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ABSTRACT

In many learning problems, the training and testing data follow different distri-
butions and a particularly common situation is the covariate shift. To correct for
sampling biases, most approaches, including the popular kernel mean matching
(KMM), focus on estimating the importance weights between the two distribu-
tions. Reweighting-based methods, however, are exposed to high variance when
the distributional discrepancy is large. On the other hand, the alternate approach
of using nonparametric regression (NR) incurs high bias when the training size is
limited. In this paper, we propose and analyze a new estimator that systematically
integrates the residuals of NR with KMM reweighting, based on a control-variate
perspective. The proposed estimator is shown to either outperform or match the
best-known existing rates for both KMM and NR, and thus is a robust combination
of both estimators. The experiments shows our estimator works well in practice.

1 INTRODUCTION

Traditional machine learning implicitly assumes training and test data are drawn from the same
distribution. However, mismatches between training and test distributions occur frequently in reality.
For example, in clinical trials the patients used for prognostic factor identification may not come
from the target population due to sample selection bias (Huang et al. (2007); Gretton et al. (2009));
incoming signals used for natural language and image processing, bioinformatics or econometric
analyses change in distribution over time and seasonality (Sugiyama et al. (2007); Jiang & Zhai
(2007); Quionero-Candela et al. (2009); Tzeng et al. (2017); Borgwardt et al. (2006); Heckman
(1979); Zadrozny (2004)); patterns for engineering controls fluctuate due to the non-stationarity of
environments (Sugiyama & Kawanabe (2012); Hachiya et al. (2008)).

Many such problems are investigated under the covariate shift assumption (Shimodaira (2000)).
Namely, in a supervised learning setting with covariate X and label Y , the marginal distribution
of X in the training set Ptr(x), shifts away from the marginal distribution of the test set Pte(x),
while the conditional distribution P (y|x) remains invariant in both sets. Because test labels are
either too costly to obtain or unobserved, it could be uneconomical or impossible to build predictive
models only on the test set. In this case, one is obliged to utilize the invariance of conditional
probability to adapt or transfer knowledge from the training set, termed as transfer learning (Pan &
Yang (2009)) or domain adaptation (Jiang & Zhai (2007); Blitzer et al. (2006)). Intuitively, to correct
for covariate shift (i.e., cancel the bias from the training set), one can reweight the training data by
assigning more weights to observations where the test data locate more often. Indeed, the key to
many approaches addressing covariate shift is the estimation of importance sampling weights, or
the Radon-Nikodym derivative (RND) of dPte/dPtr between Pte and Ptr (Sugiyama et al. (2008a);
Bickel et al. (2007); Kanamori et al. (2012); Cortes et al. (2008); Yao & Doretto (2010); Pardoe
& Stone (2010); Schölkopf et al. (2002); Quionero-Candela et al. (2009); Sugiyama & Kawanabe
(2012)). Among them is the popular kernel mean matching (KMM) (Huang et al. (2007); Quionero-
Candela et al. (2009)), which estimates the importance weights by matching means in a reproducing
kernel Hilbert space (RKHS) and can be implemented efficiently by quadratic programming (QP).

Despite the demonstrated efficiency in many covariate shift problems (Sugiyama et al. (2008a);
Quionero-Candela et al. (2009); Gretton et al. (2009)), KMM can suffer from high variance, due to
several reasons. The first one regards the RKHS assumption. As pointed out in Yu & Szepesvári
(2012), under a more realistic assumption from learning theory (Cucker & Zhou (2007)), when the
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true regression function does not lie in the RKHS but a general range space indexed by a smoothness

parameter θ > 0, KMM degrades to sub-canonical rate O(n
− θ

2θ+4

tr + n
− θ

2θ+4

te ) from the parametric

rateO(n
− 1

2
tr +n

− 1
2

te ). Second, if the discrepancy between the training and testing distributions is large
(e.g., test samples concentrate on regions where few training samples are located), the RND becomes
unstable and leads to high resulting variance (Blanchet & Lam (2012)), partially due to a induced
sparsity as most weights shrink towards zero while the non-zero ones surge to huge values. This is
an intrinsic challenge for reweighting methods that occurs even if the RND is known in closed-form.
One way to bypass it is to identify model misspecification (Wen et al. (2014)), but as mentioned in
Sugiyama et al. (2008b), the cross-validation for model selection needed in many related methods
often requires the importance weights to cancel biases and the necessity for reweighting remains.

In this paper we propose a method to reduce the variance of KMM in covariate shift problems. Our
method relies on an estimated regression function and the application of the importance weighting on
the residuals of the regression. Intuitively, these residuals have smaller magnitudes than the original
loss values, and the resulting reweighted estimator thus becomes less sensitive to the variances of
weights. Then, we cancel the bias incurred by the use of residuals by judiciously compensation
through the estimated regression function evaluated on the test set.

We specialize our method by using a nonparametric regression (NR) function constructed from reg-
ularized least square in RKHS (Cucker & Zhou (2007); Smale & Zhou (2007); Sun & Wu (2009)),
also known as the Tikhonov regularized learning algorithm (Evgeniou et al. (2000)). We show that

our new estimator achieves the rate O(n
− θ

2θ+2

tr + n
− θ

2θ+2

te ), which is superior to the best-known rate
of KMM in Yu & Szepesvári (2012), with the same computational complexity of KMM. Although
the gap to the parametric rate is yet to be closed, the new estimator certainly seems to be a step
towards the right direction. To put into perspective, we also compare with an alternate approach in
Yu & Szepesvári (2012) which constructs a NR function using the training set and then predicts by
evaluating on the test set. Such an approach leads to a better dependence on the test size but worse
dependence on the training size than KMM. Our estimator, which can be viewed as an ensemble of
KMM and NR, achieves a convergence rate that is either superior or matches both of these methods,
thus in a sense robust against both estimators. In fact, we show our estimator can be motivated
both from a variance reduction perspective on KMM using control variates (Nelson (1990); Glynn
& Szechtman (2002)) and a bias reduction perspective on NR.

Another noticable feature of the new estimator relates to data aggregation in empirical risk mini-
mization (ERM). Specifically, when KMM is applied in learning algorithms or ERMs, the resulting
optimal solution is typically a finite-dimensional span of the training data mapped into feature space
(Schölkopf et al. (2001)). The optimal solution of our estimator, on the other hand, depends on both
the training and testing data, thus highlighting a different and more efficient information leveraging
that utilizes both data sets simultaneously.

The paper is organized as follows. Section 2 reviews the background on KMM and NR that motivates
our estimator. Section 3 presents the details of our estimator and studies its convergence property.
Section 4 generalizes our method to ERM. Section 5 demonstrates experimental results.

2 BACKGROUND AND MOTIVATION

2.1 ASSUMPTIONS

Denote Ptr to be the probability measure for training variables Xtr and Pte for test variables Xte.

Assumption 1. Ptr(dy|x) = Pte(dy|x).

Assumption 2. The Radon-Nikodym derivative β(x) , dPte
dPtr

(x) exists and is bounded by B <∞.

Assumption 3. The covariate space X is compact and the label space Y ⊆ [0, 1]. Furthermore,
there exists a kernel K(·, ·) : X × X → R which induces a RKHS H and a canonical feature map
Φ(·) : X → H such that K(x,x′) = 〈Φ(x),Φ(x′)〉H and ‖Φ(x)‖H ≤ R for some 0 < R <∞.

In particular, Assumption 1 is the covariate shift assumption which states the conditional distribu-
tions P (dy|x) remains invariant while the marginal Ptr(x) and Pte(x) shift. Assumptions 2 and
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3 are common for establishing theoretical results. Specifically, Assumption 2 can be satisfied by
restricting the support of Pte and Ptr on a compact set, although B could be potentially large.

2.2 PROBLEM SETUP AND EXISTING APPROACHES

Given ntr labelled training data {(xtrj ,ytrj )}ntrj=1 and nte unlabelled test data {xtei }
nte
i=1 (i.e., {ytei }

nte
i=1

are unavailable), the goal is to estimate ν = E[Y te]. The KMM estimator (Huang et al. (2007);
Gretton et al. (2009)) is VKMM = 1

ntr

∑ntr
j=1 β̂(xtrj )ytrj , where β̂(xtrj ) are solutions of a QP that

attempts to match the means of training and test sets in the feature space using weights β̂:

min
β̂

{
L̂(β̂) ,

∥∥ 1

ntr

ntr∑
j=1

β̂jΦ(xtrj )− 1

nte

nte∑
i=1

Φ(xtei )
∥∥2

H

}
s.t. 0 ≤ β̂j ≤ B, ∀1 ≤ j ≤ ntr.

(1)
Notice we write β̂j as β̂(xtrj ) in VKMM informally to highlight β̂j as estimates of β(xtrj ). The
fact that (1) is a QP can be verified by the kernel trick, as in Gretton et al. (2009). Define matrix
Kij = K(xtri ,x

tr
j ) and κj , ntr

nte

∑nte
i=1K(xtrj ,x

te
i ), optimization (1) is equivalent to

min
β̂

1

n2
tr

β̂TKβ̂ − 2

n2
tr

κT β̂ s.t. 0 ≤ β̂j ≤ B, ∀1 ≤ j ≤ ntr. (2)

In practice, a constraint
∣∣ 1
ntr

∑ntr
j=1 β̂j − 1

∣∣ ≤ ε for a tolerance ε > 0 is included to regularize the β̂
towards the RND. As in Yu & Szepesvári (2012), we omit them to simplify analysis. On the other
hand, the NR estimator VNR = 1

nte

∑nte
i=1 ĝ(xtei ) is based on ĝ(·), some estimate of the regression

function g(x) , E[Y |x]. Notice the conditional expectation is taken regardless of x ∼ Ptr or Pte.
Here, we consider a ĝ(·) that is estimated nonparametrically by regularized least square in RKHS:

ĝγ,data(·) = argmin
f∈H

{ 1

m

m∑
j=1

(f(xtrj )− ytrj )2 + γ‖f‖2H
}
, (3)

where γ is a regularization term to be chosen and the subscript data represents {(xtrj , ytrj )}mj=1. Us-
ing the kernel trick and the representation theorem (Schölkopf et al. (2001)), optimization problem
(3) can be solved in closed form with ĝγ,data(x) =

∑m
j=1 α

reg
j K(xtrj ,x) where

αreg = (K + γI)−1ytr and ytr = [ytr1 , ..., y
tr
m]. (4)

2.3 MOTIVATION

Depending on properties of g(·), Yu & Szepesvári (2012) proves different rates of KMM. The most

notable case is when g /∈ H but rather g(·) ∈ Range(T
θ

2θ+4

K ), where TK is the integral operator
(TKf)(x′) =

∫
X K(x′, x)f(x)Ptr(dx) on L 2

Ptr
. In this case, Yu & Szepesvári (2012) characterize

g with the approximation error

A2(g, F ) , inf
‖f‖H≤F

‖g − f‖L 2
Ptr
≤ CF− θ2 , (5)

and the rates of KMM drops to sub-canonical |VKMM − ν| = O(n
− θ

(2θ+4)

tr +n
− θ

(2θ+4)

te ), as opposed

toO(n
− 1

2
tr +n

− 1
2

te ) when g ∈ H. As shown in Lemma 4 and Theorem 4.1 of Cucker & Zhou (2007)),

(5) is almost equivalent to g(·) ∈ Range(T
θ

2θ+4

K ): g(·) ∈ Range(T
θ

2θ+4

K ) implies (5) while (5) leads

to g(·) ∈ Range(T
θ

2θ+4−ε
K ) for any ε > 0. We will adopt the characterization g(·) ∈ Range(T

θ
2θ+4

K )
as our analysis is based on related learning theory estimates.

Correspondingly, the convergence rate for VNR when g(·) ∈ Range(T
θ

2θ+4

K ) is also shown in Yu &

Szepesvári (2012) as |VNR− ν| = O(n
− 1

2
te +n

− 3θ
12θ+16

tr ), with ĝ taken as ĝγ,data in (3) and γ chosen
optimally. The rate of VKMM is usually better than VNR due to labelling cost (i.e. ntr < nte).
However, in practice the performance of VKMM is not always better than VNR. This could be par-
tially explained by the hidden dependence of VKMM on potentially large B, but more importantly,
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without variance reduction, KMM is subject to the negative effects of unstable importance sampling
weights (i.e. the β̂). On the other hand, the training of ĝ requires labels hence can only be done
on training set. Consequently, without reweighting, when estimating the test quantity ν, the rate of
VNR suffers from the bias.

This motivates the search for a robust estimator which does not require prior knowledge on the
performance of VKMM or VNR and can, through a combination, reach or even surpass the best per-
formance among both. For simplicity, we use the mean squared error (MSE) criteria MSE(V ) =
Var(V )+(Bias(V ))2 and assume an additive model Y = g(X)+E where E ∼ N (0, σ2) is indepen-
dent with X and other errors. Under this framework, we motivate a remedy from two perspectives:

Variance reduction for KMM: Consider an idealized KMM with VKMM , 1
ntr

∑ntr
j=1 β(xtrj )ytrj

with β(·) being the true RND. Since E[β(Xtr)Y tr] = Ex∼Ptr (β(x)g(x)) = Ex∼Pte [g(x)] = ν,
VKMM is unbiased and the only source of MSE becomes the variance. It then follows from standard
control variates that, given an estimator V and a zero-mean random variable W , we can set t? =
Cov(V,W )

Var(W ) and use V−t?W to obtain mint Var(V−tW ) = (1−corr2(V,W ))Var(V ) ≤ Var(V ) with-
out altering the mean of V . Thus we can use W = 1

ntr

∑ntr
j=1 β(xtrj )(ĝ(xtrj )) − 1

nte

∑nte
i=1 ĝ(xtei )

with t? = Cov(VKMM ,W )
Var(W ) . To calculate t?, suppose Xte and Xtr are independent, then

Cov(VKMM ,W ) =
1

ntr
Cov(β(Xtr)Y tr, β(Xtr)ĝ(Xtr))

=
1

ntr
Cov(β(Xtr)g(Xtr), β(Xtr)ĝ(Xtr)) ≈ 1

ntr
Var(β(Xtr)ĝ(Xtr)),

if ĝ is close enough to g. On the other hand, in the usual case where nte � ntr,

Var(W ) =
1

ntr
Var(β(Xtr)ĝ(Xtr)) +

1

nte
Var(ĝ(Xte)) ≈ 1

ntr
Var(β(Xtr)ĝ(Xtr)).

Thus, t? ≈ 1 which gives our estimator VR = 1
ntr

∑ntr
j=1 β(xtrj )(ytrj − ĝ(xtrj )) + 1

nte

∑nte
i=1 ĝ(xtei ).

Bias reduction for NR: Consider the NR estimator VNR , 1
nte

∑nte
i=1 ĝ(xtei ). Assuming again the

common case where nte � ntr, we have Var(VNR) = 1
nte

Var(ĝ(Xte)) ≈ 0, and thus the main
source of MSE is the bias Ex∼Pte [g(x)− ĝ(x)]. If we add W = 1

ntr

∑ntr
j=1 β(xtrj )(ytrj − ĝ(xtrj )) to

VNR, we eliminate the bias which gives VR = 1
ntr

∑ntr
j=1 β(xtrj )(ytrj − ĝ(xtrj )) + 1

nte

∑nte
i=1 ĝ(xtei ).

3 ROBUST ESTIMATOR

We construct a new estimator VR(ρ) that can be demonstrated to perform robustly against
both the KMM and NR estimators discussed above. In our construction, we split the train-
ing set with a proportion 0 ≤ ρ ≤ 1, i.e., divide {Xtr,Y tr}data , {(xtrj , ytrj )}ntrj=1 into

{Xtr
KMM ,Y

tr
KMM}data , {(xtrj , ytrj )}bρntrcj=1 and {Xtr

NR,Y
tr
NR}data , {(xtrj , ytrj )}ntrj=bρntrc+1.

Then we use {Xtr
KMM ,X

te}data , {{xtrj }
bρntrc
j=1 , {xtei }

nte
i=1} to solve for the weight β̂ in (1) and

use {Xtr
NR,Y

tr
NR}data to train an NR function ĝ(·) = ĝγ,data(·) for some γ as in (3). Finally, we

define our estimator VR(ρ) as

VR(ρ) ,
1

bρntrc

bρntrc∑
j=1

β̂(xtrj )(ytrj − ĝ(xtrj )) +
1

nte

nte∑
i=1

ĝ(xtei ). (6)

First, we remark the parameter ρ controlling the splitting of data serves mainly for theoretical consid-
erations. In practice, the data can be used for both purposes simultaneously. Second, as mentioned,
many ĝ other than (3) could be considered for control variate. However, aside from the availability
of closed-form expressions (4), ĝγ,data is connected to the learning theory estimates Cucker & Zhou
(2007). Thus, for establishing a theoretical bound, we focus on ĝ = ĝγ,data for now.

Our main result is the convergence analysis with respect to ntr and nte which rigorously justified
the previous intuition. In particular, we show that VR either surpasses or achieves the better rate
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between VKMM and VNR. In all theorems that follow, the Big-O notations can be interpreted either
as 1− δ high probability bound or a bound on expectation. The proofs are left in the Appendix.

Theorem 1. Under Assumptions 1-3, if g ∈ Range(T
θ

2θ+4

K ), the convergence rate of VR(ρ) satisfies

|VR(ρ)− ν| = O(n
− θ

2θ+2

tr + n
− θ

2θ+2

te ), (7)

when ĝ is taken to be ĝγ,data in (6) with γ = n−
θ+2
θ+1 and n , min(ntr, nte).

Corollary 1. Under the same setting of theorem 1, if we choose γ = n−1, we have

|VR(ρ)− ν| = O(n
− θ

2θ+4

tr + n
− θ

2θ+4

te ) (8)

and if we choose γ = n−1
tr ,

|VR(ρ)− ν| = O(n
− θ

2θ+4

tr + n
− 1

2
te ). (9)

We remark several implications. First, although not achieving canonical, (7) is an improvement over

the best-known O(n
− θ

(2θ+4)

tr + n
− θ

(2θ+4)

te ) rate of VKMM when g ∈ Range(T
θ

2θ+4

K ), especially for
small θ, suggesting that VR is more suitable than VKMM when g is irregular. Indeed, θ is a smooth-

ness parameter that measures the regularity of g. When θ increases, functions in Range(T
θ

2θ+4

K )

get smoother and Range(T
θ2

2θ2+4

K ) ⊆ Range(T
θ1

2θ1+4

K ) for 0 < θ1 < θ2, with the limiting case that

θ →∞, θ
2θ+4 → 1/2 andRange(T

1
2

K ) ⊆ H (i.e. g ∈ H) for universal kernels by Mercer’s theorem.

Second, as in Theorem 4 of Yu & Szepesvári (2012), the optimal tuning of γ that leads to (7) depends
on the unknown parameter θ, which may not be adaptive in practice. However, if one simply choose
γ = n−1, VR still achieves a rate no worse than VKMM as depicted in (8).

Third, also in Theorem 4 of Yu & Szepesvári (2012), the rate of VNR is O(n
− 1

2
te + n

− 3θ
12θ+16

tr ) when

g ∈ Range(T
θ

2θ+4

K ), which is better on nte but not ntr. Since usually ntr < nte, the rate of VKMM

generally excels. Indeed, in this case the rate of VNR beats VKMM only if limn→∞ n
6θ+8
3θ+6

te /ntr → 0.

However, if so, VR can still achieveO(n
− θ

2θ+4

tr +n
− 1

2
te ) rate in (9) which is better than VNR, by simply

taking γ = n−1
tr , i.e., regularizing the training process more when the test set is small. Moreover, as

θ →∞, our estimator VR recovers the canonical rate n−
1
2

tr as opposed to n−
1
4

tr in VNR.

Thus, in summary, when g ∈ Range(T
θ

2θ+4

K ), our estimator VR outperforms both VKMM and VNR
across the relative sizes of ntr and nte. The outperformance over VKMM is strict when γ is chosen
dependent on θ, and the performance is matched when γ is chosen robustly without knowledge of θ.

For completeness, we consider two other characterizations of g discussed in Yu & Szepesvári (2012):
one is g ∈ H and the other is A∞(g, F ) , inf‖f‖H≤F ‖g − f‖ ≤ C(logF )−s for some C, s > 0
(e.g., g ∈ Hs(X ) with K(·, ·) being the Gaussian kernel, where Hs is the Sobolev space with
integer s). The two assumptions are, in a sense, more extreme (being optimistic or pessimistic). The
next two results show that the rates of VR in these situations match the existing ones for VKMM (the
rates for VNR are not discussed in Yu & Szepesvári (2012) under these assumptions).
Proposition 1. Under Assumptions 1-3, if g ∈ H, the convergence rate of VR(ρ) satisfies |VR(ρ)−
ν| = O(n

− 1
2

tr + n
− 1

2
te ), when ĝ is taken to be ĝγ,data for γ > 0 in (6).

Proposition 2. Under Assumptions 1-3, if A∞(g, F ) , inf‖f‖H≤F ‖g − f‖ ≤ C(logF )−s for

some C, s > 0, the convergence rate of VR(ρ) satisfies |VR(ρ)− ν| = O
(

log−s ntrnte
ntr+nte

)
, when ĝ

is taken to be ĝγ,data for γ > 0 in (6).

4 EMPIRICAL RISK MINIMIZATION

The robust estimator can handle empirical risk minimization (ERM). Given loss function l′(x, y; θ) :
X × R→ R given θ in D, we optimize over minθ∈D E[l′(Xte, Y te; θ)] = minθ∈D Ex∼Pte [l(x; θ)]
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where l(x; θ) , EY |x[l′(x, Y ; θ)] to find θ? , argminθ∈D Ex∼Pte [l(Xte; θ)]. In practice, usually
a regularization term Ω[θ] on θ is added. For example, the KMM in Huang et al. (2007) considers

min
θ∈D

1

ntr

ntr∑
j=1

β̂(xtrj )l′(xtrj , y
tr
j ; θ) + λΩ[θ]. (10)

We can carry out a similar modification to utilize VR as

min
θ∈D

1

bρntrc

bρntrc∑
j=1

β̂(xtrj )(l′(xtrj , y
tr
j ; θ)− l̂(xtrj ; θ)) +

1

nte

nte∑
i=1

l̂(xtei ; θ) + λΩ[θ], (11)

with β̂ based on {Xtr
KMM ,X

te} and l̂(x; θ) being an estimate of l(x; θ) based on {Xtr
NR,Y

tr
NR}.

For later reference, we note that a similar modification can also be used to utilize VNR:

min
θ∈D

1

nte

nte∑
i=1

l̂(xtei ; θ) + λΩ[θ]. (12)

Below we discuss two classical learning problems using (11).

Penalized Least Square Regression: Consider a regression problem with l′(x, y; θ) = (y −
〈θ,Φ(x)〉H)2, Ω[θ] = ‖θ‖2H and y ∈ [0, 1]. We have l(x; θ) = E[Y 2|x] − 2g(x)〈θ,Φ(x)〉H +

〈θ,Φ(x)〉2H, and a candidate for l̂(x, θ) is to substitute g with ĝγ,data. Then, (11) becomes

min
θ∈D

bρntrc∑
j=1

−
2β(xtrj )

bρntrc
(ytrj − ĝ(xtrj ))〈θ,Φ(xtrj )〉H +

1

nte

nte∑
i=1

(ĝ(xtei )− 〈θ,Φ(x)〉H)2 + λ‖θ‖2H,

by adding and removing the components not involving θ. Furthermore, it simplifies to the QP:

min
α∈Rbρntrc+nte

−2wT
1 Ktotα

bρntrc
+

(w2 −Ktotα)TW3(w2 −Ktotα)

nte
+ λαTKtotα, (13)

by the representation theorem Schölkopf et al. (2001). Here (Ktot)ij = K(xtoti ,xtotj ) and W3 =

diag(w3) where xtoti = xtri , (w1)i = β(xtri )(ytri − ĝ(xtri )), (w2)i = 0, (w3)i = 0 for 1 ≤ i ≤
bρntrc and xtoti = xtei−bρntrc, (w1)i = 0, (w2)i = ĝ(xtei−bρntrc), (w3)i = 1 for bρntrc + 1 ≤ i ≤
bρntrc+nte. Notice (13) has a closed-form solution α̂ = (W3Ktot +λnteI)−1( nte

bρntrcw1 +w2).

Penalized Logistic Regression: Consider a binary classification problem with y ∈ {0, 1}, Ω[θ] =

‖θ‖2H and −l′(x, y; θ) = y log( 1
1+exp 〈θ,Φ(x)〉H ) + (1− y) log( exp 〈θ,Φ(x)〉H

1+exp 〈θ,Φ(x)〉H ). Thus, −l(x; θ) =

−g(x)〈θ,Φ(x)〉H + log( exp 〈θ,Φ(x)〉H
1+exp 〈θ,Φ(x)〉H ) and we substitute g with ĝγ,data. Then, (11) becomes

min
θ∈D

bρntrc∑
j=1

β(xtrj )

bρntrc
(ytrj − ĝ(xtrj ))〈θ,Φ(xtrj )〉H

+
1

nte

nte∑
i=1

−ĝ(xtei )〈θ,Φ(xtei )〉H + log(
exp 〈θ,Φ(xtei )〉H

1 + exp 〈θ,Φ(xtei )〉H
) + λ‖θ‖2H.

which again simplifies to, by Schölkopf et al. (2001), the convex program:

min
α∈Rbρntrc+nte

wT
1 Ktotα

bρntrc
− w

T
2 Ktotα

nte
+

∑nte
i=1 log(

exp (Ktotα)bρntrc+i
1+exp (Ktotα)bρntrc+i

)

nte
+ λαTKtotα. (14)

Both (11) and (14) can be optimized efficiently by standard solvers. Notably, (11) gives a so-
lution in the form θ̂ =

∑
i=1 α̂iK(xtoti ,x) which spans on both training and test data. In

contrast, the solution of (10) or (12) only spans on one of them. For example, as shown in
Huang et al. (2007), the penalized least square solution for (10) is θ̂ =

∑
i=1 α̂iK(xtri ,x) where

α̂ = (K + nteλ diag(β̂)−1)−1ytr ( we use α̂ = ( diag(β̂)K + nteλI)−1 diag(β̂)ytr in experi-
ments to avoid invertibility issues caused by the sparsity of β̂), so only the training data are in the
span of the feature space that constitutes θ̂. The aggregation of both sets suggests a more effec-
tive/robust utilization of data . We conclude with a theorem on ERM similar to Corollary 8.9 in
Gretton et al. (2009), which guarantees the convergence of the solution of (11) in a simple setting.
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Theorem 2. Assume l(x; θ) and l̂(x; θ) ∈ H can be expressed as 〈Φ(x), θ〉H+f(x; θ) with ||θ||H ≤
C and l′(x, y; θ) ∈ H as 〈Υ(x, y),Λ〉H + f(x; θ) with ||Λ||H ≤ C. Denote this class of loss
functions G and further assume l(x; θ) are continuous, bounded byD andL-Lipschitz on θ uniformly
over x for (θ, x) in a compact set D × X . Then, the ERM with θ̂R , argminθ∈D VR(θ) and
VR(θ) , 1

bρntrc
∑bρntrc
j=1 β̂(xtrj )(l′(xtrj , y

tr
j ; θ)− l̂(xtrj ; θ)) + 1

nte

∑nte
i=1 l̂(x

te
i ; θ) satisfies

E[l′(Xte, Yte; θ̂R)] ≤E[l′(Xte, Yte; θ
?)] +O(n

− 1
2

tr + n
− 1

2
te ).

5 EXPERIMENTS

5.1 TOY DATASET REGRESSION

We first present a toy example to provide comparison with KMM. The data is generated as the poly-
nomial regression example in Shimodaira (2000); Huang et al. (2007), where Ptr ∼ N (0.5, 0.52),
Pte ∼ N (0, 0.32) are Gaussian distributions. The labels are generated according to y = −x + x3

and observed in Gaussian noiseN (0, 0.32). We sample 500 points in both training and test data and
fit a linear model using ordinary least square (OLS), KMM and the robust estimator, respectively.
On the population level, the best linear fit is y = −0.73x. For simplicity, we the intercept to 0 and
compare the fitted slopes for different approaches. We used a degree-3 polynomial kernel and the
γ in ĝγ,data is set to the default value n−1

tr . The tolerance ε for β̂ is set similarly as in Huang et al.
(2007) with a slight tuning to avoid an overly-sparse solution. The slope is fitted without regular-
ization. In Figure 1[a], the red curve is the true polynomial regression function and the purple line
is the best linear fit. As we see, the robust estimator outperforms the two other methods, recovering
the green line closest to the best one. The performance over 20 trials are summarized in Figure 1[b].

[a] [b]

Figure 1: [a] Linear fit with OLS,KMM and Robust estimator; [b] Slope estimation performance

5.2 REAL WORLD DATASET FOR ERM

Next, we test our approach in ERM on a real world dataset, the breast cancer dataset from the UCI
Archive. We consider the second biased sampling scheme in Huang et al. (2007) where the prob-
ability of selecting xi into the training set depends jointly on multiple features and is proportional
to exp(−σ1‖xi − x̄‖) for some σ > 0 and the sample mean x̄. Since this is a binary classification
problem, we can experiment with both the penalized least square regression and the penalized logis-
tic regression for different sizes of training sets. We used a Gaussian kernel exp(−σ2‖xi − xj‖).
The tolerance ε for β̂ is set exactly as in Huang et al. (2007). For both experiments, we choose
parameters γ = n−1

tr as default, λ = 5 by cross-validation and σ1 = −1/100, σ2 =
√

0.5. Finally,
we used the fitted parameters (i.e. optimal solution θ̂ in ERM) to predict the labels on the test set
and compare with the hidden real ones. The summary of test error comparison is shown in Figure 2
where we use the term unweighted to denote the case for (12), KMM for (10) and Robust for (11).

7



Under review as a conference paper at ICLR 2020

The robust estimator gives the lowest test error in 5 cases out of 6, confirming our finding on its
improvement over the traditional methods.

[a] [b]

Figure 2: Classification performance for penalized [a] least square regression; [b] logistic regression

5.3 SIMULATED DATASET FOR ESTIMATION

On an estimation problem, we simulate data from two ten dimensional Gaussian distribution with
different, randomly generated mean and covariance matrix as training and test sets. The target value
is ν = Ex∼Pte [g(x)] for an artificial g(x) = sin(c1‖x‖22) + (1 + exp(cT2 x))−1 with random c1, c2

and labels are observed with Gaussian noise. A Gaussian kernel exp(−σ‖xi−xj‖) and a tolerance
ε for β̂ are set exactly as in Gretton et al. (2009) with σ =

√
5, B = 1000 and ε =

√
ntr−1√
ntr

. We also
experiment with a different ĝ by substituting ĝγ,data for a naive linear OLS fit. At each iteration, we
use the sample mean from 106 data points (without adding noise) as the true mean and calculate the
average MSE over 100 estimations for VR, VKMM and VNR respectively. As shown in Table 1, the
performances of VR are again consistently on par with the best case scenarios, even when the usual
assumption ntr < nte is violated.

Table 1: Average MSE for Estimation
Hyperparameters VNR VKMM VR

λ = 0.1, ntr = 50, nte = 500 0.9970 0.9489 0.9134
λ = 0.1, ntr = 500, nte = 500 1.0006 0.9294 0.9340
λ = 0.1, ntr = 500, nte = 50 1.0021 0.9245 0.9242
λ = 10, ntr = 50, nte = 500 0.9962 0.9493 0.9467
λ = 10, ntr = 500, nte = 500 0.9964 0.9294 0.9288
λ = 10, ntr = 500, nte = 50 0.9965 0.9245 0.9293

6 CONCLUSION

Motivated both as a variance reduction on KMM and a bias reduction on NR, we introduced a new
robust estimator for tackling covariate shift problems which, through a straightforward integration of
traditional methods, leads to improved accuracy over both KMM and NR in many settings. From a
practical standpoint, the control variates and data aggregation enable the estimation/training process
to be more stable and data-efficient at no expense of increased computational complexity. From
an analytical standpoint, a promising progress is made to reduce the rate gap of KMM towards the
parametric when the regression function lies in range spaces outside of RKHS. For future work, note
the canonical rate is still not achieved and it remains unclear the suitable tool to improve the rate
further, if possible. Moreover, besides the regularized empirical regression function in RKHS, the
eligibility and effectiveness of other estimated regression functions also require rigorous analysis.
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7 APPENDIX

We mention that our proofs rely on learning theory estimates and are different from Yu & Szepesvári
(2012). For example, in (3), γ is used as a free parameter for controlling ‖f‖H, whereas Yu &
Szepesvári (2012) uses the parameter F in (5). Although the two approaches are equivalent from an
optimization viewpoint, with γ being the Lagrange dual variable, the former approach turns out to
be more suitable to analyse VR.

Throughtout the proof, h(·) ∈ H is assumed to be an unspecified function in the RKHS. Also, we
use EX [·] to denote expectation over the randomness of X while fixing others and E|X [·] as the
conditional expectation E[·|X].

Moreover we remark that all results involving ĝγ,data can be interpreted either as a high probability
bound or a bound on expectation over Edata (i.e., if we train ĝγ,Xtr

NR,Y
tr
NR

using Xtr
NR,Y

tr
NR, then

Edata means EXtr
NR,Y

tr
NR

). The same interpretation applies for the results with Big-O notations.
Finally, constants C2, C

′
2, C3, C ′3 and C ′′3 as well as similar constants introduced later which depend

on R, g(·) or δ (for 1− δ high probability bound) will be denoted by a common C during proof for
the ease of presentation.

7.1 PRELIMINARIES

Lemma 1. Under Assumption 3, for any f ∈ H, we have

‖f‖∞ = sup
x∈X
|〈f(·),Φ(·, x)〉H| ≤ R‖f‖H. (15)

and consequently ‖f‖L 2
Ptr
≤ R‖f‖H as well.

Lemma 2 (Azuma-Hoeffding). Let X1, ..., Xn be independent and identically distributed random
variables with 0 ≤ X ≤ B, then

P (| 1
n

n∑
i=1

xi − E[X]| > ε) ≤ 2e−
2nε2

B2 . (16)

Corollary 2. Under the same assumption of Lemma 2, with probability at least 1− δ,

| 1
n

n∑
i=1

xi − E[X]| ≤ B
√

1

2n
log

2

δ
. (17)

Moreover, an important probability 1−δ bound we shall use later for L̂(β|xtr1 ,...,xtrntr
)) follows from

Yu & Szepesvári (2012) (see also Gretton et al. (2009) and Pinelis et al. (1994)) :

L̂(β|xtr1 ,...,xtrntr
)) =

∥∥∥∥ 1

ntr

ntr∑
j=1

β(xtrj )Φ(xtrj )− 1

nte

nte∑
i=1

Φ(xtei )

∥∥∥∥
H

≤
√

2 log
2

δ
R

√(
B2

ntr
+

1

nte

)
. (18)

7.2 LEARNING THEORY ESTIMATES

To adopt the assumption in Yu & Szepesvári (2012); Cucker & Zhou (2007) that the true regression

function g(·) /∈ H but g(·) ∈ Range(T
θ

2θ+4

K ), we introduce the related results from learning theory.

First, define ζ , θ
2θ+4 for some θ > 0 so that 0 < ζ < 1/2. Given g(·) ∈ Range(T ζK) and m

training sample {(xj , yj)}mj=1 (sampled from Ptr)), we define gγ(·) ∈ H : X → R to be

gγ(·) = argmin
f∈H

{
‖f − g‖2L 2

Ptr

+ γ‖f‖2H
}

(19)
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where ‖f − g‖L 2
Ptr

=
√

Ex∼Ptr (f(x)− g(x))2 denotes the L 2 norm under Ptr. On the other
hand, ĝγ,data(·) ∈ H is defined in (3) as

ĝγ,data(·) = argmin
f∈H

{
1

m

m∑
j=1

(f(xj)− yj)2 + γ‖f‖2H
}
.

Moreover, following the notations in section 4.5 of Cucker & Zhou (2007), given Banach space
(L 2

Ptr
, ‖ · ‖L 2

Ptr
) and the kernel-induced Hilbert subspace (H, ‖ · ‖H), we define a K̃-functional:

L 2
Ptr
× (0,∞)→ R to be

K̃(l, γ) , inf
f∈H
{‖l − f‖L 2

Ptr
+ γ‖f‖H}

for l(·) ∈ L 2
Ptr

and t > 0. Moreover, for 0 < r < 1, the interpolation space (L 2
Ptr
,H)r consists of

all the elements l(·) ∈ L 2
Ptr

such that

‖l‖r , sup
γ>0

K̃(l, γ)

γr
<∞. (20)

Lemma 3. Define K : L 2
Ptr
× (0,∞)→ R to be

K(l, γ) , inf
f∈H
{‖l − f‖2L 2

Ptr

+ γ‖f‖2H}, (21)

then for any l(·) ∈ (L 2
Ptr
,H)r, we have

sup
γ>0

K(l, γ)

γr
≤
(

sup
γ>0

K̃(l,
√
γ)

(
√
γ)r

)2

= ‖l‖2r <∞. (22)

Proof. It follows from
√
a+ b ≤

√
a+
√
b, ∀a, b ≥ 0 that√

K(l, γ) ≤ K̃(l,
√
γ). (23)

Thus, for any l(·) ∈ (L 2
Ptr
,H)r, we have

sup
γ>0

K(l, γ)

γr
≤
(

sup
γ>0

K̃(l,
√
γ)

(
√
γ)r

)2

= ‖l‖2r <∞. (24)

On the other hand, assuming g(·) ∈ Range(T
θ

2θ+4

K ), it follows from the proof of Theorem 4.1 in
Cucker & Zhou (2007) that

g(·) ∈ (L 2
Ptr ,H

+) θ
θ+2

(25)

where H+ is a closed subspace of H spanned by eigenfunctions of the kernel K (e.g.,H+ = H
when Ptr is non-degenerate, see Remark 4.18 of Cucker & Zhou (2007)). Indeed, the next lemma
shows we can measure smoothness through interpolation space just as range space.

Lemma 4. Assuming Ptr is non-degenerate on X . Then if g ∈ Range(T
θ

2θ+4

K ), we have g ∈
(L 2

Ptr
,H) θ

θ+2
. On the other hand, if g ∈ (L 2

Ptr
,H) θ

θ+2
, then g ∈ Range(T

θ
2θ+4−ε
K ) for all ε > 0.

Proof. It follows from Theorem 4.1, Corollary 4.17 and Remark 4.18 of Cucker & Zhou (2007).

Now we are ready to adopt the standard assumptions and theoretical results from learning theory
in RKHS. They can be found in Cucker & Zhou (2007); Sun & Wu (2009); Smale & Zhou (2007);
Yu & Szepesvári (2012). First, given g(·) ∈ Range(T ζK) and m training sample {(xj , yj)}mj=1

(sampled from Ptr)), it follows from Lemma 3 of Smale & Zhou (2007) (see as well Remark 3.3
and Corollary 3.2 in Sun & Wu (2009)) that

‖gγ − g‖L 2
Ptr
≤ C2γ

ζ . (26)
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Second, it follows from Theorem 3.1 in Sun & Wu (2009) as well as Smale & Zhou (2007); Sun &
Wu (2010) that

‖gγ − ĝγ,data‖L 2
Ptr
≤ C ′2(γ−1/2m−1/2 + γ−1m−3/4), (27)

and, by triangle inequality,

‖g − ĝγ,data‖L 2
Ptr
≤ C3(γζ + γ−1/2m−1/2 + γ−1m−3/4). (28)

Notice here that by choosing γ = m−
3

4(1+ζ) , we recover the Corollary 3.2 of Sun & Wu (2009).
Finally it follows from Theorem of Smale & Zhou (2007), we have

‖gγ − ĝγ,data‖H ≤ C ′3γ−1m−1/2, (29)

with C ′3 = 6R log 2
δ . In fact, if we define σ2 , Ex∼PtrEY |x(g(x)−Y )2, then Theorem 3 of Smale

& Zhou (2007) stated that ‖gγ − ĝγ,data‖H ≤ C ′′3 ((
√
σ2 + ‖gγ − g‖L 2

Ptr
)γ−1m−1/2 + γ−1m−1).

7.3 MAIN PROOFS

Proof of Theorem 1 and Corollary 1. If g ∈ Range(T
θ

2θ+4

K ) (i.e. ζ = θ
2θ+4 ) and we set h(·) =

gγ(·) and ĝ = ĝγ,Xtr
NR,Y

tr
NR

for some γ > 0, then:

VR(ρ)− ν

=
1

bρntrc

bρntrc∑
j=1

β̂(xtrj )(ytrj − g(xtrj )) +
1

bρntrc

bρntrc∑
j=1

(β̂(xtrj )− β(xtrj ))(g(xtrj )− h(xtrj ))

+
1

bρntrc

bρntrc∑
j=1

(β̂(xtrj )− β(xtrj ))(h(xtrj )− ĝ(xtrj ))

+
1

bρntrc

bρntrc∑
j=1

β(xtrj )(g(xtrj )− ĝ(xtrj )) +
1

nte

nte∑
i=1

ĝ(xtei )− ν. (30)

To bound terms in (30), we first use Corollary 2 to conclude that with probability at least 1− δ,

| 1

bρntrc

bρntrc∑
j=1

β̂(xtrj )(ytrj − g(xtrj ))| ≤B

√
1

bρntrc
log

2

δ
= O(n

−1/2
tr ). (31)

We hold on our discussion for the second term. For the third term, since h, ĝ ∈ H,∣∣∣∣ 1

bρntrc

bρntrc∑
j=1

(β̂(xtrj )− β(xtrj ))(h(xtrj )− ĝ(xtrj ))

∣∣∣∣
=

∣∣∣∣ 1

bρntrc

bρntrc∑
j=1

(β̂(xtrj )− β(xtrj ))
〈
h− ĝ,Φ(xtrj )

〉
H

∣∣∣∣
=

∣∣∣∣〈h− ĝ, 1

bρntrc

bρntrc∑
j=1

(β̂(xtrj )− β(xtrj ))Φ(xtrj )

〉
H

∣∣∣∣
≤‖h− ĝ‖H(L̂(β̂) + L̂(β|xtr1 ,...,xtrbρntrc

)) ≤ 2‖h− ĝ‖HL̂(β|xtr1 ,...,xtrbρntrc
), (32)

by definition of (1). Thus, when taking h = gγ and ĝ = ĝγ,Xtr
NR,Y

tr
NR

for some γ, we can combine
(18) and (29) to guarantee, with probability 1− 2δ,∣∣∣∣ 1

bρntrc

bρntrc∑
j=1

(β̂(xtrj )− β(xtrj ))(h(xtrj )− ĝ(xtrj ))

∣∣∣∣
≤
√

8 log
2

δ
RC(1− ρ)−1/2(γ−1n

−1/2
tr ) ·

√(
B2

ntr
+

1

nte

)
=O(γ−1n

−1/2
tr (n−1

tr + n−1
te )

1
2 ). (33)
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For the last term τ , 1
bρntrc

∑bρntrc
j=1 β(xtrj )(g(xtrj )− ĝ(xtrj )) + 1

nte

∑nte
i=1 ĝ(xtei )− ν, the analysis

relies the splitting of data, as we notice that,

E|Xtr
NR,Y

tr
NR

[
1

bρntrc

bρntrc∑
j=1

β(xtrj )(g(xtrj )− ĝ(xtrj )) +
1

nte

nte∑
i=1

ĝ(Xte
i )− ν

]
=Ex∼Ptr [β(x)g(x)]− ν − Ex∼Ptr [β(x)ĝ(x)] + Ex∼Pte [ĝ(x)]

=Ex∼Pte [g(x)]− ν − Ex∼Pte [ĝ(x)] + Ex∼Pte [ĝ(x)]

=0. (34)

Notice for the second line follows since ĝ(·) is determined by {Xtr
NR,Y

tr
NR} and thus is independent

with {Xtr
KMM ,Y

tr
KMM} or {Xte}. Thus, we have

Var(τ) =Var(E|Xtr
NR,Y

tr
NR

(τ)) + E[Var|Xtr
NR,Y

tr
NR

(τ)]

=E[Var|Xtr
NR,Y

tr
NR

(τ)]

=
1

bρntrc
E[Varx∼Ptr|Xtr

NR,Y
tr
NR

(β(x)(g(x)− ĝ(x)))] +
1

nte
E[Varx∼Pte|Xtr

NR,Y
tr
NR

(ĝ(x))]

≤ B2

bρntrc
EXtr

NR,Y
tr
NR
‖g − ĝ‖2L 2

Ptr

+
1

nte
EXtr

NR,Y
tr
NR
‖ĝ‖2L 2

Pte

≤ B2

bρntrc
EXtr

NR,Y
tr
NR
‖g − ĝ‖2L 2

Ptr

+
B

nte
EXtr

NR,Y
tr
NR
‖ĝ‖2L 2

Ptr

, (35)

and we can use the Chebyshev’s inequality and Lemma 1 to conclude, with probability at least 1−δ,

|τ | ≤
√

1

δ

√
B2

bρntrc
EXtr

NR,Y
tr
NR
‖g − ĝ‖2

L 2
Ptr

+
BR2

nte
, (36)

which becomes, by (28), probability 1− 2δ:

|τ | ≤
√

1

δ

√
B2

bρntrc
C(1− ρ)−3/4(γζ + γ−1/2n

−1/2
tr + γ−1n

−3/4
tr ) +

BR2

nte

=O((γζ + γ−1/2n
−1/2
tr + γ−1n

−3/4
tr )n

−1/2
tr + n

−1/2
te ) (37)

with ζ = θ
2θ+4 . Now, to bound the second term 1

bρntrc
∑bρntrc
j=1 (β̂(xtrj )−β(xtrj ))(g(xtrj )−h(xtrj )),

1

bρntrc

bρntrc∑
j=1

|(β̂(xtrj )− β(xtrj ))(g(xtrj )− gγ(xtrj ))|

≤ B

bρntrc

bρntrc∑
j=1

|g(xtrj )− gγ(xtrj )|

≤
∣∣ B

bρntrc

bρntrc∑
j=1

|g(xtrj )− gγ(xtrj )| −B‖g − gγ‖L 1
Ptr

∣∣+B‖g − gγ‖L 1
Ptr

≤
√

1

δ

√
B2

ρntr
‖g − gγ‖2L 2

Ptr

+B‖g − gγ‖L 2
Ptr

≤
√

1

δ
BCγζ

√
1

ρntr
+ Cγζ = O(γζ) = O(γ

θ
2θ+4 ). (38)

where L 1
Ptr

denotes the 1-norm Ex∼Ptr |g(x)− gγ(x)|. Notice the second to last line follows from
Chebyshev inequality, Cauchy-Schwarz inequality and the last line from (26).
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Thus, when taking h = gγ and ĝ = ĝγ,Xtr
NR,Y

tr
NR

for some γ > 0, we can combine (31),(33),(37)
and (38) to have,

|VR(ρ)− ν| =O(n
− 1

2
tr ) +O(γ

θ
2θ+4 ) +O(γ−1n

−1/2
tr (n−1

tr + n−1
te )

1
2 )

+O((γ
θ

2θ+4 + γ−1/2n
−1/2
tr + γ−1n

−3/4
tr )n

−1/2
tr + n

−1/2
te )

=O(n
− 1

2
tr + n

− 1
2

te + γ
θ

2θ+4 + γ−
1
2n−1

tr + γ−
1
2n
− 1

2
tr n

− 1
2

te ), (39)

after simplification. Now, if we take γ = n−
θ+2
θ+1 where n , min(ntr, nte), then (39) becomes

|VR(ρ)− ν| = O(n−
1
2 + n−

θ
2(θ+1) + n

θ+2
2(θ+1)n−1) =O(n−

θ
2θ+2 )

=O(n
− θ

(2θ+2)

tr + n
− θ

(2θ+2)

te ), (40)

which is the statement of the theorem. However, note that if we choose γ = n−1, the rate becomes

O(n
− θ

(2θ+4)

tr + n
− θ

(2θ+4)

te ). Moreover if limn→∞ n
6θ+8
3θ+6

te /ntr → 0 and we choose γ = n−1
tr , then the

rate becomes O(n
− θ

2θ+4

tr + n
− 1

2
te ).

Proof of Proposition 1. Fixing γ > 0, if g ∈ H(i.e., g ∈ Range(T
θ

2θ+4

K ) with θ → ∞)), then by
definition of gγ we would have:

‖gγ‖2H ≤
‖gγ − g‖2L 2

Ptr

+ γ‖gγ‖2H
γ

≤
‖g − g‖2L 2

Ptr

+ γ‖g‖2H
γ

= ‖g‖2H, (41)

or equivalently ‖gγ‖H = O(1) since the fixed true regression function ‖g‖H = O(1). Thus, a
simplified analysis shows:

VR(ρ)− ν =
1

bρntrc

bρntrc∑
j=1

β̂(xtrj )Y trj − ν

+
1

bρntrc

bρntrc∑
j=1

β̂(xtrj )ĝ(xtrj )− 1

nte

nte∑
i=1

ĝ(xtei ) (42)

Note that the first term on the right is nothing but the VKMM estimator with 100× ρ percent of the
training data and we shall denote it as VKMM (ρ) without ambiguity. For the second term, assuming
ĝ = ĝγ,Xtr

NR,Y
tr
NR

, is bounded by

1

bρntrc

bρntrc∑
j=1

β̂(xtrj )ĝ(xtrj )− 1

nte

nte∑
i=1

ĝ(xtei )

=
1

bρntrc

bρntrc∑
j=1

β̂(xtrj )
〈
ĝ,Φ(xtrj )

〉
H −

1

nte

nte∑
i=1

〈
ĝ,Φ(xntei )

〉
H

=

〈
ĝ,

1

bρntrc

bρntrc∑
i=1

β̂(xtrj )Φ(xtrj )− 1

nte

nte∑
i=1

Φ(xtei )

〉
H
≤ ‖ĝγ,Xtr

NR,Y
tr
NR
‖HL̂(β̂), (43)

Then, by (42) and (43), we have

|VR(ρ)− ν| ≤|VKMM (ρ)− ν|+ L̂(β̂)(‖gγ − ĝγ,Xtr
NR,Y

tr
NR
‖H + ‖gγ‖H)

=O(n
− 1

2
tr + n

− 1
2

te ), (44)

following (41), (29) and Theorem 1 of Yu & Szepesvári (2012).
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Proof of Proposition 2. If g only satisfies the condition A∞(g, F ) , inf‖f‖H≤F ‖g − f‖ ≤
C(logF )−s for some C, s > 0, then we again follow the analysis in the proof of Proposition 1
and arrive at the decomposition in (42)

|VR(ρ)− ν| ≤|VKMM (ρ)− ν|+ L̂(β̂)(‖gγ − ĝγ,Xtr
NR,Y

tr
NR
‖H + ‖gγ‖H)

=O(log−s
ntrnte
ntr + nte

), (45)

which is the rate of VKMM by Theorem 3 of Yu & Szepesvári (2012).

Proof. Proof of Theorem 2

Define ε , supθ∈D

∣∣∣∣VR(θ)− E[l′(Xte, Y te; θ)]

∣∣∣∣, we have

E[l′(Xte, Yte; θ̂R)]− ε ≤ VR(θ̂R) ≤ VR(θ?) ≤ E[l′(Xte, Yte; θ
?)] + ε. (46)

On the other hand, we know by triangle inequality that ε is bounded by

sup
θ∈D

∣∣ 1

bρntrc

bρntrc∑
j=1

β̂(xtrj )l′(xtrj , y
tr
j ; θ)− 1

nte

nte∑
i=1

l(xtei ; θ)
∣∣

+ sup
θ∈D

∣∣ 1

bρntrc

bρntrc∑
j=1

β̂(xtrj )l̂(xtrj ; θ)− 1

nte

nte∑
i=1

l̂(xtei ; θ)
∣∣+ sup

θ∈D

∣∣ 1

nte

nte∑
i=1

l(xtei ; θ)− E[l(Xte; θ)]
∣∣,

where the first term is bounded by O(n
− 1

2
tr + n

− 1
2

te ) following Corollary in Gretton et al. (2009).

Moreover, the second term is also O(n
− 1

2
tr + n

− 1
2

te ) as in (43) or Lemma 8.7 in Gretton et al. (2009).
For the last term, due to the Lipschitz and compact assumption, it follows from Theorem 19.5 of
Van der Vaart (2000) (see also Example 19.7 of Van der Vaart (2000)) that function class G is Pte-
Donsker, which means that

Gn(θ) ,
√
nte

(
1

nte

nte∑
i=1

l(xtei ; θ)− Ex∼Pte [l(x; θ)]

)
converges in distribution to a Gaussian Process G∞ with zero mean and covariance function
Cov(G∞(θ1),G∞(θ2)) = Ex∼Pte(l(x; θ1)l(x; θ2)) − Ex∼Pte l(x; θ1)Ex∼Pte l(x; θ2). Notice
G∞ can be viewed as random function in C(D), the space of continuous and bounded func-
tion on θ. Since for any z ∈ C(D), the mapping z → ‖z‖∞ , supθ∈D z(θ) is continu-
ous with respect to the supremum norm, it follows from the continuous-mapping theorem that
n

1
2
te supθ∈D

∣∣ 1
nte

∑nte
i=1 l(x

te
i ; θ)−E[l(Xte; θ)]

∣∣ converges in distribution to ‖G∞‖∞ which has finite
expectations based on the assumptions on G (see, e.g., Section 14, Theorem 1 of Lifshits (2013)).
Thus, by definition of convergence in distribution, for any δ > 0, we can find some constant D′ that

P [‖Gn‖∞ > D′] = P [‖G∞‖∞ > D′] + o(1) ≤ δ + o(1), (47)

which means, we can find some N such that when nte > N ,

Pte
(

sup
θ∈D

∣∣∣∣ 1

nte

nte∑
i=1

l(xtei ; θ)− E[l(Xte; θ)]

∣∣∣∣ > n
− 1

2
te D′

)
= Pte(‖Gn‖∞ > D′) ≤ 2δ,

and consequently, with probability 1− 2δ, we have

sup
θ∈D

∣∣ 1

nte

nte∑
i=1

l(xtei ; θ)− E[l(Xte; θ)]
∣∣ ≤ n− 1

2
te D′.

In other words, we also have

sup
θ∈D

∣∣ 1

nte

nte∑
i=1

l(xtei ; θ)− E[l(Xte; θ)]
∣∣ = O(n

− 1
2

te ),

which concludes our proof.
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