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Figure 1: Visual Autoregressive Model with Randomized Parallel Generation (ARPG): A high-
quality and efficient framework for image synthesis. ARPG enables (a) class-conditional and text-to-
image generation with just 64-step parallel decoding and (b) outperforms recent representative works
(e.g., VAR (Tian et al., 2024), LlamaGen (Sun et al., 2024a)) in throughput, memory consumption,
and quality. It further supports (c) controllable generation and zero-shot generalization, including
(d) class-conditional editing, inpainting, outpainting, and (e) resolution expansion.

ABSTRACT

We introduce ARPG, a novel visual Autoregressive model that enables
Randomized Parallel Generation, addressing the inherent limitations of conven-
tional raster-order approaches, which hinder inference efficiency and zero-shot
generalization due to their sequential, predefined token generation order. Our key
insight is that effective random-order modeling necessitates explicit guidance for
determining the position of the next predicted token. To this end, we propose
a novel decoupled decoding framework that decouples positional guidance from
content representation, encoding them separately as queries and key-value pairs.
By directly incorporating this guidance into the causal attention mechanism, our
approach enables fully random-order training and generation, eliminating the need
for bidirectional attention. Consequently, ARPG readily generalizes to zero-shot
inference tasks such as image inpainting, outpainting, and resolution expansion.
Furthermore, it supports parallel inference by concurrently processing multiple
queries using a shared KV cache. On the ImageNet-1K 256×256 benchmark,
our approach attains an FID of 1.83 with only 32 steps, achieving a 30× and 3×
speedup in inference over raster-order and recent parallel AR models, respectively,
while reducing memory consumption by 75% at a similar scale.

∗Work done during the author’s research internship.
†Corresponding authors: <wanghuan@westlake.edu.cn>, <guoqi.li@ia.ac.cn>.
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1 INTRODUCTION

Autoregressive (AR) models have demonstrated remarkable performance and scalability (Henighan
et al., 2020; Kaplan et al., 2020), particularly in the domain of large language models, where the
next-token prediction paradigm has driven significant advancements (Achiam et al., 2023; et al.,
2024). This success has extended to visual synthesis, enabling breakthroughs in autoregressive
image generation with methods like VQGAN (Esser et al., 2021; Ramesh et al., 2021; Lee et al.,
2022). However, directly applying next-token prediction to images presents fundamental challenges.
Unlike text, which possesses an inherent causal structure, images are defined over a two-dimensional
spatial domain. AR models necessitate flattening this spatial information into a sequence, typically
following a rigid, predefined order (e.g., raster-scan). This strictly sequential generation process is
not only inefficient, especially for high-resolution images, but also fundamentally limits the model’s
ability to perform zero-shot generalization to tasks requiring non-causal dependencies.

To address these challenges, alternative approaches, such as MaskGIT (Chang et al., 2022), have
adopted a masked modeling (Devlin et al., 2019) approach for parallel token generation in random
order. However, the reliance on bidirectional attention prevents the use of the KV cache, resulting
in high computational overhead. Block-wise AR (Tian et al., 2024; Liu et al., 2024; Wang et al.,
2025; Chang et al., 2023) enable block-wise parallel decoding, however, they are constrained by
fixed block orderings and sampling schedules, which limit their flexibility and fidelity. Recent work
RandAR (Pang et al., 2025) enables fully random-order training and inference with causal attention
via positional instruction tokens, but incurs significant memory and computational costs due to the
increased sequence length. Therefore, a fundamental challenge persists: how to achieve flexible-
order and parallel generation without compromising computational efficiency.

In this work, we introduce ARPG, a novel visual AR model that enables training and inference in
fully random token orders through a decoupled decoding process. Unlike the standard decoder-only
Transformers (Vaswani et al., 2017), our approach decouples the prediction process into two distinct
passes: (1) The content refinement pass utilizes causal self-attention over a random-order token
sequence to construct label-leakage-free content representations as key-value pairs, without directly
predicting tokens. (2) In the position-guided prediction pass, data-independent [MASK] tokens
endowed with positional information corresponding to a right-shift of the input, act as target-aware
queries. These queries use causal cross-attention to predict their respective target tokens based on
the content key-value pairs processed in the first pass. This design allows the model to be trained
within a fully causal paradigm while enabling generalization to block-wise parallel decoding with
flexible token orders, as multiple queries can be processed independently in a single step.

Extensive experiments demonstrate the superiority of ARPG. On the ImageNet-1K 256×256 bench-
mark (Deng et al., 2009), ARPG at various scales achieve FID (Heusel et al., 2017) of 2.30, 1.93,
and 1.83. This performance surpasses recent works while achieving a nearly 30× and 3× speedup
over raster-order and parallel AR models, respectively, and reducing memory usage by 75%.

Furthermore, we extend our method to more complex tasks, including controllable generation, zero-
shot generalization, and text-to-image generation, as shown in Fig. 1. In summary:

1. We propose a novel visual autoregressive framework that enables parallel image generation with
a random token order using a decoupled two-pass decoding mechanism, overcoming the ineffi-
ciencies and poor generalization of traditional next-token prediction methods.

2. We explore the zero-shot generalization ability of our method and further extend it to versatile
controllable generation and text-to-image generation.

3. Extensive experiments demonstrate that our approach achieves competitive generation quality
while simultaneously excelling in throughput and memory consumption, setting a new bench-
mark for efficient, high-performance autoregressive image generation.

2 RELATED WORK

2.1 AUTOREGRESSIVE IMAGE GENERATION

State-of-the-art large language models (Achiam et al., 2023; et al., 2024) adopt a decoder-only Trans-
former (Vaswani et al., 2017) for causal modeling of language sequences and autoregressive gener-
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Figure 2: Methods for representing the position of the next token. MAR (Chang et al., 2022; Li et al.,
2024b) indicates the position via masking out image token; Block-AR models (Tian et al., 2024; Wang et al.,
2025; He et al., 2025) use predefined positions; RandAR (Pang et al., 2025) intersperses position tokens
throughout the sequence; and our ARPG integrates it as a query in a cross-attention mechanism.

ation, a method commonly known as the GPT (Achiam et al., 2023) style approach. In the vision
domain, images can be quantized into discrete tokens (Van Den Oord et al., 2017) and flattened
from 2D to 1D, enabling generation via the next-token prediction paradigm, as seen in models like
VQGAN (Esser et al., 2021), LlamaGen (Sun et al., 2024a), etc. (Lee et al., 2022; Wang et al., 2024;
Li et al., 2024a; Wang et al., 2024; Yu et al., 2024). These methods have demonstrated impressive
generative performance. However, this token-by-token image generation approach is inefficient,
especially when dealing with high-resolution images. Additionally, since the generation can only
proceed in a specific token order, it encounters difficulties in zero-shot inference that require non-
causal dependencies, such as inpainting and outpainting.

2.2 ACCELERATION OF VISUAL AUTOREGRESSIVE MODELS

Another mainstream approach to sequence modeling is the encoder-only architecture. This method,
widely used in language models like BERT (Devlin et al., 2019), involves randomly masking and
then predicting multiple tokens in a sequence. In the vision domain, this paradigm is adopted by
models such as MaskGIT (Chang et al., 2022) for image generation. By leveraging bidirectional
attention, these masked-generation methods eliminate causal dependencies, enabling multi-token
generation in a single step and thus significantly faster inference. However, due to the absence of a
KV cache, their overall inference efficiency remains limited. Beyond this, other parallel generation
techniques face their own challenges. Many block-wise autoregressive methods (Tian et al., 2024;
Wang et al., 2025; He et al., 2025) are constrained by predefined orders and schedulers, while various
training-free methods (Teng et al., 2025) achieve acceleration at the cost of degraded output quality.
A recent work, RandAR (Pang et al., 2025), inspired by XLNet (Yang et al., 2019), implements a
permuted autoregressive model for parallel decoding by interspersing position tokens throughout the
sequence. This strategy, however, incurs a heavy penalty: it doubles the sequence length, thereby
increasing both the computational load and the memory required for the KV cache.

3 METHOD

3.1 RETHINKING VISUAL AUTOREGRESSIVE MODELING

Preliminaries. Given a sequence X = {x1, x2, . . . , xn}, a causal autoregressive model predicts
the next token based on all preceding tokens, following the probabilistic formulation:

p(x) =

n∏
i=1

p(xi | x1, x2, . . . , xi−1). (1)

The formulation for block-wise AR models (Tian et al., 2024; Wang et al., 2025) is analogous,
substituting a single token xi with a set of tokens {xi, xi+1, ..., xi+j}.

In contrast, masked sequence modeling (Devlin et al., 2019) processes sequences with certain tokens
masked out and predicts them based on the unmasked context. The objective is to minimize the
negative log-likelihood of the tokens at masked positions (Devlin et al., 2019):

L = −E
[ ∑
mi=1

log p(xi | XM)
]
, ∀i ∈ {1, 2, · · · , n}, (2)

where M = {m1,m2, . . . ,mn} ∈ {0, 1}n is masked positions and XM is the corrupted sequence.
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Figure 3: Analysis of attention scores. Normalized attention maps from multiple distinct heads
in the final layer of RandAR (Pang et al., 2025). The maps, partitioned by token type (masked vs.
unmasked), reveal that attention weights are predominantly concentrated on unmasked tokens.

Key Insights. Based on the characteristics of the methods discussed, we find:

Insight 1: Breaking the order-specific constraints of AR model requires explicit positional guidance.

This insight stems from the fundamental difference in how models determine the prediction target.
As shown in Fig. 2, causal autoregressive models are bound to a strict, predefined generation order
(e.g., raster-scan for standard AR, scale or diagonal patterns for block-wise AR), which inherently
limits their flexibility. Masked modeling using position-aware [MASK] tokens to act as explicit
instructions, directing the model to the specific locations that need to be filled. This mechanism of
providing direct positional guidance is what allows the model to predict tokens in a flexible manner.

Insight 2: Masked modeling is inherently training-inefficient due to its sparse prediction objective.

This inefficiency arises because the loss function is calculated exclusively on [MASK] tokens, which
represent only a fraction of the input sequence. More precisely, the query vectors corresponding to
unmasked tokens receive no direct gradients from the optimization objective. Consequently, in any
given training step, the model parameters are suboptimally updated using only a subset of the tokens,
yet this process incurs the full computational cost equivalent to processing the entire sequence. The
related proof is provided in Appendix C.

Insight 3: Attention directed towards [MASK] tokens is redundant.

This redundancy is empirically evident, as exemplified by the RandAR (Pang et al., 2025) attention
scores in Fig. 3, which show that [MASK] tokens contribute minimally to the attention mechanism.
The vast majority of attention scores are allocated to unmasked tokens. We argue this is also con-
ceptually sound based on the roles of different tokens. An unmasked token should attend to other
unmasked tokens to enrich its semantic representation. A [MASK] token, tasked with reconstructing
the original token at its position, should attend to semantic-rich unmasked tokens to gather contex-
tual information. In neither case is it necessary to attend to other [MASK] tokens, which contain no
native semantic content.

3.2 VISUAL AUTOREGRESSIVE MODEL WITH RANDOMIZED PARALLEL DECODING

Reformulation. We observe that the essential components for predicting a token xτt at position τt
within an arbitrary permutation T of indices are: (1) the set of already known tokens {xτi}t−1

i=1 and
(2) the target position τt itself. The state of other unknown positions is irrelevant. This motivates a
reformulation where the prediction is explicitly conditioned only on these necessary elements:

n∏
t=1

p
(
xτt | xτ1 , xτ2 , . . . , xτt−1

)
= fθ

(
{xτi}t−1

i=1, τt
)
. (3)

Here, fθ is a model parameterized by θ that takes the known tokens and the target position as separate
inputs. Based on Insights 2 and 3, we configure the softmax attention (Vaswani et al., 2017) such that
queries are derived exclusively from data-independent [MASK] tokens, while the keys and values
originate entirely from unmasked content tokens. This decoupling yields three key advantages. (1)
The content representations can be learned independently. (2) Decoding is guided by positional
queries that attend to rich, fully-learned KV representations, rather than the less informative ones
from shallow layers. (3) The projection parameters of query are not shared with key-value, enabling
full learning in a single training step without redundancy computation. These points constitute the
key distinctions from prior works (Yang et al., 2019; Pang et al., 2025; Liu et al., 2024).
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Figure 4: Architecture: The 1st decoder extract representations of image tokens. The 2nd decoder use target-
aware [MASK] tokens as queries that attend to key-value pairs from the output of the 1st decoder. Teacher-
forcing training is performed under a causal attention. Parallel decoding is achieved by inputting multiple
queries in a single step, with each query independently attending to existing KV cache (omit value for clarity).

Two-Pass Decoder Architecture. Based on the preceding discussion, we employ a two-pass de-
coder architecture to decouple the prediction of a target token xτt from the representation learning
of known tokens {xτi}t−1

i=1 . The equivalence of the probabilistic model is maintained through the
application of a suitable causal mask. As illustrated in Fig. 4 and formulated as:

1. Pass-1: Content Representation Learning. The first decoder consists of a standard causal self-
attention. Unlike typical autoregressive models that predict the next token, its sole purpose is
to process the sequence of known content token embeddings {xτi}t−1

i=1 to generate a set of rich,
context-aware representations {hτi}t−1

i=1 . These representations are then projected into key-value
pairs, which serve as a comprehensive summary of all historical information.

2. Pass-2: Position-Guided Decoding. The second decoder is comprised of causal cross-attention.
In this pass, query vector qτt are derived from the [MASK] token, and infused with positional
information for a specific target location. This target-aware query attends to key-value pairs that
are derived from {hτi}t−1

i=1 produced by Pass-1, ultimately predicting predict x̂τt .

Mathematically, let m ∈ R1×d be the embedding of [MASK] token, for a given target position
τt and content tokens represented by {hτi}t−1

i=1 from Pass-1. Using the rotary position embedding
(RoPE) (Su et al., 2024), the attention operations in layer l of Pass-2 are:

q(l)
τt = RoPE(o(l−1)

τt W (l)
q , τt), ∀τt,o(0)

τt = m. (4)

k(l)
τi = RoPE(hτiW

(l)
k , τi), v(l)

τi = hτiW
(l)
v . (5)

o
(l)
t = q(l)

τt + Attention(q(l)
τt , {k

(l)
τj }

t−1
j=1, {v

(l)
τj }

t−1
j=1), (6)

where Wq,Wk,Wv ∈ Rd×d are learnable projection matrices.

Training and Decoding. (1) During training, the Pass-1 decoder learns causal representations
from a shuffled sequence. Then the positional information of the sequence is right-shifted by one
position and embedded into [MASK] tokens to serve as target-aware queries, as illustrated in Fig. 4.
(2) At inference time, we first compute the KV cache from the known tokens using the self-attention
in Pass-1. Next, we select multiple target-aware queries. These queries can simultaneously attend to
the KV cache via cross-attention in Pass-2, thereby enabling multi-token prediction within a single
inference step, as illustrated in Fig. 4. In this setting, the causal attention at step t in Pass-1 can be
generalized to block-wise attention so that the model learns local bidirectional representations for
the tokens generated in step t − 1. This mismatch in attention patterns does not compromise the
causal conditional probability model. Instead, it improves image fidelity (validated in Sec.4) and
increases robustness to diverse sampling schedules, including the cosine and arccos schemes used
in methods such as MaskGiT (Chang et al., 2022) and MUSE (Chang et al., 2023).
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Figure 5: Implementation details. (a) Conditional inputs provide the queries. (b) For zero-shot
inpainting, known regions are pre-filled in Pass-1, while masked regions are generated in Pass-2.

Controllable Generation & Zero-shot Inference. (1) Controllable generation is analogous to
class-conditional generation, but it uses representations from conditional inputs (e.g., depth maps)
for guidance instead of class labels. As illustrated in Fig. 5. (2) Zero-shot inference is achieved via a
two-stage process. In the case of inpainting (Fig. 5), the Pass-1 decoder is first pre-filled with tokens
from the known image regions. Subsequently, the target regions are replaced by [MASK] tokens,
and the Pass-2 decoder generates them using the key-value pairs from the Pass-1. This process is
also applicable to outpainting and resolution expansion.

Comparison with Other Methods. In contrast to recent studies and their notable limitations,
ARPG is fundamentally distinct. The key differences are detailed below and summarized in Tab. 1.

Table 1: Summary of existing methods.
Method Attention Pattern Scheduler Zero-shot

MAR Bidirectional Cosine

VAR Block-wise Predefined
PAR Block-wise Predefined
NAR Block-wise Predefined

RAR Causal N/A
RandAR Causal Flexible
ARPG Causal → Block-wise Flexible

Different block-wise AR methods introduce
unique limitations. VAR (Tian et al., 2024) re-
lies on a multi-scale image tokenizer for coarse-
to-fine prediction, a strategy that significantly
increases the token count and computational
overhead. PAR (Wang et al., 2025), SAR (Liu
et al., 2024), and NAR (He et al., 2025) predict
parallel spatial blocks but are constrained by a
rigid, predefined ordering or scheduler that im-
pairs sample quality and scheduling flexibility.

RAR (Yu et al., 2024) randomly permutes sequences during training but progressively anneals them
to a raster-scan order, meaning it does not support random-order parallel generation in practice.

RandAR (Pang et al., 2025) couples the position and content tokens. This method not only doubles
the computational cost but also leads to suboptimal fidelity, as the less-informative content repre-
sentations in shallow layers are forced to co-learn with [MASK] token. Furthermore, it necessitates
extra memory to cache [MASK] tokens and retains a causal attention during parallel decoding.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model. We implement three models of different scales, all of which follow the LlamaGen de-
sign (Sun et al., 2024a) and use its tokenizer. All layers in the Pass-2 decoder share a global key-
value projection to improve efficiency (Sun et al., 2024b). More details shown in Appendix A.

Training. We train the class-conditional model on ImageNet-1K (256×256) (Deng et al., 2009)
for 400 epochs and the text-to-image model on a 4M subset of BLIP-3o (Chen et al., 2025) for 50
epochs. All models are optimized with the AdamW (Loshchilov & Hutter, 2019) optimizer using a
learning rate of 1e-4 per 256 batch size. Further configuration details are in Appendix A.

Metrics. We use FID (Heusel et al., 2017) as the primary evaluation metric, and additionally re-
port Inception Score (IS) (Salimans et al., 2016), precision, and recall (Kynkäänniemi et al., 2019),
following the protocol of ADM (Dhariwal & Nichol, 2021). For text-to-image generation, we eval-
uate our models using selected metrics from GenEval (Ghosh et al., 2023). The efficiency profile is
evaluated on an NVIDIA A800-80GB GPU, considering only the token generation process.
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Table 2: Overall comparisons on ImageNet benchmarks. Arrows indicate whether lower or
higher is better. Efficiency was profiled with a batch size of 64 and bfloat16 precision.

Type Model Param. Steps Throughput Mem. FID↓ IS↑ Pre.↑ Rec.↑(img/s)↑ (GB)↓
Resolution: 256×256

Diffusion DiT-L/2 (Peebles & Xie, 2023) 458 M 250 1.32 1.62 5.02 167.2 0.75 0.57
DiT-XL/2 (Peebles & Xie, 2023) 675 M 250 0.91 2.14 2.27 278.2 0.83 0.57

Mask
MaskGIT (Chang et al., 2022) 227 M 8 46.18 1.71 6.18 182.1 0.80 0.51
MAR-B (Li et al., 2024b) 208 M 100 1.71 1.47 2.31 281.7 0.82 0.57
MAR-L (Li et al., 2024b) 479 M 100 1.27 2.32 1.78 296.0 0.81 0.60

VAR
VAR-d16 (Tian et al., 2024) 310 M 10 123.21 10.85 3.30 274.4 0.84 0.51
VAR-d20 (Tian et al., 2024) 600 M 10 75.38 15.97 2.57 302.6 0.83 0.56
VAR-d24 (Tian et al., 2024) 1.0 B 10 49.94 22.29 2.09 312.9 0.82 0.59

AR

LlamaGen-L (Sun et al., 2024a) 343 M 576 4.33 10.23 3.07 256.1 0.83 0.52
LlamaGen-XL (Sun et al., 2024a) 775 M 576 2.46 17.11 2.62 244.1 0.80 0.57
LlamaGen-XXL (Sun et al., 2024a) 1.4 B 576 1.58 26.22 2.62 244.1 0.80 0.57

RAR-B (Yu et al., 2024) 261 M 256 14.12 4.65 1.95 290.5 0.82 0.58
RAR-L (Yu et al., 2024) 461 M 256 12.08 6.37 1.70 299.5 0.81 0.60
RAR-XL (Yu et al., 2024) 955 M 256 8.00 10.55 1.50 306.9 0.80 0.62

AR
(Parallel)

PAR-L (Wang et al., 2025) 343 M 147 14.77 10.25 3.76 218.9 0.81 0.60
PAR-XL (Wang et al., 2025) 775 M 147 7.91 17.13 2.61 259.2 0.80 0.62
PAR-XXL (Wang et al., 2025) 1.4 B 147 5.23 26.25 2.35 263.2 0.80 0.62

NAR-L (He et al., 2025) 372 M 31 42.71 10.25 3.06 263.9 0.81 0.53
NAR-XL (He et al., 2025) 816 M 31 23.97 17.13 2.70 277.5 0.81 0.58
NAR-XXL (He et al., 2025) 1.5 B 31 15.23 26.25 2.58 293.5 0.82 0.57

RandAR-L (Pang et al., 2025) 343 M 88 25.30 7.32 2.55 288.8 0.81 0.58
RandAR-XL (Pang et al., 2025) 775 M 88 15.51 13.52 2.25 317.8 0.80 0.60
RandAR-XXL (Pang et al., 2025) 1.4 B 88 10.46 21.77 2.15 322.0 0.79 0.62

AR
(Parallel)

ARPG-L 320 M 32 130.14 2.78 2.30 297.7 0.82 0.56
ARPG-XL 719 M 32 80.56 4.65 1.93 349.2 0.80 0.61
ARPG-XXL 1.3 B 32 55.28 7.22 1.83 336.1 0.80 0.60

ARPG-L 320 M 64 67.47 2.64 2.37 293.7 0.82 0.55
ARPG-XL 719 M 64 45.09 4.57 1.99 340.6 0.80 0.61
ARPG-XXL 1.3 B 64 31.65 7.18 1.86 339.7 0.81 0.59

Resolution: 512×512

DiT-XL/2 (Peebles & Xie, 2023) 675 M 250 0.18 4.70 3.04 240.8 0.84 0.54
MaskGIT (Chang et al., 2022) 227 M 12 4.48 7.63 7.32 156.0 0.78 0.50
VQGAN (Esser et al., 2021) 1.4 B 1024 0.63 44.12 26.52 66.8 0.73 0.31
VAR-d36 (Tian et al., 2024) 2.0 B 10 - OOM 2.63 303.2 - -
ARPG-XL 719 M 64 35.53 13.98 2.82 277.5 0.82 0.56

(a) Class-conditional generation. (b) Controllable generation.

Figure 6: Generation samples. ARPG can efficiently generate high-fidelity images with 64 steps

4.2 IMAGE GENERATION

Class-Conditinal Generation. We compare the results of ARPG with existing methods on the
ImageNet-1K, as shown in Tab. 2. For 256×256 benchmarks, we present two sampling settings: 32
steps for optimal FID and 64 steps for the best visual quality. Samples are shown in Fig. 6a.

Compared to LlamaGen (Sun et al., 2024a), ARPG-XXL achieves a better FID of 1.83 with only 32
sampling steps, representing a 30× speedup with superior fidelity. Compared to VAR (Tian et al.,
2024), ARPG achieves higher throughput while reducing 75% memory consumption. Further-
more, compared to recent parallel decoding methods (Wang et al., 2025; He et al., 2025; Pang et al.,
2025), ARPG achieves better generation quality with superior efficiency.
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Figure 7: Text-to-image generation. ARPG-XL can efficiently generate high-quality images with
only 64 steps based on the given image captions. Prompt omitted for brevity.

Table 3: Quantitative evaluation of text-to-image generation at 512×512 resolution.

Model Params. Data Single Obj. Two Obj. Colors Overall Throughput

LlamaGen-XL (Sun et al., 2024a) 0.8 B 60 M 0.87 0.34 0.64 0.32 0.83 img/s
Chameleon (Team, 2024) 7.0 B 1.4 B - - - 0.39 -
SD-v1.5 (Rombach et al., 2022) 0.9 B 2 B 0.97 0.38 0.76 0.43 4.32 img/s
ARPG-XL 0.8 B 4 M 0.87 0.30 0.68 0.31 30.11 img/s

For 512×512 resolution, we fine-tune the XL model (pre-trained at 256×256 resolution) instead of
training from scratch to save computational resources. With only 50 epoch fine-tuning, it achieves
competitive quality while surpassing others in throughput, as shown in Tab. 2.

Text-to-Image Generation. We use the pre-trained FLAN-T5-XL (Chung et al., 2024) to generate
prompt embeddings that condition the token sequence. As shown in Tab. 3, our method achieves
performance comparable to LlamaGen (Sun et al., 2024a) using only 7% of the training data while
offering significantly higher throughput. Generated samples are shown in Fig. 7.

Table 4: Controllable generation on ImageNet.

Method Model Param. FID↓
Canny Depth

ControlVAR
VAR-d16 310M 16.20 13.80
VAR-d20 600M 13.00 13.40
VAR-d30 2.0B 7.85 6.50

ControlAR AiM-L 350M 9.66 7.39
LlamaGen-L 343M 7.69 4.19

ControlARPG ARPG-L 320M 7.39 4.06

Controllable Generation. Following Con-
trolAR (Li et al., 2024d), we use a pre-trained
ViT (Dosovitskiy et al., 2021) adapter to pro-
cess conditional inputs, such as Canny edges
and depth maps. These conditional inputs are
used as target-aware queries to fine-tune the
pre-trained class-conditional model. As shown
in Tab. 4 and Fig. 6b, ARPG significantly out-
performs recent works such as ControlVAR (Li
et al., 2024c) and ControlAR (Li et al., 2024d).

(a) Left: image inpainting. Right: image editing.

(b) Outpainting: from 256×256 to 1024×256

Figure 8: Zero-shot inference of different tasks.

Zero-shot Generalization. We assess the
zero-shot generalization capabilities of ARPG
on a variety of image manipulation tasks, with
qualitative results presented in Fig. 8. It demon-
strates that ARPG excels at inpainting (class-
conditional editing) and outpainting without
any task-specific fine-tuning, generating con-
tent that is both high-fidelity and semantically
consistent with the surrounding context. This
strong performance highlights a key advantage
of our flexible, random-order generation. More
zero-shot inference samples of different tasks
are provided in the Appendix D.
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Table 5: Ablation study of model design. The baseline model is ARPG-L, trained for 150 epochs
with 64 sampling steps. “Rand. & Parall.” denotes support for randomized parallel generation.

Description Parameters Layers Rand. & Parall. Steps Throughput↑ Memory↓ FID↓ IS ↑

ARPG-L 320 M 12+12 64 67.47 img/s 2.64 GB 3.51 282.7
+ w. CosinePE 320 M 12+12 64 70.63 img/s 2.64 GB 3.61 262.4
+ w/o Shared KV 343 M 12+12 64 48.02 img/s 3.83 GB 3.46 228.1

Fewer Pass-2 Decoder 332 M 18+ 6 64 62.35 img/s 3.34 GB 3.82 223.0
More Pass-2 Decoder 307 M 6+18 64 71.24 img/s 1.93 GB 3.51 242.5
Fully Pass-2 Decoder 295 M 0+24 64 72.26 img/s 0.91 GB 4.57 255.9
w/o. Pass-2 Decoder 343 M 24+ 0 256 11.70 img/s 4.96 GB >90 <50
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Figure 9: Ablation study of parallel decoding. The impact of decoding steps on speed (a) and
quality (b). Generalized attention patterns enhance quality with fewer decoding steps (c).

4.3 ABLATION STUDY

We report several key ablation studies. Additional experiments are presented in the Appendix B.

Effect of Decoding Steps. We evaluated how the number of decoding steps affects both generation
quality and efficiency. As shown in Fig. 9, reducing the number of sampling steps substantially
improves inference efficiency while not significantly degrading generation quality. In some cases,
quantitative quality metrics at fewer steps even outperform those obtained with more steps.

Effect of Attention Pattern. We additionally evaluated a setting in which the attention pattern is
prevented from generalizing from causal to block-wise attention at inference. The results in Fig. 9
show the opposite trend to the permissive setting, namely that fewer steps produce markedly worse
quality. These findings support our claim in Sec. 3 that generalizing causal attention to block-wise
attention does not invalidate the underlying probabilistic model. On the contrary, the resulting local
bidirectional awareness helps the model better predict future tokens.

Effect of Architecture Design. We explored the impact of architecture design, as shown in Tab. 5.

1. Decoder. The higher the proportion of the Pass-2 decoders, the higher the inference efficiency,
but the more severe the deterioration of the generation quality. Reducing the proportion of the
Pass-2 decoder not only reduces inference efficiency but also degrades the generation quality.
When there are no Pass-2 decoders at all, the model degenerates into a standard AR model and
loses the ability of randomized parallel decoding.

2. KV Projection. We also examined the impact of using shared KV, as discussed in the Sec. 3.
Without shared KV, although the generation quality of the model is slightly improved, it signif-
icantly affects the inference speed and memory consumption. To balance the generation quality
and inference efficiency, we choose to use the shared KV design in subsequent experiments.

3. Position Encoding. We further examine the effect of different positional encodings. Replacing
RoPE with cosine positional encodings leads to a degradation in performance.

5 CONCLUSION

In this work, we propose a novel autoregressive image generation framework that can parallelly
generate images in random token orders, breaking the limitations of the inefficiency of the next
token prediction paradigm and its poor zero-shot generalization ability.

9



Published as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

This work is supported by the Young Scientists Fund of the National Natural Science Foundation of
China (NSFC) (No. 62506305), the Zhejiang Leading Innovative and Entrepreneur Team Introduc-
tion Program (No. 2024R01007), the Key Research and Development Program of Zhejiang Province
(No. 2025C01026), the Scientific Research Project of Westlake University (No. WU2025WF003),
and the Chinese Association for Artificial Intelligence (CAAI) & Ant Group Research Fund - AGI
Track (No. 2025CAAI-ANT-13). It is also supported by the research funds of the National Talent
Program and the Hangzhou Municipal Talent Program.

Additionally, this work is partially supported by the CAS Project for Young Scientists in Basic Re-
search (YSBR-116), the National Natural Science Foundation of China (NSFC) (No. 62325603, No.
62236009, No. U22A20103), the Beijing Science and Technology Plan (No. Z241100004224011),
and Shanghai NeuHelium Neuromorphic Technology Co., Ltd.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In CVPR, 2022.

Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, José Lezama, Lu Jiang, Ming-Hsuan
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A IMPLEMENTATION DETAILS

Table 6: ARPG model architecture and hyperparameters configuration. X+Y layers: X layers
in the first-pass decoder and Y layers in the second-pass decoder.

Table 2 ARPG-L Table 2 ARPG-XL Table 2 ARPG-XXL Table 2 ARPG-XL Table 4 ARPG-L
256 × 256 256 × 256 256 × 256 512 × 512 256 × 256

Architecture
Layer 12 + 12 18 + 18 24 + 24 18 + 18 12 + 12
Hidden Size 1024 1280 1536 1280 1024
Heads 16 20 24 20 16
Parameters 320 M 719 M 1.3 B 719 M 320 M

Optimization
Training Iteration 500 K 670 K 1 M 500 K 60 K
Batch Size 1024 768 512 128 1024
Optimizer AdamW AdamW AdamW AdamW AdamW
- lr 4e-4 3e-4 2e-4 5e-5 4e-4
- lr scheduler Cosine Cosine Cosine Linear Constant
- warmup ratio 0.25 0.25 0.25 1.0 0.0
- weight decay 0.05 0.05 0.05 0.05 0.05
- (β1, β2) (0.9,0.95) (0.9,0.95) (0.9,0.95) (0.9,0.95) (0.9,0.95)
Data Augmentation Ten-crop Ten-crop Ten-crop Ten-crop Ten-crop

Sampling
Steps Scheduler Arccos Arccos Arccos Arccos Arccos
CFG Scheduler Linear Linear Linear Linear Linear
Temperature 1.0 1.0 1.0 1.0 1.0
Top-K None None None None None
Top-P 1.0 1.0 1.0 1.0 1.0

Architecture Configuration. We show the model architecture configuration in three different
scales in Tab. 6. The notation X+Y layers represents the number of layers in the first-pass and
second-pass decoders, respectively. For the parameter counts of the models in the controllable gen-
eration, we only report the parameters of the base model. The parameters of the additionally intro-
duced ViT-Adapter (Li et al., 2024d), used for processing conditional information, are excluded to
maintain consistency with the representation in ControlAR (Li et al., 2024d).

Training Hyperparameters. We detail the hyperparameters for the experimental setups to ensure
the precise reproducibility of our findings. The AdamW (Kingma, 2014; Loshchilov & Hutter,
2019) optimizer, with a consistent configuration, was utilized in all experiments. The batch size and
learning rate were tailored for each model based on computational resources.

Sampling Hyperparameters. For the sampling process, all models employ an arccos schedule
to determine the number of tokens to decode at each step. A linear scheduler is utilized for the
classifier-free guidance (CFG) (Ho & Salimans, 2022) scale. Optimal performance is achieved by
setting both the temperature and top-p to 1.0, while top-k sampling is not applied (denoted as None
in the Tab. 6, which is equivalent to setting top-k to the vocabulary size of 16,384).

B ADDITIONAL EXPERIMENTS

Table 7: Effect of generation orders.

Order Steps FID↓ IS↑ Pre.↑ Rec.↑

Raster 256 2.49 277.6 0.79 0.58
Spiral-in 256 3.71 221.1 0.75 0.57
Spiral-out 256 4.11 210.5 0.74 0.56
Z-curve 256 2.56 278.2 0.78 0.51
Alternate 256 2.56 279.4 0.78 0.54
Random 64 2.44 287.1 0.81 0.55

Effects of Sampling Order. We also evaluated
the performance of ARPG under specific orders, in-
cluding raster order and several alternatives (Esser
et al., 2021), as shown in Tab. 7. While random-
order modeling is more challenging due to the n!
possible orderings, it still outperforms fixed orders.
The constraint of a fixed order impedes effective
parallel decoding and zero-shot tasks.

Effects of Sampling Steps. In Tab. 8 we present a more detailed set of experiments that quantify
the effects of decoding steps and attention pattern generalization on model performance. For each
decoding step configuration, we carried out a fine-grained search over the classifier-free guidance
(CFG) scale to ensure that the reported FID values are optimal. FID is used as the primary quantita-
tive metric and the Inception Score (IS) is treated as a secondary metric. Accordingly, the IS values
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Table 8: Ablation study of parallel decoding. wcfg: the optimal classifier-free guidance scale.

Model Steps (wcfg) FID↓ IS↑ Throughput Memory
causal block-wise causal block-wise (img/s) ↑ (GB) ↓

ARPG-L

16 (7.8) 3.51 2.67 351.09 302.50 223.18 3.00
24 (6.1) 2.96 2.37 320.73 293.72 164.80 2.87
32 (5.4) 2.69 2.30 305.71 287.90 130.14 2.78
64 (5.1) 2.59 2.37 302.63 297.72 67.47 2.64

128 (4.6) 2.45 2.44 286.82 289.36 33.44 2.53
256 (4.3) 2.43 2.44 277.59 278.55 17.45 2.32

ARPG-XL

16 (8.4) 2.68 2.38 364.46 331.83 126.66 4.78
24 (7.0) 2.33 2.01 353.89 339.06 99.74 4.71
32 (6.6) 2.24 1.93 352.62 342.43 80.56 4.65
64 (5.3) 2.11 1.99 327.57 323.92 45.09 4.57

128 (5.1) 2.04 2.02 325.86 322.69 22.43 4.49
256 (5.0) 2.03 2.01 318.77 318.94 11.60 4.41

ARPG-XXL

16 (9.3) 2.49 2.38 353.07 326.11 79.97 7.25
24 (8.1) 2.18 1.89 350.20 341.00 64.70 7.20
32 (6.5) 2.04 1.83 337.26 328.89 55.28 7.22
64 (6.3) 1.94 1.86 337.76 334.57 31.65 7.18

128 (6.1) 1.93 1.90 336.41 336.34 17.20 7.16
256 (6.0) 1.90 1.88 334.96 337.34 8.41 7.23

shown in Tab. 8 correspond to the operating points that minimize FID. Finally, although causal and
block-wise causal attention (in Fig. 2) patterns exhibit minor differences in inference throughput and
memory footprint, we report only the block-wise resource measurements in Tab. 8.

Our results demonstrate that generalizing from causal attention to block-wise causal attention during
inference does not compromise the probabilistic model, but instead significantly improves perfor-
mance. This finding validates our claim in Sec. 3 that the local bidirectional context is beneficial.
This marks a key distinction from previous works (Pang et al., 2025; Wang et al., 2025; He et al.,
2025), which are restricted to the same attention pattern for both training and inference.

0 200K 400K 600K 800K 1000K
Iteration

7.0

7.5

8.0
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ss

ARPG-XXL
ARPG-XL
ARPG-L

Figure 10: Training loss curves. All models were
trained for the same epochs.

Analysis of Scalability. To analyze the scal-
ability of our models, we present their train-
ing loss curves on class-conditional generation
tasks in Fig. 10. A clear performance hierarchy
emerges based on model scale.

The largest model (1.3B parameters) achieves
the lowest final loss of approximately 7.03 after
1M iterations. The model with 719M parame-
ters converges to a loss of 7.29, while the small-
est model (320M parameters) finishes with the
highest loss at 7.50.

This scaling trend is a strong indicator of the
robustness of our model and suggests potential
for further improvement with even larger scale.

Analysis of Attention Scores. As we mentioned in Sec. 2, decoupling the representation learning
of unmasked tokens from the prediction of [MASK] tokens addresses the computational redun-
dancy issue. This problem arises in coupled architectures where [MASK] tokens receive negligible
attention. We visualize the final-layer attention maps of ARPG’s two decoders in Fig. 11. The visu-
alization reveals that this decoupled structure leads to more uniformly distributed attention scores in
both decoders. The attention patterns primarily exhibit a natural decay over long distances, avoiding
the issue seen in Fig. 3 where a significant number of tokens are assigned extremely low weights.
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(a) Attention map of cross-attention decoder.
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(b) Attention map of self-attention decoder.

Figure 11: Attention maps of different decoders. Visualization of normalized attention maps from
different decoders. Each column corresponds to the same attention head.

C THEORETICAL PROOF

As mentioned in Sec. 3, we claimed that the masked modeling is inefficient due to the non-directly
gradient flow caused by sparse optimization objects. Here is the theoretical proof:

Proof. In the final layer of the Transformer (Vaswani et al., 2017) blocks, given input sequences
with length n, and q,k,v ∈ R1×d. The softmax attention (Vaswani et al., 2017) mechanism (the
scale term is omitted for clarity) operates as:

oi =

∑n
j=1 exp(qik

⊺
j )vj∑n

j=1 exp(qik
⊺
j )

∈ R1×d . (7)

Let Sij = qik
⊤
j , Pij = softmax(Si)j . It is evident that dPij = doiv

⊤
j and the derivative of

the softmax function is its Jacobian matrix. Using the fact that the Jacobian of y = softmax(x) is
diag(y)− y⊤y (Dao et al., 2022), we have:

dSi = dPi(diag(Pi)− P⊤
i Pi) (8)

= Pi ⊙ dPi − (doio
⊤
i )Pi , (9)

dSij = Pij(dPij − doio
⊤
i ) , (10)

where ⊙ denotes the Hadamard product. Then we derive gradient for q using chain rule:

dqi =

n∑
j=1

dSijkj =

n∑
j=1

Pij(doiv
⊤
j − doio

⊤
i )kj . (11)

Obviously, when oi corresponds to an unmasked token, it does not contribute to the loss calculation,
resulting in doi = 0, and consequently, dqi = 0.

The query vectors for unmasked tokens in shallower layers are updated via indirect gradients propa-
gated through key-value pairs from deeper layers, which provide a partial learning signal not directly
tied to the optimization objective.
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A forest made of giant,
glowing mushrooms.

A beautiful butterfly with
clockwork wings.

A fairy walking on the
petal of a giant flower.

A girl and glowing stars
are captive in a glass
jar.

A giant mechanical beetle
in polished obsidian
armor.

A man who resembles Zeeko
Zaki takes on the role of
an adventurer.

A gray-tone image
featuring a magnificent
castle.

A portrait of a beautiful
ancient Egyptian childlike
goddess.

A 2D Anime character
design of a sci-fi fantasy
traveler.

A girl drifting under
water, surrounded by a
nimbus of blonde hair.

A fantasy landscape with
floating islands and
waterfalls.

A dog is looking out of
the window, painted in a
realistic style.

Figure 12: Text-to-image generation. Samples generated by ARPG-XL with 64 sampling steps.
ARPG can achieve high-quality and semantically well-aligned images based on a given prompt
through training on a small amount of data.

D GENERATION SAMPLES

To further showcase the versatility of ARPG, more examples of text-to-image generation, class-
conditional image generation, controllable image generation, and zero-shot inference are provided.

Text-to-Image Generation. Additional visual results for text-to-image generation, including the
prompts used, are presented in Fig. 12. All images were sampled with the following parameters:
64 steps, a CFG scale of 8.0, top-k of 900, with temperature and top-p both at 1.0. These examples
illustrate that ARPG is capable of producing high-quality images in various styles with a training
dataset of only 4M samples. In our future work, we will further investigate the effectiveness of
ARPG with a larger number of parameters and an increased volume of training data.

Class-Conditional Generation. We present uncurated examples of class-conditional image gen-
eration in Fig. 13, using the same sampling parameters as set in Tab. 6. ARPG excels in both quan-
titative metrics and visual quality. Additionally, examples of controllable generation and zero-shot
inference based on the class-conditional model are also presented in Fig. 13.
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Figure 13: Uncurated Samples in different generation tasks produced by ARPG.
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E PSEUDO-CODE

We provide PyTorch-style pseudo code for the training and parallel decoding of our model. The
classifier-free guidance is omitted for clarity.

def forward_1st_decoder(model, input_ids, freqs_cis):
x = model.embed(input_ids)
x = model.decoder_1(x, freqs_cis)
x = model.kv_norm(x)
k, v = model.kv_proj(x).chunk(2, dim=-1)
k = rearrange(k, "b t (h d) -> b t h d", h=model.num_heads)
k = apply_rotary_emb(k, freqs_cis).transpose(1, 2)

if model.caching: k, v = model.update_kv_cache(k, v)
return k, v

def forward_2nd_decoder(model, k, v, freqs_cis, batch_size, num_query):
q = model.embed(torch.full((batch_size, num_query), MASK_TOKEN_ID))
q = model.decoder_2(q, k, v, freqs_cis)
return model.head(model.norm(q))

def forward(model, input_ids, condition):
B, T = input_ids.shape

# shuffle input and RoPE using the same order.
shuffled_ids, orders = batch_seq_shuffle(input_ids)
freqs_cis = model.freqs_cis.unsqueeze(0).repeat(B, 1, 1, 1)
fixed_freqs_cis = freqs_cis[:, :1, ...]
shuff_freqs_cis = batch_seq_shuffle(freqs_cis[:, 1:, ...], orders)
freqs_cis = torch.cat([fixed_freqs_cis, shuff_freqs_cis], dim=1)

# prepare teacher-forcing input
x = torch.cat([condition, shuffled_ids], dim=-1)
k, v = forward_1st_decoder(model, x[:, :-1], freqs_cis[:, :-1, ...])
logits = forward_2nd_decoder(

model, k, v, freqs_cis[:, 1:, ...], batch_size=B, num_query=T)

return cross_entropy(logits, shuffled_ids.clone().detach())

def generate(model, condition, seq_len=256, num_iter=64):
num_samples = condition.shape[0]
freqs_cis_ = model.freqs_cis.unsqueeze(0)
orders = torch.rand(seq_len).argsort(dim=0) + 1

last_pos, last_range = 0, 0
sequences = [condition]
for step in range(num_iter):

num_pred = sample_schedule(step, num_iter)
next_range = orders[range(last_pos, last_pos + num_pred)]
last_pos += num_pred

# the classifier-free guidance is omitted for clarity
k, v = forward_1st_decoder(

model, sequences[-1], freqs_cis_[:, last_range, ...])

logits = forward_2nd_decoder(
k, v, freqs_cis_[:, next_range, ...], num_samples, num_pred)

tokens = sample_tokens(logits)
sequences.append(tokens)
last_range = next_range

sequences = torch.cat(sequences[1:], dim=-1)
return sequences[:, orders.argsort(dim=0)]
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F DISCUSSION

In future work, we plan to extend ARPG to large-scale text-to-image synthesis and unified models
for understanding and generation (Xie et al., 2024; 2025). Additionally, we will explore architectures
and methods that combine the strengths of AR and diffusion models (Yu et al., 2025; Chen et al.,
2025; Gao & Shou, 2025), incorporating techniques such as feature caching Ma et al. (2024); Liu
et al. (2025), quantization Tao et al. (2025); Li* et al. (2025) and pruning Zhu et al. (2025); Feng
et al. (2024) to further enhance efficiency.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

Our use of LLMs was strictly limited to proofreading for grammatical and spelling errors. LLMs
made no contribution to the ideation process or the writing of the content.
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