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Abstract
In this paper we present a new dataset and sim-
ulator e-QRAQ (explainable Query, Reason, and
Answer Question) in which a User simulator pro-
vides an Agent with a short, ambiguous story
and a challenge question about the story. The
story is ambiguous because some of the entities
have been replaced by variables. At each turn
the Agent may ask for the value of a variable or
try to answer the challenge question. In response
the User simulator provides a natural language
explanation of why the Agent’s query or answer
was useful in narrowing down the set of possible
answers, or not. To demonstrate one potential ap-
plication of the e-QRAQ dataset, we train a new
neural architecture based on End-to-End Mem-
ory Networks to successfully generate both pre-
dictions and partial explanations of its current un-
derstanding of the problem. We observe a strong
correlation between the quality of the prediction
and explanation.

1. Introduction
In recent years deep neural network models have been
successfully applied in a variety of applications such as
machine translation (Cho et al., 2014), object recognition
(Krizhevsky et al., 2012; He et al., 2016), game playing
(Mnih et al., 2015), dialog (Weston, 2016) and more. How-
ever, their lack of interpretability makes them a less attrac-
tive choice when stakeholders must be able to understand
and validate the inference process. Examples include med-
ical diagnosis, business decision-making and reasoning, le-
gal and safety compliance, etc. This opacity also presents a
challenge simply for debugging and improving model per-
formance. For neural systems to move into realms where
more transparent, symbolic models are currently employed,
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we must find mechanisms to ground neural computation in
meaningful human concepts, inferences, and explanations.
One approach to this problem is to treat the explanation
problem itself as a learning problem and train a network
to explain the results of a neural computation. This can
be done either with a single network learning jointly to
explain its own predictions or with separate networks for
prediction and explanation. Regardless, the availability of
sufficient labelled training data is a key impediment. In
previous work (Guo et al., 2016) we developed a synthetic
conversational reasoning dataset in which the User presents
the Agent with a simple, ambiguous story and a challenge
question about that story. Ambiguities arise because some
of the entities in the story have been replaced by variables,
some of which may need to be known to answer the chal-
lenge question. A successful Agent must reason about what
the answers might be, given the ambiguity, and, if there is
more than one possible answer, ask for the value of a rele-
vant variable to reduce the possible answer set. In this pa-
per we present a new dataset e-QRAQ constructed by aug-
menting the QRAQ simulator with the ability to provide
detailed explanations about whether the Agent’s response
was correct and why. Using this dataset we perform some
preliminary experiments, training an extended End-to-End
Memory Network architecture (Sukhbaatar et al., 2015) to
jointly predict a response and a partial explanation of its
reasoning. We consider two types of partial explanation in
these experiments: the set of relevant variables, which the
Agent must know to ask a relevant, reasoned question; and
the set of possible answers, which the Agent must know
to answer correctly. We demonstrate a strong correlation
between the qualities of the prediction and explanation.

2. Related Work
Current interpretable machine learning algorithms for deep
learning can be divided into two approaches: one approach
aims to explain black box models in a model-agnostic fash-
ion (Ribeiro et al., 2016; Turner, 2016); another studies
learning models, in particular deep neural networks, by
visualizing for example the activations or gradients inside
the networks (Zahavy et al., 2016; Shrikumar et al., 2016;
Selvaraju et al., 2016). Other work has studied the in-
terpretability of traditional machine learning algorithms,
such as decision trees (Hara & Hayashi, 2016), graphical
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models (Kim et al., 2015), and learned rule-based systems
(Malioutov & Varshney, 2013). Notably, none of these al-
gorithms produces natural language explanations, although
the rule-based system is close to a human-understandable
form if the features are interpretable. We believe one of the
major impediments to getting NL explanations is the lack
of datasets containing supervised explanations.

Datasets have often accelerated the advance of machine
learning in their perspective areas (Ferraro et al., 2015),
including computer vision (LeCun, 1998; Krizhevsky &
Hinton, 2009; Russakovsky et al., 2015; Lin et al., 2014;
Krishna et al., 2016), natural language (Lowe et al., 2015;
Hermann et al., 2015; Dodge et al., 2015), reasoning (We-
ston et al., 2015; Bowman et al., 2015; Guo et al., 2016),
etc. However, we know of no datasets which offer explana-
tions. Obviously labeling a large number of examples with
explanations is a difficult and tedious task – and not one
which is easily delegated to an unskilled worker. To make
progress until such a dataset is available or other techniques
obviate its need, we follow the approach of existing work
such as (Weston et al., 2015; Weston, 2016), and generate
synthetic natural language explanations from a simulator.

3. The QRAQ Dataset
A QRAQ domain, as introduced in (Guo et al., 2016), has
two actors, the User and the Agent. The User provides
a short story set in a domain similar to the HomeWorld
domain of (Weston et al., 2015; Narasimhan et al., 2015)
given as an initial context followed by a sequence of events,
in temporal order, and a challenge question. The stories are
semantically coherent but may contain hidden, sometimes
ambiguous, entity references, which the Agent must poten-
tially resolve to answer the question. To do so, the Agent

Example 1 A QRAQ Problem
C1. Hannah and Emma are in the office.
C2. John is in the park.
C3. Bob and George are in the square.
E1. Hannah picks up the gift.
E2. $v goes from the office to the park.
E3. $w goes from the park to the bank.
E4. $x goes from the office to the square.
E5. Emma goes from the square to the bank.
E6. $y goes from the square to the bank.
Q: Where is the gift?

can query the User for the value of variables which hide
the identity of entities in the story. At each point in the in-
teraction, the Agent must determine whether it knows the
answer, and if so, provide it; otherwise it must determine
a variable to query which will reduce the potential answer

set (a “relevant” variable).
In example 1 the actors $v, $w, $x and $y are treated as
variables whose value is unknown to the Agent. In the first
event, for example, $v refers to either Hannah or Emma,
but the Agent can’t tell which. In a realistic text this en-
tity obfuscation might occur due to spelling or transcription
errors, unknown descriptive references such as “Emma’s
sibling”, or indefinite pronouns such as “somebody”. Sev-
eral datasets with 100k problems each and of varying dif-
ficulty have been released to the research community and
are available for download (qra).

4. Explainable QRAQ: e-QRAQ
This paper’s main contribution is an extension to the orig-
inal QRAQ simulator that provides extensive explanations
of the reasoning process required to solve a QRAQ prob-
lem. These explanations are created dynamically at run-
time, in response to the Agent’s actions. The following
two examples illustrate these explanations, for several dif-
ferent scenarios: The context (C), events (E), and question

Example 2 A successfully solved e-QRAQ Problem (with
explanations)

The problem:
C1. Silvia is in the porch.
C2. Charles is in the cellar.
C3. Maria is in the porch.
E1. Charles goes from the cellar to the attic.
E2. Charles goes from the attic to the terrace.
E3. $V0 goes from the porch to the boudoir.
Q: Where is Maria

The interaction:
U∗: Possible Answers: Porch, Boudoir; Relevant Variables: $V0
A: Who is $V0?
U: $V0 is Silvia.
U: This query was helpful, since it allowed the following infer-

ence:
We now know that $V0 is Silvia, and not Maria. Maria can
therefore not be in the boudoir.

U∗: Possible Answers: Porch; Relevant Variables: ∅
A: Maria is in the porch.
U: This answer is correct.

(Q) parts of the problem are identical to those in a QRAQ
problem. In addition there is a trace of the interaction of a
trained Agent (A) model with the User (U) simulator. The
simulator provides two kinds of explanations in response to
the Agent’s query or answer. The first kind denoted “U” in-
dicates whether the Agent’s response is correct or not and
why. The second kind of explanation, denoted “U∗” pro-
vides a full description of what can be inferred in the cur-
rent state of the interaction. In this case the relevant infor-
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Example 3 An unsuccessfully solved e-QRAQ Problem
(with explanations)

The problem:
C1. Paul is in the attic.
C2. Maria is in the cellar.
C3. Charles is in the attic.
E1. Maria goes from the cellar to the terrace.
E2. $V4 goes from the attic to the porch.
E3. Maria goes from the terrace to the boudoir
Q: Where is Charles?

The interaction:
U∗: Possible Answers: Attic, Porch; Relevant Variables: $V4
A: Who is $V1?
U: This query was not helpful, since $V1 does not even occur

in the problem.
U∗: Possible Answers: Attic, Porch; Relevant Variables: $V4
A: Charles is in the porch.
U: This was a guess, since Charles could still have been $V4,

and thereby in the Porch or in the Attic.
This guess was correct.

mation is the set of possible answers at different points in
the interaction (Porch, Boudoir / Porch for Example 2) and
the set of relevant variables ($V0 / none for Example 2).

In Example 2, illustrating a successful interaction, the
Agent asks for the value of $V0 and the User responds
with the answer (Silvia) as well as an explanation indicat-
ing that it was correct (helpful) and why. Specifically, in
this instance it was helpful because it enabled an inference
which reduced the possible answer set (and reduced the set
of relevant variables). On the other hand, in Example 3, we
see an example of a bad query and corresponding critical
explanation.

In general, the e-QRAQ simulator offers the following ex-
planations to the Agent:

Answers When answering, the User will provide feed-
back depending on whether or not the Agent has enough
information to answer; that is, on whether the set of pos-
sible answers contains only one answer. If the Agent has
enough information, the User will only provide feedback
on whether or not the answer was correct and on the cor-
rect answer if the answer was false. If the agent does not
have enough information, and is hence guessing, the User
will say so and list all still relevant variables and the result-
ing possible answers.

Queries When querying, the User will provide several
kinds of feedback, depending on how useful the query was.
A query on a variable not even occurring in the problem
will trigger an explanation that says that the variable is not

in the problem. A query on an irrelevant variable will re-
sult in an explanation showing that the story’s protagonist
cannot be the entity hidden by that variable. Finally, a use-
ful (i.e. relevant) query will result in feedback showing the
inference that is possible by knowing that variable’s refer-
ence. This set of inference can also serve as the detailed
explanation to obtain the correct answer above.

The e-QRAQ simulator will be available upon publication
of this paper at the same location as QRAQ (qra) for re-
searchers to test their interpretable learning algorithms.

5. Experimental Setup
For the experiments, we use the User simulator explana-
tions to train an extended memory network. As shown in
Figure 1, our network architecture extends the End-to-End
Memory architecture of (Sukhbaatar et al., 2015), adding a
two layer Multi-Layer Perceptron to a concatenation of all
“hops” of the network. The explanation and response pre-
diction are trained jointly. In these preliminary experiments
we do not train directly with the natural language explana-
tion from U, just the explanation of what can be inferred in
the current state U∗. In future experiments we will work
with with the U explanations directly. Specifically, for our

sentences st:
context + events
e.g.“Joe is in the garden.”
· · ·
“$v goes from · · ·

challenge question
e.g. “Where is Joe?”

softmax p1
{mi}

softmax p2
{mi}

softmax p3
{mi}

softmax p4
{mi}

σ

σ

σ

σ

concatenation W policy π

MLP explanations

Figure 1. The modified E2E-Memory Network architecture si-
multaneously generating answers to the challenge question and
explanations of its internal belief state, shown with four internal
“hops”.

experiments, we provide a classification label for the pre-
diction output generating the Agent’s actions, and a vector
xe of the following form to the explanation output (where
ohd(w) is an one-hot encoding of dimensionality (or vo-
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Figure 2. The Interaction Accuracy (over 50 epochs with 1000
problems each)

cabulary size) d of word w, and E is the explanation set:

xe =
∑
w∈E

ohd(w) (1)

We then train the network, using Adam (Kingma & Ba,
2014), on the combined loss (where CE(y, ŷ) is the cross-
entropy between the true labels y and the estimated labels
ŷ, x̂i is the network’s interaction output and x̂e is the net-
works explanation output):

L = CE(xi, x̂i) + ||xe − x̂e||22 (2)

For testing, we consider the network to predict a entity in
the explanation if the output vector x̂e surpasses a threshold
for the index corresponding to that entity. We tried several
thresholds, some adaptive (such as the average of the output
vector’s values), but found that a fixed threshold of .5 works
best.

6. Results
To evaluate the model’s ability to jointly learn to predict
and explain its predictions we performed two experiments.
First, we investigate how the prediction accuracy is affected
by jointly training the network to produce explanations.
Second, we evaluate how well the model learns to gener-
ate explanations. To understand the role of the explana-
tion content in the learning process we perform both of
these experiments for each of the two types of explana-
tion: relevant variables and possible answers. We do not
perform hyperparameter optimization on the E2E Memory
Network, since we are more interested in relative perfor-
mance. While we only show a single experimental run in
our Figures, results were nearly identical for over five ex-
perimental runs.

The experimental results differ widely for the two kinds
of explanation considered, where an explanation based on

possible answers provides better scores for both experi-
ments. As illustrated in Figure 2, simultaneously learn-
ing possible-answer explanations does not affect predic-
tion, while learning relevant-variable explanation learn-
ing severely impairs prediction performance, slowing the
learning by roughly a factor of four. We can observe
the same outcome for the quality of the explanations
learned, shown in Figure 3. Here again the performance on
possible-answer explanations is significantly higher than
for relevant-variable explanations. Possible-answer expla-
nations reach an F-Score of .9, while relevant-variable ex-
planations one of .09 only, with precision and recall only
slightly deviating from the F-Score in all experiments.

We would expect that explanation performance should cor-
relate with prediction performance. Since Possible-answer
knowledge is primarily needed to decide if the net has
enough information to answer the challenge question with-
out guessing and relevant-variable knowledge is needed for
the net to know what to query, we analyzed the network’s
performance on querying and answering separately. The
memory network has particular difficulty learning to query
relevant variables, reaching only about .5 accuracy when
querying. At the same time, it learns to answer very well,
reaching over .9 accuracy there. Since these two parts of
the interaction are what we ask it to explain in the two

Figure 3. The Explanation Accuracies (over 50 epochs with 1000
problems each)
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modes, we find that the quality of the explanations strongly
correlates with the quality of the algorithm executed by the
network.

7. Conclusion and Future Work
We have constructed a new dataset and simulator, e-QRAQ,
designed to test a network’s ability to explain its predictions
in a set of multi-turn, challenging reasoning problems. In
addition to providing supervision on the correct response at
each turn, the simulator provides two types of explanation
to the Agent: A natural language assessment of the Agent’s
prediction which includes language about whether the pre-
diction was correct or not, and a description of what can
be inferred in the current state – both about the possible
answers and the relevant variables. We used the relevant
variable and possible answer explanations to jointly train
a modified E2E memory network to both predict and ex-
plain it’s predictions. Our experiments show that the qual-
ity of the explanations strongly correlates with the quality
of the predictions. Moreover, when the network has trouble
predicting, as it does with queries, requiring it to generate
good explanations slows its learning. For future work, we
would like to investigate whether we can train the net to
generate natural language explanations and how this might
affect prediction performance.
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