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ABSTRACT

The field of deep learning has been craving for an optimization method that shows
outstanding property for both optimization and generalization. We propose a
method for mathematical optimization based on flows along geodesics, that is,
the shortest paths between two points, with respect to the Riemannian metric in-
duced by a non-linear function. In our method, the flows refer to Exponentially
Decaying Flows (EDF), as they can be designed to converge on the local solutions
exponentially. In this paper, we conduct experiments to show its high performance
on optimization benchmarks (i.e., convergence properties), as well as its potential
for producing good machine learning benchmarks (i.e., generalization properties).

1 INTRODUCTION

Due to recent progress in the field of machine learning, it becomes more and more important to
develop and sophisticate methods of solving hard optimization problems. At the same time, in
this field, such methods are additionally required to elicit decent generalization performance from
statistical models. An efficient method of mathematical optimization, however, does not always
produce sufficient generalization properties, since these are involved with two distinct mathematical
problems; The former is to find one of the solutions which minimize a given (possibly non-convex)
objective function, and the latter is to adjust parameters so that a statistical estimator achieves its best
result. To address such a hard issue, we introduce a new mathematical perspective on optimization,
and develop a method for machine learning based on this perspective. We then empirically show
its rapid convergence rate and high compatibility with deep learning techniques, as well as good
statistical properties.

In this field, many optimization methods have been proposed and modified so that they fit specific
problems or models. One of the current standard methods is the gradient descent method. The
method tends to converge slowly in general optimization problems. However, with various specific
techniques, such as mini-batch training and batch normalization (Ioffe & Szegedy (2015)), it has
been found to be efficient for state-of-the-art purposes in the field of deep learning. Another class of
methods that are now becoming popular and standard is adaptive methods, such as AdaGrad (Duchi
et al. (2011)) and Adam (Kingma & Ba (2015)). Compared to the gradient descent method, these
methods have been shown to improve convergence rates with almost the same computational cost as
the gradient descent method, but are reported to result in poor statistical outcomes in some cases of
machine learning (Wilson et al. (2017)).

Other class of methods that have been thoroughly studied in the theory of mathematical optimization
is second-order methods, such as the Newton method and the Gauss-Newton method. These meth-
ods possess great convergence properties, and in particular, have a potential to overcome plateau’s
problems (Dauphin et al. (2014)). Furthermore, when it comes to applications in stochastic set-
tings, the method based on the Gauss-Newton Matrix (or Fisher information Matrix) is shown to
asymptotically attain the best statistical result, which is called Fisher efficiency (see Amari (1998)).
Despite these attractive characteristics, the methods have not yet been spotlighted in the field of ma-
chine learning due to several severe drawbacks; They suffer from high computational cost in general
and their useful properties are no longer guaranteed in practical settings (see Section 12 in Martens
(2014)). One of the continuously developing second-order methods in this field, K-FAC ( Ba et al.
(2017), Grosse & Martens (2016) ), successfully produced high convergence rate empirically with
relatively low computational cost. However, it still requires much effort to become compatible with
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some deep learning techniques. In addition, it is unclear whether the method has advantages in
generalization performance.

In our approach, by introducing a Riemannian metric induced by non-linear functions, we constitute
dynamical systems which describe motions along the shortest route from arbitrary initial points to
the zeros of non-linear functions on the corresponding Riemannian manifold, that is, geodesic with
respect to the Riemannian metric. One of the remarkable characteristics of our approach is that it
enables us to flexibly design flows of such dynamical systems to control convergence rates. The
results for the flows are then applicable to mathematical optimization problems, in particular, with
deep neural network (DNN) models. In this paper, after providing mathematical ground of our
methods, we experimentally demonstrate their performance in various aspects, from convergence
rates to statistical properties.

2 GEODESIC FLOWS FOR NON-LINEAR EQUATIONS

We start by establishing some essential properties of dynamics which are effective for the analysis of
non-linear equations. Let F : RN → RN be a smooth function and J be the Jacobian with variable
w ∈ RN , that is, J = ∂F/∂w. In this section, we deal with the well-posed case that there exists
a connected closed subset Ω ⊂ RN , where J is regular and the equation has a unique solution ξ.
Therefore, the positive matrix G = JTJ induces a Riemannian metric g on Ω and (Ω, g) becomes
a Riemannian manifold under some appropriate conditions. Let us then consider time evolution
of variable w on this manifold. Our main purpose in this section is to study the characteristics of
dynamical systems in which w(t) moves on geodesics between any point in Ω and ξ with respect to
the metric g.

Let L be a Lagrangian given by

L (w, v) =
1

2
vTG(w)v (1)

with v = dw/dt (also written as ẇ). The Euler-Lagrange equation for L is then expressed as

dp

dt
−∇wL = 0 (2)

with momentum vector p = Gv. If the boundary condition at two points in Ω, w(t0) = w0, w(t1) =
w1, is imposed on (2), a geodesic between w0 and w1 is obtained as the solution. In contrast, if we
give an appropriate initial condition, w describes the motion along the geodesic from w0 to w1. In
fact, the following statement holds;
Theorem 2.1. Let w0 be an arbitrary point in Ω and (w(t), p(t)) be a solution of equation (2) with
the following initial condition;

w(0) = w0, p(0) = −J(w0)TF (w0). (3)

Then w satisfies
F
(
w(t)

)
= (1− t)F

(
w0

)
, (4)

for t ∈ [0, 1]. In particular, w(t) passes through the point which is a solution of non-linear equation
F (w) = 0 at t = 1, that is, ξ = w(1).

We briefly describe the outline of the proof for the statement above. Throughout this paper, we
regard functions of w as those of t in the trivial way; for instance, F (t) = F (w(t)). Note that p can
be expressed as p = JT dF/dt. Then using the Beltrami identity for (2) with the initial condition
above leads to the equation

d

dt
F = −F0, (5)

where F0 = F (0). Thus, a closed form expression is obtained as

F (t) = (1− t)F0, (6)

which gives F (1) = 0 as asserted in Theorem 2.1.

Now we take a different expression that the coefficient (1 − t) in (6) is replaced by a different
monotonically decreasing function, that is,

F (t) = ρ(t)F0, (7)

2



Under review as a conference paper at ICLR 2019

where ρ denotes a monotonically decreasing smooth function from (t0, t1) onto (0, 1). Then, we
give the following differential equation whose solution is of the closed form (7);

d

dt
F = χ · F, χ(t) =

d

dt
ln(ρ(t)). (8)

A motion described by this differential equation differs from the one that is described by (2), but
these two motions are along the same geodesic.
Theorem 2.2. Let w0 ∈ Ω be an arbitrary point. The differential equation

J
dw

dt
= χ · F, t ∈ (t0, t1) (9)

with an initial condition w0 = w(t0) has a unique solution that satisfies F (w(t1)) = 0. Further-
more, the orbit under flow f defined by f(w0, t) = w(t) coincides with that of the geodesic equation
(2).

Note that since equation (9) is equivalent to equation (8), the orbit is invariant under coordinate
transformations.

With respect to the choice of ρ, the end point t1 can be set as∞ under some appropriate conditions
and Theorem 2.2 still holds in the sense that

lim
t→∞

F (w(t)) = 0. (10)

In particular, if we set ρ(t) = e−t, then χ(t) = −1 and F can be represented as F (t) = e−tF0, so
that the convergence rate of F is exponential.
Definition 2.3. Let w be a solution of the differential equation

J
dw

dt
= −F, t ∈ (t0, t1) (11)

with an initial condition w0 = w(t0). The flow f(w0, t) = w(t) is called an exponentially decaying
flow (EDF) of non-linear equation F (w) = 0.

For the end of this section, we present a connection between EDF and the classical Newton method.
If we apply the Euler method to the differential equation (9) with step size 4t, the corresponding
iteration step can be written as

wi+1 = wi +4t · χ(τi) · J(wi)
−1F (wi), τi+1 = τi +4t, (12)

which recovers the Newton method with step size ηi = 4t · χ(τi).

3 APPLICATION TO MATHEMATICAL OPTIMIZATIONS

Consider smooth functions ϕ : RN → RM and L : RM → R. In this section, we develop a method
based on EDF for a mathematical optimization problem of the form

min
w∈Ω

L(ϕ(w)). (13)

In this section, the area Ω ⊂ RN is supposed to be a compact subset where there exists no stationary
point except for a minima.

Let F : RN → RM denote derivative ∂L/∂ϕ. An example of such problems is least squares one in
which L is given by

L(ϕ) =
1

2
‖ϕ‖2. (14)

In this case, F = ϕ. In particular, if M = N and a minimal value of loss function L̂ = L ◦ ϕ is
zero, the optimization problem is equivalent to solving non-linear equation F (w) = 0.

For optimization problems, we set up a standard equation that the gradient of loss function is zero,
that is, ∇L̂(w) = 0. Note that the gradient can be expressed as ∇L̂(w) = JT

ϕ F (w) with Jacobian
Jϕ = ∂ϕ/∂w. Applying Theorem 2.2, we obtain the differential equation

H
dw

dt
= χ · JT

ϕ F, (15)
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where H is the Hessian of loss function L̂ with respect to w. Since second order differentiation is
typically computationally heavy, we seek other equations which possess almost the same property
as (15) especially in terms of asymptotic behavior.

Let us decompose momentum Hẇ as

H
dw

dt
=

d

dt

(
JT
ϕ F
)

=

(
d

dt
Jϕ

)T

F +G
dw

dt
, (16)

where JF denotes the Jacobian of F , and G is a symmetric matrix defined by

G = JT
ϕ JF = JT

ϕHLJϕ (17)

with Hessian matrix HL of L with respect to ϕ. We then consider the following equation instead of
(15);

G
dw

dt
= χ · JT

ϕ F. (18)

This equation no longer describes the motion along the geodesic related to (15) in general. However,
if M = N and Jϕ is invertible, then w moves on another geodesic with respect to a different metric
GF = JT

F JF . In addition, if ρ(t) = e−t, F converges exponentially, which implies that∇L̂ = JϕF
also converges exponentially in (18) as well as in (15). In general cases, if a condition that

d

dt

(
1

2
‖F‖2

)
= χ〈JFG−1JT

ϕ F, F 〉 ≤ χ‖F‖2 (19)

is satisfied, then F converges to 0. This shows that in the neighborhood of solution ξ of equation
∇L̂ = 0, the momentum Gẇ sufficiently approximates Hẇ by (16).
Definition 3.1. The flow given by

H
dw

dt
= −JT

ϕ F (20)

is referred to EDF of type H and written as EDF-H. Similarly, the flow given by

G
dw

dt
= −JT

ϕ F (21)

is referred to EDF of type G and written as EDF-G.

4 MODIFICATION SCHEMES FOR EDF-BASED METHODS

Like second order methods, in EDF-based methods, matrix inversion has to be carried out, which
requires expensive computational cost, particularly in large systems. Moreover, we often en-
counter rank deficient matrices in optimization problems. To deal with rank deficiency, in gen-
eral, we need pseudo-inverse matrices which are more computationally heavy. Therefore, in-
stead of the inverse of matrix A = G,H , for fixed v ∈ RM , we consider a projection which
maps r = arg minx∈RM ‖Ax − v‖ to a vector Pk(A, v) in the k-th order Krylov subspace
Kk(A, v) = span{v,Av,A2v, . . . , Ak−1v} such that r = P∞(A, v). One of the basic methods
to construct such a projection for indefinite symmetric systems is the minimum residual method
(Paige & Saunders (1975)), which requires only the matrix multiplication. Therefore, for numerical
computations, we use the following differential equation approximated by the k-th order Krylov
subspace;

dw

dt
= χ · Pk(A, JϕF ), A = G,H. (22)

k is a hyperparameter that interpolates between the gradient method and the method based on (15)
or (18). In fact, in the case that k = 1, equation (22) has the form

dw

dt
= c · ∇L̂, c = χ

〈u,∇L̂〉
〈u, u〉

, u = A∇L̂, (23)

which reduces to a kind of gradient methods, but the coefficient c conveys information about G or
H unlike the standard gradient methods.
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Next, similar to the Levenberg-Marquardt algorithm, we modify equation (18) by adding a damping
factor to G in order that the method becomes more stable. So, we set

(G+ λI)
dw

dt
= χ · JT

ϕ F, (24)

where λ is a continuous positive function of t. Then, we take the same approximation as (22) with
A = G+λI . The damping factor λ plays several important roles in solving practical problems. First,
it has solutions well-behaved near singularities. Even in the case that G is not invertible, equation
(24) can be defined and solved unlike (18). If we choose λ such that it approaches to 0 as rapidly as
the gradient in (18), the asymptotic behavior of (24) is almost the same as that of (18). Particularly,
in the case that χ = −1, we set λ = a‖JT

ϕ F‖b with a, b > 0, so that the convergence rate of
(24) stays exponential. Second, the damping factor makes the method compatible with stochastic
approaches such as mini-batch training, in deep learning models. Since the orbit of (24) is affected
by the gradient due to the damping factor λ, the method based on this equation could take advantage
of stochastic approaches as other gradient methods do. (For implementation of the algorithm, see
Appendix A.)

Finally, to accelerate the EDF-based methods, it is sometimes effective to change equation (18) into
a second-order differential equation, particularly in the case in which the approximation method
with k is applied. Specifically, we take the equation

G
d2w

dt2
+ κ ·Gdw

dt
+ JT

ϕ F = 0, (25)

where κ is a real-valued function of t. The convergence properties of the methods are controlled by
the following differential equation;

d2F

dt2
+ κ · dF

dt
+ F = 0. (26)

There are two ways of determining κ. The first one is to set κ = αwith constant α (W1), which leads
to a similar scheme to the momentum gradient decent method. The other one is to set κ(t) = αt−1

(W2). In this setting, the equation can be discretized in a similar way as described in Su et al. (2014),
which is analogous to the Nesterov’s acceleration scheme.

5 OPTIMIZATION PROBLEMS IN THE FIELD OF DEEP LEARNING

In this section, we present how optimization problems are set up in the field of deep learning. Let
x = {xj}n−1

j=0 and y = {yj}n−1
j=0 denote training datasets of input and output, respectively, where n

is the size of dataset. Let dx and dy be dimensions of input data and output data, respectively. We
write ϕnn for neural networks with parameters w ∈ RN , and define ϕ by the direct sum of vectors
{ϕj} given by ϕj(w) = ϕnn(xj , w), that is, ϕ = ⊕ϕj . Note that M = n × dy in this case. Then
finding a minima of a given loss function is proposed as a standard optimization problem to train
networks.

For the image classification tasks, there are two typical cases of setting loss functions. In the first
case, the loss is set as (14). As already mentioned, in this case, F = ϕ and HL = I . In the second
case, the loss is given by cross entropy with softmax function, that is,

L(ϕ) =
1

n

n−1∑
j=0

yj · ln (θj) , (27)

where θ denotes the softmax function and θj = θ(ϕj). In this case, F is expressed by the direct sum
such that F = ⊕Fj with

Fj =
1

n
(sjθj − yj) , j = 0, . . . , n− 1, (28)

where sj denotes a sum of all elements in vector yj for each j. Note that if each yj is given as a
probability vector, then sj = 1. Moreover, HL is expressed as HL = ⊕Hj with

Hj =
sj
n

(diag(θj)− θj ⊗ θj) , (29)

where ⊗ denotes the outer product. In both cases, the loss functions take the minimum value 0 if
and only if F = 0.
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Figure 1: Convergence curves for various optimizers

6 EXPERIMENTS

In this study, we conducted following three groups of experiments; First, we examined optimization
performance of the EDF-based methods on a data-fitting problem with a simple convolutional neural
network model. Second, we tested both optimization and generalization performance in standard
settings of classification tasks in which we employed residual network models (Resnet He et al.
(2016)) and CIFAR-10/100 datasets. Third, we incorporated some techniques of data augmentation
and regularization in the training into our experiment as we would like to measure effectiveness of
our methods in more practical settings.

The primary purpose of the experiments in this paper is not to pursue the state-of-the-art perfor-
mance, but to explore how the statistical results pertain to those of optimization when the loss func-
tions are minimized. Therefore, we tuned hyperparameters of each method in accordance with the
optimization benchmark.

It should be noted that the conjecture concerning non-convex optimization problems in the field of
deep learning (Baldi & Hornik (1989), Choromanska et al. (2015)) is still an open problem (studied
for linear cases in Baldi & Lu (2012), Kawaguchi (2016)). Hence, for experiments in this paper, we
do not discuss whether each optimization method actually reaches to a global solution.

6.1 OPTIMIZATION PERFORMANCE ON A STANDARD DATA-FITTING PROBLEM

We evaluated convergence performance of EDF-based methods (type G and type H) on a data-fitting
problem of CIFAR-10, that is, full-batch training in the context of deep learning. The model we em-
ployed in these experiments was the convolutional neural network that consisted of two convolution
filters with rectified linear units and max pooling layers, followed by two fully connected layers. For
EDF-based methods, the step size was fixed to 1.0, and no damping factors were used. In addition,
the acceleration technique derived from W2 of (25) was adapted, since W2 achieved better perfor-
mance than W1. A similar experiment with a different type of second-order methods was conducted
in Sohl-Dickstein et al. (2014).

First, we examined change in convergence performance of EDF-G depending on hyperparameter
k, the order of Krylov subspace. The results are illustrated in the left-hand side of Figure 1. The
presented trend is consistent with the theoretical fact that k interpolates between the gradient method
(for small k) and the method based on dynamics (18) (for large k). In other words, when k is small,
the method is similar to a gradient method, which converges slow, but as k becomes larger, the
method leads to better approximation of the inverse matrix, which gives a rapidly decaying flow.

Next, we compared EDF-G (k = 1, 30) with EDF-H and other standard optimizers in deep learning:
gradient descent methods with Polyaks momentum scheme (Momentum) and Nesterov’s accelera-
tion scheme (NAG), and Adam. The step sizes for Momentum, NAG, and Adam were fixed to 0.01,
0.001, and 0.001, respectively.
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Figure 2: Training loss and test error for Resnet-56 on CIFAR-10
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Figure 3: Training loss and test error for Resnet-110 on CIFAR-100

The right-hand side of Figure 1 shows that both EDF-based methods made the loss decrease more
rapidly than other standard optimizers. Even when EDF-based methods were reduced to the gradient
methods at k = 1, EDF-G outperformed standard optimizers.

The figure also presents the difference between EDF-G and EDF-H. While their convergence rates
around extremes were almost the same, the overall convergence rates of EDF-G were better than
that of EDF-H.

As has been found, second-order-methods on full-batch training converge to the solution within a
few iterations. However, with such a training, the quality of generalization becomes worse compared
to the time when stochastic approach with a mini-batch of small size is taken. Like other second-
order-methods, EDF also suffers from a negative impact of full-batch training on generalization
performance, though setting the hyperparameter k small makes EDF be compatible with stochastic
approaches and take their advantages (see Appendix B).

6.2 PERFORMANCES ON CLASSIFICATION TASKS IN DEEP LEARNING

In the following experiments, we compared both optimization and generalization performance of
EDF-G with other methods, momentum stochastic gradient decent method (MSGD) and Adam on
classification tasks for CIFAR-10/100. The experiments were conducted, employing residual net-
work models with batch normalization (Resnet-56 for CIFAR-10 and Resnet-110 for CIFAR-100),
and working with a mini-batch of size 250.
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For CIFAR-100, during pre-investigation of the dataset, we found that 9 pairs of data, each of which
has the same image but different labels, contaminated the neural network and might have had a
non-negligible influence on both optimization and generalization performance (See Appendix C).
Therefore, in our experiments on CIFAR-100, we excluded them from the training dataset and used
the rest of the data (size = 49982).

At the end of each epoch, we computed training loss in the following manner. First, the loss was de-
fined as (27) where n is the total number of data. Second, to calculate the statistics for batch normal-
ization in the loss, as described in Ioffe & Szegedy (2015), we adopted so-called ”inference mode”
in which moving averages of mean and variance over mini-batches are used for batch-normalization.

For EDF, we tested the case k = 1 and k = 2, with the damping factor set as a = b = 1. The
momentum coefficient was fixed to α = 0.9 for the W1 acceleration (see 25).

For each of the tasks, we ran tests on 10 different learning rates; for EDF between 0.1 and 2.0, for
Momentum SGD between 0.1 and 10.0, for Adam between 0.0001 and 0.1. We then chose the one
with the best convergence performance for each optimizer. For EDF with W2, to obtain stability in
convergence, the learning rate was set to 0.2 times that of the initial values at the end of the 20-th
epoch. Such a change in learning rate in the middle of optimization did not bring advantages to
either optimization or generalization performances for other methods including EDF with W1 (see
Appendix D).

The results are presented in Figures 2 and 3. As shown in the figures, with respect to the opti-
mization performance, EDF reached an optimal solution with smaller error at higher convergence
rate than Adam and Momentum SGD, even when k = 1, 2. Moreover, EDF overall attained better
generalization performance than other methods.

6.3 PERFORMANCES WITH TECHNIQUES IN A MORE PRACTICAL SETTING

For classification tasks, generalization performance often improves by adopting several techniques,
such as data augmentation and regularization. In this group of experiments, employing the data
augmentation based on random horizontal flip and shift and the L2 regularization, we conducted
comparisons between EDF and other methods that are similar to those in the previous sections.

When adopting these techniques, rate decay scheme has as large impact on optimization perfor-
mance as learning rate itself. Because effectiveness of each rate decay scheme much depends on
optimization methods, it is almost impossible to find the best scheme that is applicable to all the
methods. For this reason, for MSGD and Adam, as initial learning rates, we chose one of the stan-
dard rates for MSGD and Adam, 0.1 and 0.001, respectively, and at the ends of the 100-th, 140-th,
180-th epochs, reset the rates to 0.1 times the rates at the moment. For EDF, we ran tests on two
different rates 0.5 and 0.75, the optimal rates found in the experiments of Section 6.2, and reset to
0.2 times those of the initial values, only at the end of the 100-th epoch, in order to demonstrate
performance of the EDF more clearly. Among the results obtained with EDF, we chose the ones
with the best optimization performance.

The result of the comparison is presented in Figures 4 and 5. As can be seen, we found a condition
in which EDF achieved better performance than other methods on optimization while achieving
sufficient levels of generalization.

7 CONCLUSION

Obtaining good statistical results from limited available data is a critical goal in machine learning. To
reach this goal, while developing an effective model is an essential approach, eliciting the best per-
formance from the fixed model through optimization is important as well. In our study, to examine
the performance of our optimization methods, Exponentially Decaying Flows (EDF) based methods,
we explored their generalization properties pertaining to results of optimization. Our experiments
showed that EDF-based methods are more likely to achieve optimal solutions which generalize the
test data well than other standard optimizers are. Therefore, EDF-based methods are considered to
be optimization methods that have a high potential in their application to various tasks, and thus, are
worthwhile to be sophisticated through future studies.
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Figure 4: Training loss and test error for Resnet-56 on CIFAR-10 with data augmentation
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Figure 5: Training loss and test error for Resnet-110 on CIFAR-100 with data augmentation
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A ALGORITHMS OF EDF-BASED METHODS

In terms of computation of the EDF-based methods with GPU, the Jacobian-vector-product can be
carried out at almost the same cost as the gradient of loss function. In fact, multiplying a vector
by Jacobian and its transposed matrix (written as R-op and L-op, respectively) are implemented
in combination with gradients of scholar functions. For the psuedo-code for update scheme of the
EDF-G with L/R-op, refer to Algorithm 1, and Algorithm 2 in particular case that k = 1.

Algorithm 1: Update scheme for EDF-G with non-preconditioned MINRES
Input : wi, k, a, b, η
Output: wi+1

Compute g = ∇L(ϕ)
Set s = ‖g‖, λ = asb

Initialize parameters for MINRES as
β = s, ξ = β, γ0 = γ1 = 1, σ0 = σ1 = 0, v = v0 = 0, v1 = g, q0 = q1 = 0
for j = 1 to k do
v1 = v1/β
Compute u = JF v1 using R-op
Compute u = JT

ϕ u using L-op
u = u+ λg
α = 〈v1, u〉
u = u− αv1 − βv0

v0 = v1, v1 = u
δ = γ1α− γ0σ1β, ρ2 = σ1α+ γ0γ1β, ρ3 = σ0β
β = ‖v1‖
ρ1 =

√
δ2 + β2

γ0 = γ1, γ1 = δ/ρ1, σ0 = σ1, σ1 = β/ρ1

u = q0, q0 = q1, q1 = (1/ρ1)(v0 − ρ2q0 − ρ3u)
v = v + γ1ξq1

ξ = −σ1ξ
end for
wi+1 = wi − ηv

Algorithm 2: Update scheme for k = 1

Input : wi, a, b, η
Output: wi+1

Compute g = ∇L(ϕ)
Set s = ‖g‖, λ = asb

Compute u = JF g using R-op
Compute u = JT

ϕ u using L-op
u = u+ λg
c = 〈g, u〉/〈u, u〉, v = cg
wi+1 = wi − ηv
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B COMPARISON BETWEEN FULL-BATCH AND STOCHASTIC TRAININGS

Figure 6 shows the results of experiments using EDF for simple examples that compare a full-batch
training with stochastic trainings. In this example, the convolutional network similar to that used in
Section 6.1 was employed on MNIST. The curve labeled as ”EDF F” depicts the result of Full-batch
training per step, and those labeled as ”EDF S” illustrate the results of stochastic trainings per epoch
with a mini-batch of size 500.

Let us divide the dataset {x, y} = {xj , yj}n−1
j=0 into distinct subsets of size p such that

{x, y} =

l⋃
i=1

{
x(i), y(i)

}
,
{
x(i), y(i)

}
= {xj , yj}pi−1

j=p(i−1), pl = n. (30)

Then, gradients and Jacobian-vector-multiplications are calculated as

∇L(ϕ) =
∑
i

∇L
(
ϕ(i)

)
, Gv =

∑
i

JT
ϕ(i)JF (i)v, (31)

where ϕ(i) and F (i) are the subcomponents of ϕ and F , respectively, corresponding to the decompo-
sition above. Thus, for a fixed k, if we set p as the same size as a mini-batch, then the computational
cost per step of a full-batch training becomes almost the same as that per epoch of a mini-batch
training.
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Figure 6: Comparison between full-batch and stochastic trainings on MNIST
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C IRREGULAR DATA IN CIFAR-100

The dataset of CIFAR-100 includes 9 pairs of irregular data, each of which has the same image but
different labels. These data are enumerated in Figure 7. For instance, the 8393-rd and the 36874-th
images are the same, but they have different labels, ”girl (class 35)” and ”baby (class 2).”

Such pairs contaminate the training process. In fact, in our experiment, when the network model
was optimized with the full dataset, one of the images in each 9 pairs above could not be classified
correctly, which resulted in stagnated training accuracy at 99.982 %. Moreover, generalization also
deteriorated when irregular data were contained. For the details of these results, see Figure 8.

Figure 7: Duplicated images with different labels in CIFAR-100
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Figure 8: Comparison between EDF performance on the full dataset and that without irregular data
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D PERFORMANCES WITH THE RATE DECAY SCHEME

Figure 9 and Figure 10 present the optimization and generalization performance of each optimizer
when the rate decay scheme was adopted to the experiment with the same setting as in Figure 2 and
Figure 3. The rate decay scheme was that the learning rate was set to 0.2 times that of the initial
values at the end of the 20-th epoch.
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Figure 9: Training loss and test error for Resnet-56 on CIFAR-10 with the rate decay scheme
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Figure 10: Training loss and test error for Resnet-110 on CIFAR-100 with the rate decay scheme
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