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ABSTRACT

Recent years have witnessed the success of applying seq2seq models to graph
parsing tasks, where the outputs are compositionally structured (e.g., a graph or
a tree). However, these seq2seq approaches pose a challenge in quantifying the
model’s compositional uncertainty on graph structures due to the gap between
seq2seq output probability and structural probability on the graph. This work
is the first to quantify and evaluate compositional uncertainty for seq2seq graph
parsing tasks. First, we proposed a generic, probabilistically interpretable frame-
work that allows correspondences between seq2seq output probability to structural
probability on the graph. This framework serves as a powerful medium for quanti-
fying a seq2seq model’s compositional uncertainty on graph elements (i.e., nodes
or edges). Second, to evaluate uncertainty quality in terms of calibration, we pro-
pose a novel metric called Compositional Expected Calibration Error (CECE)
which can measure a model’s calibration behavior in predicting graph structures.
By a thorough evaluation for compositional uncertainty on three different tasks
across ten domains, we demonstrate that CECE is a better reflection for distribu-
tional shift compared to vanilla sequence ECE. Finally, we validate the effective-
ness of compositional uncertainty considering the task of collaborative semantic
parsing, where the model is allowed to send limited subgraphs for human review.
The results show that the collaborative performance based on uncertain subgraph
selection consistently outperforms random subgraph selection (30% average error
reduction rate) and performs comparably to oracle subgraph selection (only 0.33
difference in average prediction error), indicating that compositional uncertainty
is an ideal signal for model errors and can benefit various downstream tasks. 1

1 INTRODUCTION

Parsing a natural language sentence into a compositional graph structure, i.e., graph parsing, is an
important task of natural language understanding beyond simple classification or text generation
tasks. It has been broadly applied in applications like semantic parsing, code generation and knowl-
edge graph generation. Recently, a line of research has successfully applied sequence-to-sequence
(seq2seq) approaches to these graph parsing tasks (Vinyals et al., 2015; Xu et al., 2020; Orhan, 2021;
Cui et al., 2022; Lin et al., 2022b). Despite achieving impressive results, these approaches pose a
challenge in quantifying the model’s predictive uncertainty on graph structures, making it hard to
ensure a trustworthy and reliable deployment of NLP systems such as voice assistants (see an ex-
ample in Figure 1). Meanwhile, most existing work on uncertainty estimation for seq2seq models
focused on classification or language generation tasks (Kumar & Sarawagi, 2019; Vasudevan et al.,
2019; Malinin & Gales, 2020; Jiang et al., 2021; Shelmanov et al., 2021; Wang et al., 2022; Pei
et al., 2022). However, how to quantify and evaluate compositional uncertainty, the predictive un-
certainty over compositional graph elements (i.e., nodes or edges), remains unresolved for seq2seq
graph parsing (see related work in Appendix A.2). In this paper, we aim to answer these questions
by proposing a simple probabilistic framework and rigorous evaluation metrics.

∗Work done while interning at Google Research. †Co-senior authors.
1Open-source code may be found at https://github.com/google/uncertainty-baselines.
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Figure 1: An example for graph semantic parsing in a dialogue system. The output of the model is
a linearized semantic graph (left) that corresponds to the graph structure (right). The dotted square
indicates the uncertain part, based on which the model can ask a clarification question.

Quantifying compositional uncertainty for seq2seq graph parsing is inherently more difficult than
other seq2seq tasks like machine translation or speech recognition, since there is a gap between
seq2seq output probabilities and conditional probabilities on the graph. Specifically, our interest is to
express the conditional probability of a graph node v concerning its parent pa(v), i.e., p(v|pa(v), x),
rather than the likelihood of v conditioning on the previous tokens in the linearized string. For ex-
ample, in the graph structure of Figure 1, the subgraph rooted with node TimeSpec (in the dotted
square) depends on its parent node EventSpec, while in the linearized graph, the parent node is
not necessarily the previous token to the subgraph (the shaded spans). Consequently, we cannot
directly quantify compositional uncertainty without bridging this gap between different probabilis-
tic representations. To address this challenge, we propose a generic, probabilistic framework called
Graph Autoregressive Process (GAP) (Section 2.1) that allows the correspondence between seq2seq
output probability to graphical probability, i.e., assigning model probability for a node or edge on
the graph. Thus, GAP can be used as a powerful medium for quantifying a seq2seq model’s compo-
sitional uncertainty. Furthermore, to evaluate uncertainty quality, we propose a novel metric called
Compositional Expected Calibration Error (CECE) to measure the model’s behavior in predicting
compositional graph structures (Section 2.2).

Taking semantic parsing as a canonical application, in Section 3, we build a large benchmark con-
sisting of 3 semantic parsing tasks across 10 different domains, based on which we comprehensively
evaluate compositional uncertainty under distributional shift and validate its effectiveness on a prac-
tical downstream task (collaborative semantic parsing).

First, in Section 3.1, we report different calibration metrics for a state-of-the-art seq2seq parser (Lin
et al., 2022b) based on T5 (Raffel et al., 2020) as well as its different advanced uncertainty vari-
ants on the benchmark. We demonstrate that compared to vanilla ECE based on sequence accuracy,
CECE is a better metric for reflecting distributional shift, i.e., task difficulty and domain general-
ization. We also notice that, despite the strong performance brought by those advanced uncertainty
baselines on classification tasks, in the settings of graph parsing, the absolute advantage of these
methods no longer holds when predicting graph edges. This suggests that developing uncertainty
methods focused on compositional uncertainty can be a fruitful avenue for future research.

Second, in Section 3.2, we validate the practical effectiveness of compositional uncertainty consid-
ering the problem of collaborative semantic parsing. In this setting, the model is allowed to send
a limited number of uncertain subgraphs for human review (see Figure 1 for an example). We test
the collaborative performance on the benchmark, and find that using uncertain subgraph selection
consistently outperforms random subgraph selection (selecting random subgraphs on the predicted
graph) with an average error reduction rate of 30%, and performs fairly close to oracle subgraph
selection (selecting incorrect subgraphs on the predicted graph) with an small difference in predic-
tion error as 0.33. This indicates that compositional uncertainty is an ideal signal for the likelihood
on model error over graph elements, and can benefit various downstream tasks, e.g., human-AI
collaborative parsing and neural-symbolic parsing (Lin et al., 2022a).

In summary, our work makes the following contributions:

• New Framework for Compositional Uncertainty Quantification. We are the first to propose
a simple and general probabilistic framework (GAP) that can quantify compositional uncertainty
for seq2seq graph parsing. GAP allows us to go beyond the conventional autoregressive sequence
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probability and express parent-child conditional probability on the graph, which is compatible
with any graph parsing problem and autoresgressive model.

• Rigorous Metrics for Compositional Uncertainty Calibration. We introduce a novel quality
measurement for compositional uncertainty (CECE) which can evaluate the model’s calibration
on graph elements and provide a better interpretation of the model’s behavior in predicting graph
structures under distributional shift.

• Practical Effectiveness. We comprehensively evaluate the calibration behavior of modern pre-
trained large language models, i.e., T5 (Raffel et al., 2020), in compositional uncertainty quan-
tification on a broad range of semantic parsing tasks of varying complexity (Redwoods, SNIPS,
and SMCalFlow). We further evaluate the benefit of compositional uncertainty quantification in
enabling new capacity (e.g, fine-grained collaborative prediction for complex semantic parsing) in
downstream applications. Specifically, our results show that compositional uncertainty can signif-
icantly benefit collaborative parsing performance, with only a 0.33 difference in prediction error
compared to the headroom.

2 QUANTIFYING AND EVALUATING COMPOSITIONAL UNCERTAINTY

Problem Formulation. In this work, we interpret the term graph parsing as mapping from surface
strings (usually natural language sentences) to target representations that are explicitly or implicitly
graph-structured. Formally, the input is a natural language utterance x, and the output is a DAG
G = ⟨N,E⟩, where N is the set of nodes and E ∈ N×N is the set of edges. In the case of seq2seq
parsing, G is represented as a linearized graph string g = s1s2 · · · sL consists of symbols {sl}Ll=1.
In the experiment, we use PENMAN notation (Kasper, 1989) to linearize all the formalism, which
is a serialization format for the directed, rooted graphs used to encode semantic dependencies (more
details are available in Appendix B).

To this end, our goal is to quantify the graph-level uncertainty p(G|x) from the sequence-level
probability p(g|x) generated by a seq2seq model, which we term the compositional uncertainty. For
example, our interest to express the conditional probability of a graph node v with respect to its
parent pa(v), i.e., p(v|pa(v), x), rather than the likelihood of v conditioning on the previous tokens
in the linearized string. In the following sections, we will introduce how to quantify (Section 2.1)
and evaluate (Section 2.2) this compositional uncertainty.

2.1 QUANTIFYING COMPOSITIONAL UNCERTAINTY VIA GRAPH AUTOREGRESSIVE
PROCESS (GAP)

To properly model the uncertainty p(G|x) from a seq2seq model, we need an intermediate prob-
abilistic representation to translate the raw token-level probability to the distribution over graph
elements (i.e., nodes and edges). To this end, we introduce a simple probabilistic formalism termed
Graph Autoregressive Process (GAP), which is a probability distribution assigning seq2seq learned
probability to the graph elements v ∈ G.

Specifically, as the seq2seq-predicted graph adopts both a sequence-based representation g =
s1, ..., sL and a graph representation G = ⟨N,E⟩, the GAP model adopts both an autoregressive
representation p(g|x) =

∏
i p(si|s<i, x) analogous to that of the seq2seq model (Section 2.1.1), and

also a probabilistic graphical model representation p(G|x) =
∏

v∈G p(v|pa(v), x) for proper quan-
tification of model uncertainty on the graph (Section 2.1.2). Both representations share the same set
of underlying probability measures (i.e., the graphical-model likelihood p(G|x) can be derived from
the autoregressive probabilities p(si|s<i, x)). As we will show, GAP serves as a powerful medium
for quantifying compositional uncertainty for seq2seq graph parsing.

2.1.1 AUTOREGRESSIVE REPRESENTATION FOR LINEARIZED SEQUENCE g

Given an input sequence x and output sequence y = y1y2 · · · yN , the token-level autoregres-
sive distribution from a seq2seq model is p(y|x) =

∏N
i=1 p(yi|y<i, x). In the context of graph

parsing, the output sequence describes a linearized graph g = s1s2 · · · sL, where each symbol
si = {yi1yi2 · · · yiNi

} represents either a node n ∈ N or an edge e ∈ E of the graph and cor-
responds to a collection of beam-decoded tokens {yi1yi2 · · · yiNi

}. This process is illustrated as
follows:
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s1 s2 s3 sLg:

y: y1 y2 y3 y4 y5 y6 y7 y8 yN-1 yN…

…

To this end, GAP assigns probability to each linearized graph g = s1s2 · · · sL autoregressively as
p(g|x) =

∏L
i=1 p(si|s<i, x), and the conditional probability p(si|s<i, x) is computed by aggregat-

ing the token probability:

p(si|s<i, x) = p({yi1 · · · yiNi
}|s<i, x) =

Ni∏
j=1

p(yij |yi<j
, s<i, x) (1)

Marginal and Conditional Probability. Importantly, GAP allows us to compute the marginal
and (non-local) conditional probabilities for graph elements si. Given the input x, the marginal
probability of si is computed as

p(si|x) =
∫
s<i

p(si|s<i, x)p(s<i|x)ds<i (2)

by integrating over the space of all possible subsequences s<i before the symbol si. Then, the
(non-local) conditional probability between two graph elements (si, sj) with i < j is computed as

p(sj |si, x) =
∫
si→j ,s<i

p(sj , si→j |si, s<i, x)p(si|s<i, x)p(s<i|x)dsi→jds<i (3)

by integrating over the space of subsequences si→j between (si, sj) and the subsequence s<i be-
fore si. Higher order conditional (e.g., p(sj |(si, sl), x)) can be computed analogously. Notice this
gives us the ability to reason about long-range dependencies between non-adjacent symbols on the
sequence. Furthermore, the conditional probability on the reverse direction can also be computed
using the Bayes’ rule: p(si|sj , x) = p(sj |si,x)p(si|x)

p(sj |x) .

Efficient Estimation Using Beam Outputs. In practice, we can estimate p(si|x) and p(sj |si, x)
efficiently via importance sampling using the output from the beam decoding {gk}Kk=1, where K is
the beam size (Malinin & Gales, 2020). The marginal probability can be computed as

p̂(si|x) =
K∑

k=1

p(si|sk,<i, x) ∗ πk, πk =
exp( 1t log p(gk|x))∑K
k=1 exp(

1
t log p(gk|x))

(4)

here πk is the importance weight proportional to the beam candidate gk’s log likelihoods, and t > 0
is the temperature parameter fixed to a small constant (e.g., t = 0.1) (Malinin & Gales, 2020). If the
symbol si does not appear in the kth beam, we set p(si|sk,<i, x) = 0. As shown, the marginalized
probability p̂(si|x) provides a way to reason about the global importance of si by integrating the
probabilistic evidence p(si|sk,<i, x) over the whole beam-sampled posterior space. It is able to
capture the cases of spurious graph elements si with high local probability p(si|sk,<i, x) but low
global likelihood (i.e., only appear in a few low-probability beam candidates). Therefore, it is a
useful quantity for structure induction (e.g., edge and node pruning) in graphical model inference
(Dianati, 2016).

Then, for two symbols (si, sj) with i < j, we can estimate the conditional probability as

p̂(sj |si, x) =
K∑

k=1

p(sj |si, sk,i→j , sk,<i, x) ∗ πi
k, π

i
k =

exp( 1t log p(gk|x)) ∗ I(si ∈ gk)∑K
k=1 exp(

1
t log p(gk|x)) ∗ I(si ∈ gk)

(5)

here πi
k is the importance weight among beam candidates that contains si. Notice this is different

from Equation 4 where πk is computed over all beam candidates regardless of whether it contains
si.

2.1.2 PROBABILISTIC GRAPHICAL MODEL REPRESENTATION FOR G

So far, we have focused on probability computation based on the graph’s linearized representation
p(g|x) =

∏
i p(si|s<i, x). In this section, we further consider GAP’s graphical model representation

p(G|x) =
∏

v∈G p(v|pa(v), x).
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Figure 2: Visual illustration of constructing graphical model representation for meta graph G from
autoregressive representation {gk}Kk=1.

Specifically, given a beam sample of linearized graphs {gk}Kk=1, well-established algorithms exist
to synthesize different graph predictions into a meta graph G. Briefly, these methods first convert
each string gb into their original graph representation Gk = ⟨Nk,Ek⟩, then merge multiple graphs
{Gk}Kk=1 using a graph matching algorithm (Cai & Knight, 2013; Hoang et al., 2021).

A visual illustration of the resulting graph G is shown in Figure 2, where ni and ej are the candidates
for the node and edge predictions collected from beam sequences. As shown, compared to the
sequence-based representation g, the meta graph G (1) explicitly enumerates different candidates for
each node and edge prediction (e.g., n1 v.s. n2 for predicting the first element), and (2) provides an
explicit account of the parent-child relationships between variables on the graph (e.g., e7 is a child
node of n3 in the predicted graph, which is not reflected in the autoregressive representation).

From the probabilistic learning perspective, the meta graph G describes the space of possible graphs
(i.e., the support) for a graph distribution p(G|x) : G → [0, 1]. It describes the possible node and
edge variables and their dependencies on the graph G (i.e., the shaded squares in the Figure 2), and
also different possible values for each node and edge variable (i.e., the solid squares within each
shaded square in Figure 2).

To this end, GAP assigns proper graph-level probability p(G|x) to graphs G sampled from the meta
graph G via the graphical model likelihood:

p(G|x) =
∏
v∈G

p(v|pa(v), x) =
∏
n∈N

p(n|pa(n), x) ∗
∏
e∈E

p(e|pa(e), x) (6)

where p(v|pa(v), x) is the conditional probability for v with respect to their parents pa(v) in G.
Given the candidates graphs {Gk}Kk=1, we can express the likelihood for p(v|pa(v), x) by writing
down a multinomial likelihood enumerating over different values of pa(v) (Murphy, 2012).

This in fact leads to a simple expression for the model likelihood as a simple averaging of the beam-
sequence log likelihoods:

log p(n|pa(n), x) ∝ 1

K

K∑
k=1

log p(n|pa(n) = ck) (7)

where ck is the value of pa(n) in kth beam sequence, and the conditional probabilities are computed
using Equation (5). See Appendix C for a detailed derivation.

In summary, for each graph element variable v ∈ G, GAP allows us to compute the graphical-model
conditional likelihood p(v|pa(v), x) via its graphical model representation, and also to compute the
marginal probability p(v|x) via its autoregressive presentation. Algorithm 1 summarizes the full
GAP computation.

2.2 EVALUATING COMPOSITIONAL UNCERTAINTY

In this section, we present how to evaluate compositional uncertainty. A common approach to
evaluate a model’s uncertainty quality is to measure its calibration performance, i.e., whether the
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Algorithm 1 Graph Autoregressive Process (GAP)
Inputs:

Beam candidates with probabilities {p(gk|x)}Kk=1, Meta graph G
Output:

Marginal probabilities {p(s|x)}, Graph model likelihood log p(G|x)
for v ∈ G do

Compute marginal likelihood: p(v = s|x) (Equation 4)
Compute graphical model likelihood: log p(v = s| pa(v), x) (Equation 7)

Return
Marginal Probabilities: {p(v|x)}
Graphical Model Likelihood: log p(G|x)) =

∑
v∈G log p(v| pa(v), x)

model’s predictive uncertainty is indicative of the predictive error, e.g., expected calibration error
(ECE; Naeini et al., 2015). In this work, we propose a compositional calibration metric based on
ECE, which measures the difference in expectation between the model’s predictive confidence (e.g.,
the maximum probability score) on graph elements (nodes or edges) and their actual match to the
gold graph.

Formally, during inference time, given a input x and a target graph G, we first partition the confi-
dence interval into B equal bins I1, . . . , IB . Then in each measure the absolute difference between
the node/edge accuracy and confidence of predictions in that bin. This gives the compositional
expected calibration error (CECEG) for graph G as:

1

|G|

B∑
b=1

∣∣∣∣∣∣
∑

v̂t∈Ĝ,p(v̂t|x)∈Ib

C(v̂t, G)− p(v̂t|x)

∣∣∣∣∣∣ (8)

where |G| is the number of graph elements in the target graph G, v̂t is the tth element (node/edge)
in the predicted graph Ĝ, C(v̂it, Gi) denotes if v̂it matches in the graph Gi using a graph matching
algorithm, and p(v̂t|x) can be obtained by GAP in Section 2.1. Specifically, we use the matching
algorithm adopted in SMATCH (Cai & Knight, 2013), which is the same graph matching algorithm
for constructing meta graph G (see Appendix E for details). Alternatively, we can compute CECE
only for node/edge predictions, namely CECEN and CECEE.

3 EXPERIMENTAL EVALUATION

Datasets. In this paper, we take semantic parsing as a canonical application, and build a large
benchmark consisting of three semantic parsing tasks and covering ten different domains, ranging
from graph-based grammar parsing to dialogue-oriented semantic parsing:

• Redwoods: The LinGO Redwoods Treebank is a collection of hand-annotated corpora for an En-
glish grammar consisting of more than 20 datasets. The underlying grammar is called English
Resource Grammar (ERG; Flickinger et al., 2014; Bender et al., 2015), which is an open-source,
domain-independent, linguistically precise, and broad-coverage grammar. ERG can be presented
into different types of annotation formalism. This work focuses on the Elementary Dependency
Structure (EDS; Oepen & Lønning, 2006), which is a compact representation that can be ex-
pressed as a DAG. Following previous works, for in-domain test, we train and evaluate models on
the subset treebank corresponding to the 25 Wall Street Journal (WSJ) sections with standard data
splits (Flickinger et al., 2012). For out-of-domain (OOD) evaluations, we select 7 diverse datasets
from Redwoods: Wikipedia (Wiki), the Brown Corpus (Brown), the Eric Raymond Essay (Es-
say), customer emails (E-commerce), meeting/hotel scheduling (Verbmobil), Norwegian tourism
(LOGON) and the Tanaka Corpus (Tanaka) (See Appendix D for more details).

• SMCalFlow: SMCalFlow (Andreas et al., 2020) is a large corpus of semantically detailed an-
notations of task-oriented natural dialogues. The annotation uses dataflow computational graphs,
composed of a rich set of both general and application specific functions, to represent user re-
quests as rich compositional expressions. We use the standard data split in the original paper and
evaluate inference results on development set.

• SNIPS: SNIPS (Coucke et al., 2018) is a slot filling dataset containing 39 slot names from 7
different domains collecting from the SNIPS voice assistant. It is usually formulated as a sequence
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Dataset Performance Metrics Calibration Metrics
ACCseq(↑) SMATCH(↑) F1N (↑) F1E(↑) ECEseq(↓) CECEG(↓) CECEN(↓) CECEE(↓)

D
om

ai
n

di
st

an
ce

↑
←−
−−
−−
−−
−−
−−
−

WSJ (In-domain) 51.01 95.92 97.38 94.35 0.3632 0.0345 0.0221 0.0465 Min
Tanaka 68.10 95.27 95.65 94.95 0.2562 0.0452 0.0405 0.0498
E-commerce 51.53 93.48 94.18 92.88 0.3840 0.0721 0.0652 0.0793
Brown 40.93 92.32 93.81 90.89 0.3969 0.0673 0.0530 0.0824
Essay 30.80 92.07 94.18 90.96 0.4589 0.0691 0.0565 0.0808
LOGON 31.45 91.10 92.58 90.70 0.5148 0.0834 0.0726 0.0944
Verbmobil 51.45 90.38 91.45 90.02 0.3298 0.0960 0.0861 0.1063
Wiki 28.16 89.64 90.65 89.37 0.4105 0.1038 0.0939 0.1135
SMCalflow 82.83 93.87 94.23 93.48 0.1427 0.0651 0.0605 0.0702
SNIPS 91.14 - 98.49 - 0.0756 - 0.0156 - Max

Table 1: Evalution results on three tasks. Accseq means sequence accuracy (exact match);
F1N/F1E means F1 scores for nodes/edges; CECEG/CECEN/CECEE means compositional ECE
for graph/nodes/edges. Since we use pseudo edges to transfer examples to graphs for SNIPS, we
skip edge-related evaluations for SNIPS. The background color in calibration metrics indicates the
number order in column (Green: Min; Red: Max).

labeling problem. Following previous work (Yu et al., 2021), we train models on five source
domains, use a sixth one for development, and test on the remaining domian.

We transfer all the data into linearized graphs (Appendix B). To reduce the sequence length, since
the number of node/edge names are limited, we set them untokenizable to the tokenizer.

Evaluation Metrics. Consistent with previous work, the performance metric used for Redwoods is
SMATCH score (Cai & Knight, 2013), which computes the degree of overlap between two semantic
graphs (see Appendix E for details). For SMCalFlow, we use sequence accuracy (exact match). For
SNIPS, we use slot F1 score, which is equal to node F1 score when we transfer the SNIPS data into
PENMAN notation. For model calibration, we report naive ECE based on sequence accuracy and
compositional uncertainty CECE introduced in Section 2.2.

Seq2seq Model. We adopt T5 (Raffel et al., 2020) as the baseline model, which is a pre-trained
seq2seq Transformer model that has been widely used in many NLP applications. We use the
open-sourced T5X, which is a new and improved implementation of T5 codebase in JAX and Flax.
Specifically, we use the official pretrained T5-large (770 million parameters) and finetuned it on
three datasets respectively. By evaluating the performance metrics for each task, we find that the T5
model is capable of achieving the state-of-the-art results on all the tasks compared to previous work
(see Table 3 in Appendix F for full comparison).

3.1 EVALUATING COMPOSITIONAL UNCERTAINTY UNDER DISTRIBUTIONAL SHIFT

Comparing Compositional ECE to vanilla ECE. Table 1 reports the evaluation results on the
benchmark. First, we find that sequence accuracy (ACCseq) does not necessarily correlate to the
SMATCH score, which makes the vanilla ECE based on sequence accuracy, i.e., ECEseq, less infor-
mative in reflecting model’s calibration on predicting graph structures. Second, comparing to Red-
woods (in-domain) which requires parsing a natural language sentence into a pre-defined grammar
representation, and SNIPS which requires labeling intent slots for a natural language sentence, SM-
CalFlow is more ambiguous and difficult as it involves complex dialogue histories and fine-grained
intent slots (Andreas et al., 2020). We notice that the CECE is larger for SMCalFlow on in-domain
test, indicating that CECE is a better metrics to reflect this task ambiguity/difficulty. Finally, as
the model generalization degrades across different domains for Redwoods, CECE also increases
accordingly, indicating that CECE can reflect model’s generalization under domain shift.

Comparing Advanced Uncertainty Methods. In recent year, a variety of methods have been devel-
oped to improve the DNNs uncertainty quality for classification problems. Here, we are interested to
understand if the benefit brought by those advanced methods to classification setting translates also
to the graph parsing setting. In this section, we evaluate the performance of 6 uncertainty baselines
on Redwoods across 8 different domains. We consider T5-Large (Raffel et al., 2020) as the base
model, and select six methods based on their practical applicability for the base model.

Specifically, we consider (1) Deterministic model which is the base T5 model; (2) Monte Carlo
Dropout (MC Dropout) which estimates uncertainty using the Monte Carlo average of 5 dropout
samples (Gal & Ghahramani, 2016); (3) Deep Ensemble (DE) which trains 4 deterministic models
individually and averages all predictions (Lakshminarayanan et al., 2017); (4) Batch Ensemble (BE),
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Figure 3: Evaluation results for different uncertainty baselines in terms of SMATCH score, ECEseq,
CECEG, CECEN, and CECEE under distributional shift.

an ensemble method which has much lower computational and memory costs comparing to MC
Dropout and Deep Ensemble (Wen et al., 2019); (5) Spectral-normalized Neural Gaussian Process
(SNGP), a recent state-of-the-art approach which improves uncertainty quality by transforming a
neural network into an approximate Gaussian process model (Liu et al., 2020); (6) SNGP+DE which
is the deep ensemble for 4 individual SNGP models; (7) SNGP+BE which uses a combination of
Batch Ensemble and SNGP layers. The results are shown in Figure 3. The full evaluation results
can be found in Appendix G (Table 4).

Results. As shown in the figure, these uncertainty baselines generally follows the same pattern on
domain shift, i.e., decrease in SMATCH corresponds to increase in CECEG, while we cannot in-
fer distributional shift via ECEseq. Some uncertainty baselines (e.g., MC Dropout and SNGP+DE)
can achieve better in both ECEseq and CECEG compared to deterministic model across different
domains, where MC Dropout achieves the best results in ECEseq and SNGP+DE achieves the best
results in CECEG. By further evaluating CECEN and CECEE, we notice that the improvement
in CECEG mainly comes from node predictions (the difference in CECEN is more obvious than
CECEE), while for edge predictions, only little improvement is observed. This suggests that uncer-
tainty estimation is structurally different for seq2seq graph parsing tasks compared to classification
tasks, and further research is needed for designing better calibrated model with more focus on com-
positional uncertainty calibration.

3.2 PRACTICAL EFFECTIVENESS: UNCERTAINTY-GUIDED COLLABORATIVE SEMANTIC
PARSING

Motivation. To further explore the correlation between model uncertainty and performance, we plot
the histogram for the T5 model’s probabilities verses the node/edge accuracies in Appendix H (Fig-
ure 5), where we find that low model probability generally corresponds to low model performance.
This serves as a motivation for collaborative semantic parsing using composotional uncertainty,
where the model is allowed to send a limited number of uncertain subgraphs for human review. This
is a practical setting in lots of realistic scenarios, for example, in Figure 1, the model can ask for
clarification regarding the uncertain subgraph (dotted squared) via modeling the uncertainty score
for each element in the parsed semantic graph. This process allows the system to collaborate with the
users to avoid triggering unwanted actions, which cannot be achieved without properly quantifying
compositional uncertainty over graph elements.

Uncertainty-based Subgraph Selection. For a well-trained seq2seq parser in Section 3.1, we find
uncertain subgraphs by (1) finding e uncertain nodes as root nodes based on ranked compositional
uncertainty scores over the predicted graph; (2) tracing descendants from root nodes up to depth d2.

2Here the number of subgraphs e and the maximum depth d are our review capacity for uncertain subgraphs
(in experiment, we try e ∈ [1, 3, 5] and d ∈ [1, 2, 3]).
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Figure 4: Collaborative performance for different semantic parsing tasks. The performance metrics
are SMATCH score for Redwoods, sequence accuracy for SMCalflow and slot (node) F1 for SNIPS

Baselines for Comparision. We take another three subgraph selections as comparision: (1) Random
subgraph selection by randomly finding e nodes as root nodes and tracing descendants from roots
up to depth d; (2) Oracle subgraph selection by finding e incorrectly predicted nodes as root nodes
and tracing descendants from roots up to depth d; (3) Oracle* subgraph selection by finding e
incorrectly predicted nodes (prioritizing the most uncertain nodes) and tracing descendants from
roots up to depth d.

Training and Inference. The training examples for the collaborative model are generated by at-
taching human edit results of random subgraphs to input sentences 3. During the inference, the test
examples are generated by attaching corresponding human edit results for each subgraph selection
strategy to input sentences.

Results. The results are shown in Figure 4. Due to space limitation, we only report results on
d = 2 for Redwoods and SMCalflow, and d = 1 for SNIPS. Full results for different combinations
of example numbers and depths are reported in Table 5 and Table 6 (Appendix I). We see that
for all three tasks, uncertainty-based subgraph selection consistently outperforms random subgraph
selection with average error reduction rates 13.64%, 24.45% and 52.11% respectively, and performs
fairly close to Oracle with an average difference in prediction error as small as 0.33. This shows
that compositional uncertainty is effective in detecting potential incorrect subgraph predicted by the
model. Meanwhile, we notice that Oracle* performs better than Oracle, indicating that incorrect
predicted subgraphs with high uncertainty are more informative to the collaborative model.

Analysis. Theoretically, the performance of collaborative parsing is determined by how many in-
correctly predicted subgraphs can be selected for human edits, where Oracle is the headroom given
limited budgets. In Table 7 (Appendix I), We further conduct an analysis to subgraphs selected
by different strategies by calculating the coverage rate of incorrect nodes in subgraphs to incorrect
nodes in the entire graph (i.e., error node coverage rate). The results indicates that compositional
uncertainty is effective in detecting incorrectly predicted nodes.

4 CONCLUSION AND FUTURE WORK

Over the past few years, lots of efforts have been made to apply seq2seq models to graph parsing,
which is an important area in NLP. Despite achieving the state-of-the-art in various graph parsing
tasks, these seq2seq approaches pose a challenge on how to interpret model’s predictive uncertainty
on predicting graph structures. This work is the first to provide a general method to properly quan-
tify and evaluate compositional uncertainty for seq2seq graph parsing, which is achieved by a simple
probabilistic framework (GAP) and a rigorous metric (CECE). The experimental evaluation demon-
strates that CECE is an effective metric to reflect distributional shift and compositional uncertainty is
a useful tool for downstream tasks such as collaborative semantic parsing. For future work, several
directions are worth investigations, including: (1) evaluating the practical effectiveness of advanced
uncertainty methods in collaborative semantic parsing; (2) learning theoretic experiments to inter-
rogate the seq2seq model’s ability in capturing the true distribution of the probabilistic graphical
model; (3) extending the benefit of compositional uncertainty to more real-world NLP tasks, e.g.,
retrieval-augmented semantic parsing (Hashimoto et al., 2018) and active learning.

3The model is of the same setting as in Section 3.1. Here we take gold subgraphs as human edit results.
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A RELATED WORK

A.1 SEQ2SEQ GRAPH PARSING

Seq2seq graph parsing is inspired by the success of recent seq2seq models (particularly pretrained
models), which are the heart of modern neural machine translation. This type of parser encodes and
views a target graph as a string from another language (Vinyals et al., 2015).

However, simply applying seq2seq models to graph parsing is not always successful when the target
graph is complecated, e.g., for Abstract Meaning Representation (AMR; Banarescu et al., 2013) or
English Resource Grammar (ERG; Flickinger et al., 2014). This is because effective linearization
(encoding graphs as linear sequences) and data sparsity were thought to pose significant challenges
(Konstas et al., 2017). Alternatively, some specifically designed preprocessing procedures for vo-
cabulary and entities can help to address these issues (Konstas et al., 2017; Peng et al., 2017). These
preprocessing procedures are very specific to a certain type of meaning representation and are dif-
ficult to transfer to others. To address this, (Bevilacqua et al., 2021) propose to use special tokens
to represent variables in the linearized graph and to handle co-referring nodes. Lin et al. (2022b)
propose a variable-free top-down linearization and a compositionality-aware tokenization for ERG
graph preprocessing, and successfully transfer the ERG parsing into a translation problem that can
be solved by a state-of-the-art seq2seq model T5 (Raffel et al., 2020). Their parser achieves the best
known results on the in-domain test set for ERG parsing.

A.2 UNCERTAINTY QUANTIFICATION FOR GRAPH PARSING

Compared to seq2seq graph parsing, uncertainty quantification is straightforward if the parser
explicitly models the target graph structures, e.g., chart parsers (Magerrnan & Marcus, 1991),
factorization-based parsers (McDonald, 2006; Cao et al., 2021) or composition-based parsers (Chen
et al., 2018; 2019), given that the model’s score function is naturally aligned with the graph structure.
As for transition-based parser (Fernandez Astudillo et al., 2020; Zhou et al., 2021), where the target
graph is generated via a series of actions, in a process that is very similar to dependency tree pars-
ing (Yamada & Matsumoto, 2003; Nivre, 2008), some previous work has used important sampling
to estimate probabilities (Dyer et al., 2016), and model uncertainty for alignments between graph
nodes and input text tokens (Drozdov et al., 2022). These works are very specific to the formalism
of the target graph, and it is difficult to transfer to other graph parsing problems.

Some previous uncertainty quantification methods have focused on sequential or token-level uncer-
tainty for seq2seq model. For example, Dong et al. (2018) model uncertainty for neural semantic
parsers by outlining three major causes of uncertainty including model uncertainty, data uncertainty
and input uncertainty, and design various metrics to quantify these factors. Lin et al. (2022b) uses
predictive probability generated by the T5 model as a signal for neural-symbolic parsing. However,
these uncertainty quantification methods cannot model compositional uncertainty over the graph
structures.

B PENMAN NOTATION

PENMAN notation, originally called Sentence Plan Notation in the PENMAN project (Kasper,
1989), is a serialization format for the directed, rooted graphs used to encode semantic dependencies,

14

https://aclanthology.org/P19-1519
https://aclanthology.org/P19-1519
https://aclanthology.org/2021.naacl-main.443


Published as a conference paper at ICLR 2023

N1
E1

N3 N4

N5 N6

N2
E2

E3

E4 E5
E6

( N1
:E1 ( N3

:E4 ( N5 ) 
:E5 ( N6* ) )

:E2 ( N4
:E3-of ( N2 )
:E6 ( N6* ) ) )

Graph PENMAN Graph

most notably in the Abstract Meaning Representation (AMR) framework (Banarescu et al., 2013).
It looks similar to Lisp’s S-Expression in using parentheses to indicate nested structures. To make
PENMAN notation compatible with the seq2seq learning, we adopted a variable-free version of
PENMAN which was first proposed in Lin et al. (2022b). The general template is illustrated as
follows:

The linearized form can only describe projective structures such as trees, so in order to capture non-
projective graphs, this notation (1) reverse some of the edges to make it can be written in top-down
tree order, e.g., :E3-of here (2) use star markers to indicate a node referred later to establish a
reentrancy, e.g., E6* here. Table 2 shows some variable-free PENMAN linearized examples for
different semantic parsing tasks.

Datasets Inputs Outputs

Redwoods The Pentagon foiled the plan.

( foil v 1
:ARG1 ( named :carg "Pentagon"
:BV-of ( the q ) )

:ARG2 ( plan n 1
:BV-of ( the q ) ) )

SMCalflow User: What time on Tuesday is my planning meeting?

( start
:ARG1 ( findEvent
:ARG1 ( EventSpec :name "planning"
:start ( Timespec :weekday "tuesday" ) ) ) )

SNIPS Find a movie called Living in America.
( IN:SEARCH CREATIVE WORK

:ARG1 ( SL:OBJECT TYPE :carg "movie" )
:ARG2 ( SL:OBJECT NAME :carg "living in america" ) )

Table 2: Examples for variable-free PENMAN linearized graph (template can be found in Appendix
B) in three different semantic parsing tasks (task details can be found in Section 3). Here :carg
means corresponding spans in the sentence.

C SIMPLIFIED EXPRESSION FOR GRAPHICAL MODEL LIKELIHOOD

Given the candidates graphs {Gk}Kk=1, we can express the likelihood for p(v|pa(v), x) by writing
down a multinomial likelihood enumerating over different values of pa(v) (Murphy, 2012). For
example, say pa(n) = (e1, e2) which represents a subgraph of two edges (e1, e2) pointing into a
node n. Then the conditional probability p(n|pa(n), x) can be computed by enumerating over the
observed values of (e1, e2) pair:

p(n|pa(n), x) = p(n|(e1, e2), x) ∝
∏

c∈Candidate(e1,e2)

p(n|(e1, e2) = c, x)Kc (9)

where Candidate(e) is the collection of possible symbols s the variable e can take, and Kc is
the number of times (e1, e2) takes a particular value c ∈ Candidate(e1, e2) = Candidate(e1) ×
Candidate(e2).

Then, the log likelihood becomes:

log p(n|pa(n), x) =
∑
c

Kc ∗ log p(n|(e1, e2) = c) (10)

To simplify this above expression, we notice that log p(n|pa(n), x) can be divided by the constant
beam size K without impacting the inference. As a result, the log probability can be computed by
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simplify averaging the values of log p(v|pa(v) = ck) across the beam candidates:

log p(n|pa(n), x) ∝
∑
c

Kc

K
log p(n|(e1, e2) = c) =

1

K

K∑
k=1

log p(n|(e1, e2) = ck) (11)

where ck is the value of (e1, e2) in kth beam candidate.

D OOD DATASETS FOR ERG PARSING

Wikipedia (Wiki) The DeepBank team constructed a treebank for 100 Wikipedia articles on Com-
putational Linguistics and closely related topics. The treebank of 11,558 sentences comprises 16
sets of articles. The corpus contains mostly declarative, relatively long sentences, along with some
fragments.

The Brown Corpus (Brown) The Brown Corpus was a carefully compiled selection of current
American English, totalling about a million words drawn from a wide variety of sources.

The Eric Raymond Essay (Essay) The treebank is based on translations of the essay “The Cathe-
dral and the Bazaar” by Eric Raymond. The average length and the linguistic complexity of these
sentences is markedly higher than the other treebanked corpora.

E-commerce While the ERG was being used in a commercial software product developed by the
YY Software Corporation for automated response to customer emails, a corpus of training and test
data was constructed and made freely available, consisting of email messages composed by people
pretending to be customers of a fictional consumer products online store. The messages in the corpus
fall into four roughly equal-sized categories: Product Availability, Order Status, Order Cancellation,
and Product Return.

Meeting/hotel scheduling (Verbmobil) This dataset is a collection of transcriptions of spoken
dialogues, each of which reflected a negotiation either to schedule a meeting, or to plan a hotel stay.
One dialogue usually consists of 20-30 turns, with most of the utterances relatively short, including
greetings and closings, and not surprisingly with a high frequency of time and date expressions as
well as questions and sentence fragments.

Norwegian tourism (LOGON) The Norwegian/English machine translation research project LO-
GON acquired for its development and evaluation corpus a set of tourism brochures originally writ-
ten in Norwegian and then professionally translated into English. The corpus consists almost entirely
of declarative sentences and many sentence fragments, where the average number of tokens per item
is higher than in the Verbmobil and E-commerce data.

The Tanaka Corpus (Tanaka) This treebank is based on parallel Japanese-English sentences,
which was adopted to be used with in the WWWJDIC dictionary server as a set of example sentences
associated within words in the dictionary.

E GRAPH MATCHING ALGORITHM IN SMATCH

In general, finding the largest common subgraph is a well-known computationally intractable prob-
lem in graph theory. However, for graph parsing problems where graphs have labels and a simple
tree-like structure, some efficient heuristics are proposed to approximate the best match by a hill-
climbing algorithm (Cai & Knight, 2013). The initial match is modified iteratively to optimize the
total number of matches with a predefined number of iterations (default value set to 5). This algo-
rithm is very efficient and effective, it was also used to calculate the SMATCH score in Cai & Knight
(2013).
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F COMPARING T5 TO PREVIOUS WORK

Table 3 shows the in-domain performance of the T5 model compare to previous work on Redwoods,
SMCalflow and SNIPS. The results indicate that the T5 model is capable of achieving the state-of-
the-art results on all the tasks compared to previous work. Interestingly, we notice that by rewriting
SMCalFlow into PENMAN notation, the sequence accuracy increase from 72.9 to 82.8 on devel-
opment set, indicating that proper linearization and tokenization are important for graph parsing
tasks.

Redwoods (In-domain) SMCalflow SNIPS
Model Node Edge SMATCH Model ACCseq Model Slot F1
Chen et al. (2018) 94.5 87.3 90.9 Andreas et al. (2020) 72.9 Wang et al. (2018) 93.5
Chen et al. (2019) 97.3 94.0 95.7 Zhang et al. (2019) 91.8
Cao et al. (2021) 96.4 93.7 95.1 Qin et al. (2019) 94.2
T5 (Lin et al., 2022b) 97.3 95.8 96.6

T5 (Our implementation) 97.4 94.4 95.9 82.8 98.5

Table 3: In-domain performance evaluation for three semantic parsing tasks. The T5 model is built
based on Lin et al. (2022b) on Redwoods and it surprisingly achieves the state-of-the-art results on
the other datasets (SMCalflow and SNIPS).

G FULL RESULTS FOR COMPARING UNCERTAINTY BASELINES

In Table 4, we reported the full results for comparing different uncertainty baselines on the bench-
mark introduced in Section 3.

H HISTOGRAM OF CALIBRATIONS

The correlations between the subgraph’s probability and performance on ERG parsing are shown in
Figure 5, where we can see that low model probability generally corresponds to low model perfor-
mance, i.e., the model is relatively calibrated in predicting graph structures.

I FULL RESULTS FOR COLLABORATIVE SEMANTIC PARSING

In Table 5 and Table 6, we report the full results for collaborative performance under different set-
tings of budgets of subgraphs by different combinations of number of subgraphs (e) and max depth
of each subgraphs (d). Note that for SNIPS, since the performance is almost close to 100% when
selecting number of subgraphs greater than 3, i.e., the total graph has been covered, we will not
evaluate cases where e > 3. We can see from the table that uncertainty-based subgraph selection
consistently outperforms random subgraph selection, and performs close to oracle subgraph selec-
tion.

In Table 7, We further conduct an analysis to subgraphs selected by different strategies by calculating
the coverage rate of incorrect nodes in subgraphs to incorrect nodes in the entire graph (i.e., error
node coverage rate). The results indicates that compositional uncertainty is effective in detecting
incorrectly predicted nodes.

J LIMITATIONS

Here we discuss some potential limitations of the current study:

Linguistic Breadth The GAP model in this work is a general uncertainty quantification frame-
work for graph parsing problems using seq2seq model, which theoretically has no restriction to
formalism and languages adopted for the output graph. In this work, we have tested GAP on Red-
woods, SMCalflow and SNIPS, which are all English based, but it is worth to see how the approach
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ACCseq(↑) SMATCH(↑) F1N(↑) F1E(↑) ECEseq(↓) CECEG(↓) CECEN(↓) CECEE(↓)

WSJ (In-domain)

Deterministic 51.01 95.92 97.38 94.35 0.3632 0.0345 0.0221 0.0465
MC Dropout 50.17 95.83 97.32 94.19 0.1034 0.0312 0.0171 0.0460
DE 51.70 96.07 97.46 94.54 0.2545 0.0326 0.0202 0.0448
BE 49.13 95.91 97.33 94.37 0.3209 0.0341 0.0217 0.0452
SNGP 48.50 95.85 97.39 94.35 0.2213 0.0326 0.0199 0.0453
SNGP+DE 49.55 95.98 97.45 94.53 0.1067 0.0299 0.0166 0.0431
SNGP+BE 47.46 95.74 97.27 94.30 0.1652 0.0338 0.0202 0.0472

Tanaka

Deterministic 68.10 95.27 95.65 94.95 0.2562 0.0452 0.0405 0.0498
MC Dropout 67.53 95.20 95.55 94.90 0.1158 0.0405 0.0326 0.0492
DE 69.42 95.45 95.79 95.17 0.1987 0.0411 0.0357 0.0467
BE 67.67 95.24 95.65 94.88 0.2367 0.0450 0.0395 0.0512
SNGP 67.10 95.25 95.57 95.57 0.1998 0.0429 0.0367 0.0501
SNGP+DE 68.03 95.51 95.83 95.30 0.1287 0.0394 0.0320 0.0477
SNGP+BE 65.88 95.24 95.53 95.09 0.1913 0.0427 0.0363 0.0494

Ecommerce

Deterministic 51.53 93.48 94.18 92.88 0.3840 0.0721 0.0652 0.0793
MC Dropout 49.46 93.04 93.72 92.50 0.1661 0.0725 0.0618 0.0835
DE 53.14 93.72 94.38 93.15 0.3083 0.0676 0.0603 0.0754
BE 50.63 93.66 94.29 93.14 0.3558 0.0677 0.0608 0.0740
SNGP 50.43 93.09 93.79 93.79 0.2748 0.0743 0.0650 0.0849
SNGP+DE 50.99 93.22 93.89 92.73 0.1848 0.0706 0.0599 0.0818
SNGP+BE 49.28 93.17 93.91 92.65 0.2678 0.0739 0.0652 0.0832

Brown

Deterministic 40.93 92.32 93.81 90.89 0.3969 0.0673 0.0530 0.0824
MC Dropout 40.10 92.17 93.64 90.76 0.0982 0.0600 0.0409 0.0779
DE 41.75 92.54 94.00 91.14 0.2589 0.0622 0.0473 0.0768
BE 40.19 92.07 93.69 90.54 0.3179 0.0690 0.0524 0.0854
SNGP 36.98 91.93 93.44 90.76 0.2409 0.0666 0.0492 0.0832
SNGP+DE 38.63 92.26 93.71 91.13 0.1119 0.0597 0.0417 0.0770
SNGP+BE 36.94 91.83 93.39 90.63 0.1905 0.0655 0.0481 0.0823

Essay

Deterministic 30.80 92.07 94.18 90.96 0.4589 0.0691 0.0565 0.0808
MC Dropout 29.10 91.82 93.22 90.78 0.0993 0.0615 0.0464 0.0783
DE 31.81 92.35 93.70 91.34 0.2859 0.0630 0.0505 0.0750
BE 27.75 91.71 93.22 90.54 0.3811 0.0725 0.0587 0.0855
SNGP 25.04 91.61 93.16 90.96 0.2188 0.0675 0.0551 0.0822
SNGP+DE 25.89 92.02 93.53 91.35 0.1124 0.0627 0.0474 0.0774
SNGP+BE 24.03 91.62 93.15 91.01 0.2207 0.0693 0.0544 0.0840

LOGON

Deterministic 31.45 91.10 92.58 90.70 0.5148 0.0834 0.0726 0.0944
MC Dropout 30.71 90.99 92.43 90.64 0.1457 0.0760 0.0628 0.0893
DE 31.82 91.28 92.76 90.89 0.3393 0.0789 0.0672 0.0903
BE 30.82 90.85 92.40 90.32 0.4288 0.0852 0.0738 0.0956
SNGP 26.65 89.81 91.21 91.21 0.1553 0.0802 0.0667 0.0933
SNGP+DE 26.60 90.75 92.24 90.86 0.0979 0.0752 0.0610 0.0890
SNGP+BE 24.49 90.01 91.36 90.31 0.1555 0.0810 0.0695 0.0926

Verbmobil

Deterministic 51.45 90.38 91.45 90.02 0.3298 0.0960 0.0861 0.1063
MC Dropout 52.74 90.42 91.54 89.92 0.1003 0.0873 0.0731 0.1033
DE 54.56 90.67 91.69 90.35 0.2283 0.0909 0.0834 0.0996
BE 51.56 90.00 91.12 89.58 0.2933 0.1010 0.0900 0.1126
SNGP 52.63 90.21 91.30 91.30 0.2233 0.0981 0.0850 0.1102
SNGP+DE 56.07 90.81 91.90 90.47 0.1196 0.0861 0.0737 0.0999
SNGP+BE 53.92 90.42 91.48 89.99 0.2091 0.0943 0.0840 0.1060

Wiki

Deterministic 28.16 89.64 90.65 89.37 0.4105 0.1038 0.0939 0.1135
MC Dropout 26.63 90.10 91.04 89.89 0.0492 0.0891 0.0731 0.1039
DE 31.22 90.71 91.65 90.46 0.1974 0.0910 0.0798 0.1019
BE 29.15 89.86 90.97 89.49 0.2658 0.0993 0.0881 0.1107
SNGP 24.87 89.57 90.59 89.72 0.1631 0.0927 0.0804 0.1071
SNGP+DE 27.31 90.63 91.58 90.69 0.0666 0.0803 0.0663 0.0942
SNGP+BE 26.78 89.74 90.89 89.82 0.1281 0.0907 0.0777 0.1025

Table 4: Evaluations for different uncertainty baselines on different domains in Redwoods treebanks.
BE refers to Batch Ensemble, and DE refers to Deep Ensemble.

can scale up (with the number of languages covered) and down (with diminished resource avail-
ability in low-resource languages). For example, many efforts have been made to build a practical
and cross-linguistically valid graph formalism to overcome language barriers, e.g., Uniform Mean-
ing Representation (UMR; Van Gysel et al., 2021) and BabelNet Meaning Representation (BMR;
Navigli et al., 2022), and it is interesting to explore the model behavior on these graph formalism in
terms of compositional uncertainty.

Graphical Model Specification The GAP model presented in this work considers a classical
graphical model likelihood p(G|x) =

∏
v∈G p(v|pa(v), x) , which leads to a clean factorization be-

tween graph elements v and fast probability computation. However, it also assumes a local Markov
property that v is conditional independent to its ancestors given the parent pa(v). In theory, the
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Figure 5: Diagrams for the T5 model’s probabilities verses the T5 model’s accuracies at subgraph
level (nodes and edges). Each bin contains the same number of examples. Since at most of the
subgraphs, the model is pretty certain (logP > −1e−5), we exclude these pretty certain predictions
in the figures.

probability learned by a seq2seq model is capable of modeling higher order conditionals between
arbitrary elements on the graph. Therefore it is interesting to ask if a more sophisticated graphi-
cal model with higher-order dependency structure can lead to better performance in practice while
maintaining reasonable computational complexity.

19



Published as a conference paper at ICLR 2023

Dataset Retrival Type Random Det MCD GP BE BEGP DE DEGP Oracle

WSJ (In-domain)

c=1,d=1 96.05 96.26 96.24 96.16 96.24 96.14 96.22 96.21 96.15
c=1,d=2 96.02 96.42 96.47 96.27 96.49 96.21 96.47 96.37 96.67
c=1,d=3 96.27 96.60 96.59 96.45 96.52 96.33 96.53 96.52 96.68
c=3,d=1 96.07 96.41 96.43 96.34 96.45 96.29 96.42 96.47 96.56
c=3,d=2 96.42 97.08 97.17 96.89 97.15 96.75 97.12 96.99 97.47
c=3,d=3 96.53 97.28 97.24 96.88 97.27 96.67 97.27 96.91 97.52
c=5,d=1 96.17 96.60 96.56 96.54 96.67 96.44 96.53 96.57 96.85
c=5,d=2 96.70 97.33 97.46 97.06 97.42 97.00 97.42 97.30 97.68
c=5,d=3 97.03 97.67 97.80 97.28 97.76 97.25 97.76 97.44 97.91

Tanaka

c=1,d=1 95.35 96.23 96.18 96.02 96.24 96.01 96.21 96.14 96.22
c=1,d=2 95.88 96.72 96.75 96.45 96.63 96.31 96.69 96.54 96.92
c=1,d=3 96.03 96.96 97.00 96.60 96.91 96.52 96.94 96.70 97.27
c=3,d=1 96.15 96.79 96.94 96.77 96.84 96.85 96.88 96.91 97.11
c=3,d=2 96.96 97.83 97.94 97.65 97.86 97.73 97.91 97.85 98.04
c=3,d=3 97.15 98.18 98.43 98.31 98.43 98.19 98.32 98.36 98.43
c=5,d=1 96.57 97.25 97.38 97.30 97.26 97.37 97.27 97.37 97.53
c=5,d=2 97.40 98.38 98.49 98.34 98.41 98.47 98.43 98.55 98.44
c=5,d=3 97.99 98.97 99.09 98.94 98.99 99.05 99.09 99.13 98.89

Ecommerce

c=1,d=1 93.86 94.54 94.47 94.14 94.95 94.23 94.76 94.29 94.98
c=1,d=2 94.49 95.06 94.87 94.58 94.97 94.45 94.95 94.76 95.83
c=1,d=3 94.75 95.49 95.58 94.95 95.56 94.83 95.61 95.14 96.16
c=3,d=1 94.43 95.47 95.63 95.21 95.75 95.30 95.68 95.50 95.91
c=3,d=2 95.02 96.31 96.68 96.40 96.54 96.31 96.66 96.35 97.18
c=3,d=3 96.22 96.62 97.00 96.76 97.00 96.59 97.04 96.76 97.61
c=5,d=1 95.21 95.83 95.90 95.80 95.99 95.88 95.98 95.98 96.28
c=5,d=2 96.30 97.20 97.61 97.24 97.55 97.09 97.47 97.31 97.67
c=5,d=3 96.83 97.85 98.12 97.97 98.30 98.03 98.13 98.15 98.45

Brown

c=1,d=1 92.54 92.89 92.98 92.77 92.97 92.69 92.95 92.91 92.88
c=1,d=2 92.76 93.47 93.46 93.18 93.48 93.09 93.42 93.34 93.80
c=1,d=3 92.78 93.45 93.60 93.41 93.53 93.08 93.59 93.53 93.80
c=3,d=1 92.66 93.44 93.50 93.49 93.56 93.33 93.66 93.59 93.76
c=3,d=2 93.53 94.79 95.04 94.49 94.89 94.16 94.98 94.68 95.24
c=3,d=3 93.88 95.27 95.53 94.79 95.39 94.48 95.34 95.17 95.87
c=5,d=1 93.13 93.92 94.04 94.07 93.98 93.89 94.06 94.17 94.32
c=5,d=2 94.06 95.33 95.59 95.16 95.51 94.80 95.62 95.39 95.76
c=5,d=3 94.61 96.22 96.41 95.96 96.27 95.75 96.32 95.99 96.61

Essay

c=1,d=1 92.38 92.62 92.73 92.82 92.70 92.56 92.77 92.63 92.57
c=1,d=2 92.15 92.83 92.70 92.32 92.61 92.35 92.66 92.64 92.99
c=1,d=3 92.36 92.92 92.92 92.63 92.99 92.56 93.02 92.96 93.10
c=3,d=1 92.30 93.29 93.15 93.15 93.30 92.97 93.11 93.28 93.40
c=3,d=2 92.82 94.21 94.03 93.76 93.82 93.48 94.10 93.75 94.82
c=3,d=3 93.13 94.64 94.76 94.06 94.14 93.96 94.44 94.39 95.38
c=5,d=1 92.26 93.26 93.25 93.30 93.52 93.27 93.55 93.65 93.44
c=5,d=2 93.66 94.84 94.88 94.36 94.91 94.16 94.79 94.48 95.13
c=5,d=3 93.99 95.68 95.47 95.38 95.77 94.96 95.75 95.23 96.55

LOGON

c=1,d=1 91.42 91.93 91.75 91.60 91.78 91.61 91.86 91.70 91.72
c=1,d=2 91.85 92.37 92.41 92.05 92.47 91.96 92.53 92.11 92.75
c=1,d=3 91.87 92.52 92.45 91.93 92.54 91.88 92.53 92.03 92.83
c=3,d=1 91.60 92.49 92.56 92.56 92.49 92.38 92.66 92.50 92.96
c=3,d=2 92.65 93.68 93.74 93.09 93.74 92.85 93.74 93.33 94.38
c=3,d=3 92.95 94.19 94.40 93.34 94.23 93.19 94.15 93.60 95.10
c=5,d=1 91.92 92.77 92.97 92.92 92.78 92.81 92.81 92.77 93.28
c=5,d=2 93.42 94.61 94.75 94.00 94.58 93.85 94.45 94.22 95.22
c=5,d=3 93.76 95.24 95.40 94.51 95.32 94.31 95.29 94.93 95.77

Verbmobil

c=1,d=1 90.16 90.69 90.77 90.59 90.76 90.43 90.74 90.68 90.76
c=1,d=2 90.63 91.92 91.51 91.44 91.65 91.08 91.84 91.59 91.76
c=1,d=3 90.78 91.92 91.76 91.83 92.10 91.66 91.85 91.86 91.68
c=3,d=1 89.98 91.42 91.67 91.68 91.72 91.35 91.59 91.65 91.14
c=3,d=2 92.15 93.75 94.13 94.04 94.03 93.54 94.00 93.93 94.18
c=3,d=3 93.36 95.32 95.44 95.07 95.15 94.68 95.24 95.20 95.40
c=5,d=1 90.98 92.74 92.78 92.70 92.89 92.80 92.49 92.86 92.37
c=5,d=2 94.00 95.35 95.47 95.38 95.33 94.85 95.29 95.39 95.43
c=5,d=3 94.56 96.45 96.59 96.53 96.53 96.04 96.50 96.88 96.26

Wiki

c=1,d=1 91.34 91.82 91.78 91.73 91.82 91.70 91.75 91.72 91.84
c=1,d=2 91.88 92.14 92.34 91.98 92.30 92.09 92.25 91.98 92.70
c=1,d=3 91.74 92.22 92.32 92.00 92.53 91.77 92.35 91.96 92.53
c=3,d=1 91.48 92.15 92.18 92.37 92.20 92.34 92.23 92.40 92.38
c=3,d=2 92.07 93.08 93.17 92.75 93.12 92.63 93.23 92.92 93.49
c=3,d=3 92.17 93.20 NaN 93.14 93.33 93.02 93.58 93.17 93.84
c=5,d=1 91.66 92.64 92.66 92.58 92.80 92.56 92.66 92.87 92.76
c=5,d=2 92.92 93.97 94.00 93.80 94.14 93.59 94.24 93.80 94.67
c=5,d=3 93.07 94.43 94.51 93.89 94.44 93.68 94.79 94.07 95.18

Table 5: Full collaborative performance on Redwoods (ERG parsing) including different uncer-
tainty baselines (Det: Deterministic; MCD: MC Dropout; GP: SNGP; BE: Batch Ensemble; BEGP:
SNGP+Batch Ensemble; DE: Deep Ensemble; DEGP: SNGP+Deep Ensemble), the performance
metrics are SMATCH score for Redwoods (Red: Best; Green: Second Best; Orange: Third).
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e=1 d=1 e=1 d=2 e=1 d=3 e=3 d=1 e=3 d=2 e=3 d=3 e=5 d=1 e=5 d=2 e=5 d=3

SMCalflow

Oracle 90.57 92.44 93.33 93.21 95.84 96.10 94.27 96.38 97.16
Oracle* 91.01 93.38 94.55 93.41 96.56 97.36 94.19 97.39 97.87
Random 88.10 88.99 89.71 90.10 92.21 93.47 91.30 93.80 95.19
Uncertain 90.12 91.15 92.13 92.18 94.50 95.50 93.27 96.00 96.88

SNIPS

Oracle 99.48 99.54 99.56 99.70 99.74 99.78 - - -
Oracle* 99.64 99.72 99.80 99.78 99.90 99.98 - - -
Random 99.36 99.36 99.50 99.44 99.74 99.76 - - -
Uncertain 99.62 99.62 99.70 99.82 99.90 99.98 - - -

Table 6: Full collaborative parsing performance on SMCalflow and SNIPS, the performance metrics
are sequence accuracy for SMCalflow and slot (node) F1 for SNIPS.

Dataset Selection e=1,d=1 e=1,d=2 e=1,d=3 e=3,d=1 e=3,d=2 e=3,d=3 e=5,d=1 e=5,d=2 e=5,d=3

WSJ (In-domain)
Random 3.65 7.21 8.79 9.19 19.33 23.78 14.29 28.69 33.14
Uncertain 12.16 18.46 20.43 24.09 36.04 40.75 29.85 45.04 49.67
Oracle 24.54 35.82 36.20 49.08 68.52 70.44 62.31 80.10 81.32

Tanaka
Random 11.78 20.19 22.05 29.33 46.81 48.00 39.13 58.20 64.05
Uncertain 30.88 42.22 45.24 47.30 66.09 71.37 56.56 76.91 81.16
Oracle 47.61 63.33 65.96 79.87 90.38 92.07 87.54 93.80 94.68

Ecommerce
Random 9.69 16.75 21.39 23.73 36.53 44.91 32.67 49.80 54.25
Uncertain 23.75 33.17 34.52 42.65 55.84 59.35 51.10 69.12 72.65
Oracle 41.80 54.27 58.72 73.70 87.34 88.17 85.19 93.52 94.78

Brown
Random 5.38 11.06 12.47 14.90 27.47 31.13 21.70 37.98 42.26
Uncertain 14.09 22.34 25.54 28.52 44.08 49.21 35.73 55.01 60.62
Oracle 24.88 36.01 38.90 52.53 67.79 72.42 64.86 79.60 82.79

Essay
Random 4.88 8.40 12.92 11.51 25.74 26.16 18.96 35.82 41.22
Uncertain 12.60 19.50 22.15 25.59 41.85 45.32 32.89 52.59 59.30
Oracle 20.62 29.87 33.65 45.80 64.54 70.77 62.43 80.33 84.33

LOGON
Random 6.19 12.42 15.54 14.97 30.42 34.67 23.51 43.91 46.74
Uncertain 14.68 23.15 25.49 29.95 46.00 50.49 38.34 58.14 64.29
Oracle 25.50 37.31 42.11 56.44 74.25 74.57 69.88 85.82 87.71

Verbmobil
Random 12.49 23.80 25.68 27.55 43.78 48.09 39.97 57.85 62.55
Uncertain 23.54 35.75 39.59 45.21 63.38 69.61 55.11 75.06 80.65
Oracle 34.05 52.33 56.65 70.01 82.70 86.63 81.45 92.10 92.45

Wiki
Random 4.61 11.98 13.22 13.63 25.92 30.83 20.67 37.01 43.48
Uncertain 14.18 21.61 23.13 28.64 42.78 47.16 36.62 53.76 57.82
Oracle 22.13 32.57 33.78 47.54 62.21 66.99 59.19 76.53 79.26

SMCalflow
Random 10.90 16.24 21.28 21.27 33.55 44.07 29.30 45.24 56.20
Uncertain 14.45 21.46 27.32 24.45 37.36 47.85 31.77 48.11 59.67
Oracle 21.75 30.02 37.65 42.97 59.87 65.89 55.28 70.99 77.35

SNIPS
Random 39.02 67.07 56.10 65.85 86.59 90.24 - - -
Uncertain 70.73 76.83 76.83 98.78 100.00 100.00 - - -
Oracle 75.61 81.71 93.90 100.00 100.00 100.00 - - -

Table 7: Error node coverage rate for different subgraph selection strategies and budget (e refers to
number of examples (subgraphs), d refers to the depth of the subgraphs).
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