

d∑
i=1

log pθ(ai|ai−1).

This approximation is an unbiased estimate of Hθ but its variance is likely to be large.

We propose an alternative unbiased estimator for Hθ which only requires one action sample and
accounts for the entropy along each dimension of the action space:

H̃θ(a) := −
d∑
i=1

∑
a∈Ai

pθ(a|ai−1) log pθ(a|ai−1) =

d∑
i=1

H
(i)
θ (ai−1)
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where H(i)
θ (ai−1) := −

∑
a∈Ai

pθ(a|ai−1) log pθ(a|ai−1), which is the entropy of Ai conditioned
on ai−1. This estimate of the entropy bonus is computationally efficient since for each dimension i,
we need to obtain pθ(·|ai−1), its log and gradient anyway during training.

We refer to this estimator as the smoothed entropy estimator. We were able to show theoretically
that it can serve as a good proxy for the actual entropy in that it is an unbiased estimator, has the
same minimum and maximum values when varying the model parameters, and in the special case
when the model is a multivariate normal distribution, it is actually equal to the exact entropy.

2.2 ENTROPY GRADIENT ESTIMATION

So far we have been looking at estimates of entropy. But the policy gradient update uses the gradient
of the entropy rather than the entropy. As it turns out, the gradients of the estimators Hcrude

θ (a) and
H̃θ(a) are not unbiased estimates of the gradient of the entropy.

Analogous to the smoothed estimator for entropy, we can also derive a smoothed estimator for the
gradient of the entropy.

Theorem 1. If a is a sample from pθ(·), then

∇θH̃θ(a) +

d∑
i=1

H
(i)
θ (ai−1)∇θ

i−1∑
j=1

log pθ(aj |aj−1)

is an unbiased estimator for the gradient of the entropy

Note that this estimate for the gradient of the entropy is equal to the gradient of the smoothed
estimate H̃θ(a) plus a correction term. We refer to this estimate of the entropy gradient as the
unbiased gradient estimate.

3 POLICY PARAMETERIZATION FOR EFFICIENT SAMPLING

We will apply the estimators in the previous section to several models for the paramaterized marginal
policies pθ(a|ai−1), a ∈ Ai. In this discussion, we assume that the size of the one-dimensional
action sets are equal, that is, |A1| = |A2| = ... = |Ad| = K. To handle action sets of different
sizes, we include inconsequential actions. We will consider the Independent Sampling (IS) baseline
policy (Sukhbaatar et al. (2016)), MMDP Metz et al. (2017), and LSTM policy. We note the LSTM
approach is an adaptation of sequence modeling in supervised machine learning (van den Oord et al.
(2016)) to reinforcement learning and has also been proposed by Metz et al. (2017) and Bahdanau
et al. (2016). See Figure 1 for details.

4 EXPERIMENT RESULTS

We designed the hunters and rabbits to compare the different entropy estimators for three models
discussed in the previous section as well as for the CommNet model (Sukhbaatar et al. (2016)).
For each entropy approximation, the entropy weight β was tuned to give the highest reward. The
environment consists of an n × n grid. At the beginning of each episode, d hunters and d rabbits
are randomly placed in the grid. The rabbits remain fixed in the episode, and each hunter can move
to a neighboring square (including diagonal neighbors) or stay at the current square (i.e. |A| = 9d

actions). When a hunter enters a square with a rabbit, the hunter captures the rabbit and remains
there until the end of the episode. The goal is for the hunters to capture the rabbits as quickly as
possible.

Table 1 shows the performance of the IS, LSTM, MMDP and CommNet models with the different
entropy estimates. Training and evaluation were performed in a square grid of 5 by 5 with 5 hunters
and 5 rabbits. Results are averaged over 5 seeds. For each seed, training and evaluation were run for
1 million and 1 thousand episodes respectively.

Compared with no entropy, crude entropy can actually reduce performance. However, smoothed en-
tropy and smoothed mode entropy always increase performance, often significantly. For the LSTM
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(a) The RNN architecture. To generate
ai, we input st and ai−1 into the RNN
and then pass the resulting hidden state hi

through a linear layer and a softmax to gen-
erate a distribution, from which we sample
ai.
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(b) The MMDP architecture. To gener-
ate ai, we input st and a1, a2, . . . , ai−1

into a FFN. The output is passed through
a softmax layer, providing a distribution
from which we sample ai. Since the in-
put size of the FFN is fixed, when gener-
ating ai, constants 0 serve as placeholders
for ai+1, . . . , ad−1 in the input to the FFN.

Figure 1: The RNN and MMDP architectures for generating parameterized policies.

model, the best performing approximation is smoothed entropy. We also note that there is not a
significant difference in performance between the smoothed entropy, smoothed mode entropy, and
the unbiased gradient approaches. When comparing the four models, we see that the LSTM model
with smoothed entropy does significantly better the other three models. The CommNet model could
potentially be improved by allowing the hunters to see more of the state; this could be investigated
in future research.

Table 1: Performance of IS, LSTM, MMDP and CommNet across different entropy approximations.

Without
Entropy

Crude
Entropy

Smoothed
Entropy

Smoothed
Mode Entropy

Unbiased Gradient
Estimate

IS Mean
Episode Length 98.7 ± 78.9 32 ± 12.3 11.8 ± 1.9 11.8 ± 1.9 11.8 ± 1.9

LSTM Mean
Episode Length 10.1 ± 1.9 19 ± 8.7 5.6± 0.2 6.0 ± 0.2 6.0 ± 0.1

MMDP Mean
Episode Length 21.5 ± 3.7 37.3 ± 29.6 10.6 ± 0.7 10.6 ± 0.7 9.8 ± 0.6

CommNet Mean
Episode Length 22.7 ± 0.6 22.3 ± 0.4 21.9 ± 0.4 21.9 ± 0.4 21.9 ± 0.4

IS Mean
Episode Reward 2.2 ± 0.03 2.4 ± 0.05 2.7 ± 0.01 2.7 ± 0.01 2.7 ± 0.01

LSTM Mean
Episode Reward 3.0 ± 0.06 3.0 ± 0.03 3.3± 0.04 3.2 ± 0.04 3.2 ± 0.02

MMDP Mean
Episode Reward 2.8 ± 0.03 2.7 ± 0.03 2.9 ± 0.03 2.8 ± 0.04 2.9 ± 0.02

CommNet Mean
Episode Reward 2.5 ± 0.01 2.6 ± 0.01 2.6 ± 0.01 2.6 ± 0.01 2.6 ± 0.01

In conclusion, we found that the smoothed estimate of the entropy and the unbiased estimate of
the entropy gradient can significantly increase performance with marginal additional computational
cost.
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Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. CoRR, abs/1609.03499, 2016. URL http://arxiv.org/abs/1609.03499.

Ronald J. Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. 1991. doi: 10.1080/09540099108946587.

4

http://arxiv.org/abs/1607.07086
http://arxiv.org/abs/1705.05035
http://arxiv.org/abs/1705.05035
http://arxiv.org/abs/1605.07736
http://arxiv.org/abs/1605.07736
http://arxiv.org/abs/1609.03499

	Overview
	Entropy Bonus Approximation for Large Action Space
	Entropy Estimation
	Entropy Gradient Estimation

	Policy parameterization for efficient sampling
	Experiment Results

