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ABSTRACT

Deep reinforcement learning has enabled robots to complete complex tasks in sim-
ulation. However, the resulting policies do not transfer to real robots due to model
errors in the simulator. One solution is to randomize the simulation environment,
so that the resulting, trained policy achieves high performance in expectation over
a variety of configurations that could represent the real-world. However, the dis-
tribution over simulator configurations must be carefully selected to represent the
relevant dynamic modes of the system, as otherwise it can be unlikely to sample
challenging configurations frequently enough. Moreover, the ideal distribution
to improve the policy changes as the policy (un)learns to solve tasks in certain
configurations. In this paper, we propose to use an inexpensive, kernel-based
summarization method method that identifies configurations that lead to diverse
behaviors. Since failure modes for the given task are naturally diverse, the pol-
icy trains on a mixture of representative and challenging configurations, which
leads to more robust policies. In experiments, we show that the proposed method
achieves the same performance as domain randomization in simple cases, but per-
forms better when domain randomization does not lead to diverse dynamic modes.

1 INTRODUCTION

Reinforcement learning (RL, Sutton & Barto (1998)) is a powerful paradigm that has enabled im-
pressive results in controlled environments such as games (Mnih et al., 2015) and simulated robotic
systems (Lillicrap et al., 2015). However, it has proven difficult to transfer these successes to physi-
cal systems, as the simulations that are used for training are only an approximation of the real world.
Consequently, the trained policies may fail to complete the task on the physical system and expen-
sive and impractical retraining in the physical world might be required. In this paper, we consider
the problem of training policies that are robust with respect to these errors in the simulator. Specifi-
cally, we present an algorithm that adaptively identifies a representative and diverse set of simulator
configurations, which is then used to train the policy, see Fig. 1.

Related work Training policies that are robust towards model errors in robotics has mostly been
considered in model-based RL. There, Bayesian models have been used in order to compute policies
that are robust towards the worst-case model (Akametalu et al., 2014; Berkenkamp et al., 2017). By
estimating and improving the model online, these methods allow for safe policy improvement on the
real system. However, these methods suffer from the curse of dimensionality.

In high-dimensional state spaces, model-free RL has been the most successful (Kober & Peters,
2014). In particular, methods based on the natural policy gradient (Kakade, 2002), e.g., proximal
policy optimization (PPO) (Schulman et al., 2017), and deterministic policy gradients (DPG) (Silver
et al., 2014) together with neural network policies have been successful. These methods estimate
the gradient of the performance based on trajectories induced by the current policy. However, the
resulting policies are not robust towards model errors and may fail to work on the real system.
One solution is to consider transfer learning (Taylor & Stone, 2009) or multi-task learning and
environments. Wulfmeier et al. (2017) uses data gathered on the real system in order to improve the
policy on the simulator in parts of the state space that were visited by the real system. An alternative
approach by Marco et al. (2017) uses a Bayesian approach to transfer knowledge about the optimal
policy from simulation to a robot. Both approaches require experiments on the real system. A related
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Figure 1. Illustration of the algorithm. In
order to train robust and universal poli-
cies effectively, our algorithm maintains a
representative set of environments for pol-
icy training. This set is diverse in state-
trajectories and captures diverse dynamic
modes of the underlying system. The sum-
mary is updated by evaluating random con-
figurations, which leads to a data-efficient
algorithm.

approach is used by (Rusu et al., 2017), which first trains a policy in simulation and then extended
the neural network for additional training on the real system.

Alternatively, one can render policies more robust towards model errors on the simulator directly,
without experiments on the physical system. This idea is similar to multi-task learning, where the
goal is to train policies that perform well across multiple tasks (Devin et al., 2017; Teh et al., 2017).
Training a policy accross multiple simulators has first been used in computer vision, where color and
lighting are randomized to make the resulting policy transfer better to real-world conditions (Sadeghi
& Levine, 2017; Tobin et al., 2017). Tan et al. (2018) use the same idea to randomize physical pa-
rameters of the robot. However, while lighting conditions affect the state observations directly and
are designed to be diverse, sampling physical parameters uniformly does not necessarily lead to
diverse state trajectories. We will show that this difference can cause randomization to perform
poorly when difficult parameter combinations are only sampled infrequently. Instead of consider-
ing average performance, both Yu et al. (2017) and Rajeswaran et al. (2016) aim to optimize the
worst-case performance across all configurations. To this end, they sample simulator configurations
and only use the ones with the worst performance under the current policy for training. However,
these approaches require a large number of simulations, most of which are not used to update the
policy, and are thus computationally expensive. Another issue that can arise in these settings is
catastrophic forgetting (Goodfellow et al., 2013), where by training only on the worst-case simu-
lator the policy unlearns how to perform in previously solved simulator configurations. Another
approach by Pinto et al. (2017) considers adversarial training, where an adversary locally disrupts
the simulation. However, local approaches typically do not lead to policies that perform well across
all configurations.

We avoid these problems by using a small but representative summary of simulator configurations
instead. These kind of representative summaries have previously been considered for sensor place-
ment (Krause et al., 2008), where the goal is to cover a space with sensors in order to increase the
amount of information gained while minimizing the cost of placing the sensors. Such representative
summaries have also been used in sequential action selection (Dey et al., 2013), path planning (Dey
et al., 2012), and information gathering tasks (Choudhury et al., 2017; Binney et al., 2010). These
works exploit structure in the problem known as submodularity (Nemhauser et al., 1978), which
leads to tractable algorithms with provably close-to-optimal performance.

Contribution In this paper, we use ideas from data summarization in order to obtain a representa-
tive summary of simulator configurations that capture the diverse and relevant dynamic modes of
the underlying system. Our key contributions are, first, to propose a similarity metric that allows
us to quantify differences in simulator configurations that are invariant to parameter transforma-
tions by encoding dynamic behavior that is physically meaningful. Specifically, we use a kernel
that measures similarity of simulator configurations based on the trajectories induced by the current
policy. Secondly, we propose a tractable algorithm based on streaming submodular optimization
to efficiently and adaptively compute a summary of configurations based on the similarity met-
ric. Together, these two contributions ensure that the resulting summary covers the space of state-
trajectories induced by different simulator configurations well. Thus, by training on this diverse
summary, the resulting policies perform well across all dynamic modes of the simulators. In cases
where uniform sampling of configurations already leads to diverse dynamic modes, our method
achieves the same performance and robustness as domain randomization. However, when this is
not the case and domain knowledge would be needed to specify a suitable sampling distribution,
training on diverse configurations leads to significantly improved performance and robustness.
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(b) Correlations between environments.

Figure 2. The task is to reach the goal without crashing into the obstacle, Fig. 2a. The simulator is param-
eterized by the transformed initial position m ∈ M, so that uniform sampling leads to more trajectories on
the left of the obstacle (gray). Thus, trajectories on the right are underrepresented during training. Instead,
our algorithm analyzes the similarity between trajectories in Fig. 2b and computes a diverse and representative
summary (blue lines), which counteracts the sampling bias.

2 PROBLEM STATEMENT AND BACKGROUND

We consider a simulator with state space S ⊆ Rd and actions in A. During simulation, the
whole state space is observed. The simulator is parameterized by a set of physically meaning-
ful parameters M. These parameters represent different simulator configurations by, for exam-
ple, modify the task or changing physical properties of a robot, such as mass or friction. The
goal is to train a single policy that performs well across all the possible configurations in M.
Since this set represents all uncertainties about the real-world system, policies that perform well
across all configurations are likely to perform well in the real-world too. The simulator param-
eters affect the transition dynamics, so that each choice of parameters m ∈M encodes a sepa-
rate Markov decision process 〈S,A, Tm, c, γ〉, where the stochastic transition dynamics Tm de-
pend on the simulator parameters m. Performance for a fixed simulator configuration m ∈ M
under a policy πθ is measured via the expected γ-discounted future rewards r(·), which is given by
Jθ(m) = Eat∼πθ(st),st+1∼Tm(st,at)[

∑∞
t=0 γ

tr(st, at)]. This objective can be maximized for a fixed
model m by estimating the gradients with respect to the policy parameters θ from state trajectories
obtained through simulated rollouts (Kakade, 2002).

To achieve robustness across all configurationsM, ideally we would optimize the worst-case per-
formance directly: maxθ minm∈M Jθ(m). However, this problem is intractable and, even if it was,
gradient-based updates based on the worst-case configuration may not converge for neural network
policies. Consider the problem in Fig. 2a, where the goal is to reach a target behind an obstacle and
the simulator is parameterized by the starting position at the bottom. If the initial worst-case starting
position is left of the obstacle, the gradient update will push state trajectories away from the obstacle
towards the right. In contrast, when the starting position is right of the obstacle, the policy update
will push the trajectory to the left. These two opposing updates can lead to an oscillating cycle
during the optimization with slow or no convergence to the optimal policy. The underlying problem
is that the gradient is estimated based on trajectories that do not cover the state-space sufficiently, so
that policy improvement to the left of the obstacle leads to worse performance on the right side and
vice-versa. This kind of forgetting is well-known in multi-task reinforcement learning (Goodfellow
et al., 2013) and was also hinted at in (Rajeswaran et al., 2016).

To avoid this issue in practice, one can instead replace the minimum by a finite sum over a small,
but representative set of modelsMs ⊂M,

max
θ

∑
m∈Ms

Jθ(m), (1)

which can be easily solved using standard batch policy gradient methods. The choice of Ms is
critical, since it needs to capture all relevant dynamic modes inM that cover the state space in order
to avoid training issues as in Fig. 2a. Domain randomization typically samples Ms uniformly at
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random fromM after every policy update. However, this only ensures coverage in the parameter
space M. The resulting coverage in terms of state-trajectories depends on the parameterization
ofM, transition dynamics, and the policy. For example, in the model in Fig. 2a uniform sampling
in parameter space leads to trajectories that pass to the left of the obstacle more frequently than to
the right. This leads to a training bias, where parameters on the right have worse performance, since
the corresponding trajectories are underrepresented during training. Instead, the setMs should be
selected to be diverse in state-trajectories, as shown by the blue lines in Fig. 2a. This ensures that
also tasks that parameter configurations that are sampled infrequently under the uniform distribution
achieve good performance. As a consequence, the resulting policies trained on diverse trajectories
are more robust.

In summary, we want to select a setMs that represents diverse dynamic modes and state-trajectories
of the underlying system, without exploiting domain knowledge about how to parameterize M.
Moreover, we want to compute this set efficiently, without requiring large amount wasteful rollouts
that are not used for training as in (Yu et al., 2017; Rajeswaran et al., 2016).

Submodular Optimization As stated previously, the parameters in Ms should represent diverse
induced state-trajectories. This kind of diversity requirement has previously been considered, espe-
cially in form of the sensor placement problem (Krause et al., 2008). There, the goal is to cover a
space with sensors in order to maximize the amount of information gained. In general, this is a dif-
ficult combinatorial optimization problem, which requires evaluating every possible combination of
sensors in order to find the best one. To obtain a tractable and probably close-to-optimal algorithm,
Krause et al. (2008) exploit a diminishing returns property of the problem known as submodularity.

Conceptually, submodularity states that adding a sensor to a small set of existing sensors always
provides more information than when we already have a large set of sensors that cover the space.
More precisely, a set function f that maps a subset Ms of the domain M to the reals is called
submodular if, for any two summariesMs ⊂ U ⊂M and any additional new element m ∈ M, it
holds that that f(Ms ∪ {m})− f(Ms) ≥ f(U ∪ {m})− f(U); that is, for the larger set U adding
a new sensor m helps less than for the small set S. Another natural assumption is monotonicity,
which means that larger summaries are always better, f(U) ≥ f(Ms). Maximizing monotone
submodular functions can be done efficiently using the greedy algorithm with an approximation
ratio of at least 1− 1/e ≈ 0.68 relative to the optimal solution (Nemhauser et al., 1978). The greedy
algorithm starts with the empty set Ms = {} and greedily selects the element that maximally
improves the function value within one step, until a constraint on the size ofMs is reached.

Ms ←Ms ∪ argmax
m∈M

f(Ms ∪ {m}). (2)

Streaming Submodular Optimization The greedy algorithm in (2) iteratively constructs the
set Ms by evaluating all possible elements m in M that could be added to the current set. This
requirement is relaxed by streaming submodular optimization algorithms, which assume that the
data comes in as a stream and one has to decide for each element whether to add it to the summary
or disregard it. The STREAM-GREEDY algorithm by Krause & Gomes (2010) considers a conceptu-
ally straight-forward extension of the greedy algorithm (2). For each new element m in the stream,
they consider if there is a benefit of replacing one of the current elements m′ ∈ Ms in the current
summary with m,

(m′,m) = argmax
m′∈Ms,m∈Ms∪{m}

f(Ms \ {m′} ∪ {m}), Ms ←Ms \ {m′} ∪ {m}, (3)

This algorithm also enjoys constant-factor optimization guarantees (Krause & Gomes, 2010). The
bounds can be further improved with a more complicated algorithm (Badanidiyuru et al., 2014).

3 MAIN ALGORITHM

In this section, we show how to use techniques from streaming submodular optimization to obtain
representative summaries of simulator configurations that can be used to train robust neural network
policies. First, we need to specify an objective set function f(·) that measures the quality of a given
summaryMs. Following the discussion in Sec. 2, we aim to find diverse dynamics modes, which is
similar to the sensor placement problem in Krause et al. (2008). There, the objective is

f(Ms) =
∑
Ms

log
∣∣I + σ−2KMs

∣∣, (4)
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which computes a diversity score based on a kernel matrix KMs
∈ RN×N , where N is the size of

the summary. The kernel matrix is defined through a kernel function, [KMs
](i,j) = k(mi,mj) that

measures the similarity of two elements in the summary set Ms = {mi}Ni=0. We provide more
details of how to select the kernel later. The diversity measure in (4) has an information-theoretic
interpretation as the mutual information, if we obtain noisy measurements at parameters inMs of a
Gaussian distrubution with covariance KMs

. Intuitively, (4) assigns high values to summaries that
are very diverse, as measured under the kernel. The parameter σ−2 is a tuning parameter that has no
larger importance to us. We set σ−2 = 1e8. See Krause et al. (2008) for more details.

Kernel Selection for Diversity The choice of kernel is critical, since it encodes our notion of cov-
erage. From the motivation in Sec. 2, it follows that we want to cover the state space S in terms of
trajectories that cover the state-space. Typically, kernels are defined on the set of parametersm ∈M
directly. This would lead to behavior similar to domain randomization, as it only considers coverage
in parameter space. However, as seen in Fig. 2a close to the obstacle, a small change in parameters
can lead to drastically different trajectories. This violates the assumptions made by typically used
kernels. As a result, coverage in terms of simulator parameters can perform poorly, an intuition that
is also confirmed by our experiments in Sec. 4.

To avoid this issue, we propose to define the kernel directly on the trajectories induced by simulator
parameters. That is, for two simulator configurations m,m′ ∈ M, we evaluate the state trajecto-
ries τm and τm′ by rolling out under the current policy πθ. It is possible to define several measures of
similarity based on these trajectories. We choose to measure similarity based on the exponentiated
`1-distance, which is called the laplace kernel,

k(m,m′) = exp

(
−

dim(S)∑
i=1

1

l1
‖τ im − τ im′‖1

)
, (5)

where τ im is the ith state-component of the state trajectory τm and li is a scaling factor. This ker-
nel considers two trajectories to be similar if their weighted difference in states for each time step
is small under the 1-norm. This error is physically meaningful, since it is expressed in terms of
states. For example, it might correspond to the average difference in positions of two robots. The
scalars li determine the relative weighting of state dimensions. Trajectories with state difference
smaller than li are considered to very similar, with an exponential decrease in similarity as the error
increases. If the two trajectories are of different lengths, we hold the last state of the shorter tra-
jectory. In terms of the parameter spaceM, this kernel often encodes non-stationary phenomena,
where a small change in parameters can sometimes lead to a large change in similarity. For exam-
ple, the kernel is used to compute similarities in Fig. 2b, which leads to the summary (blue lines)
in Fig. 2a. While other norms and kernels can be used, e.g., (Wilson et al., 2014), we have found
that this kernel is easy to tune and specify using readily available intuition about the system at hand.

Optimization Algorithm With the kernel defined, we now consider the optimization problem
max

Ms⊂M,|M|<N
f(Ms), (6)

where the goal is to find a summaryMs of size N that maximizes the objective (4). The objective
function (4) is monotone submodular (Krause & Guestrin, 2005), which means it can be efficiently
optimized using the greedy algorithm. However, unlike in the classic submodular optimization case,
we face two additional challenges. Firstly, the classic submodular optimization setting assumes that
it is possible to compute the kernel matrix over all possible, discrete parameters inM. However,
in our setting the set M is continuous and evaluating the kernel (similarity) requires a complete
rollout of the system under the current policy. Since this is intractable, it is impossible to use the
greedy algorithm in (2) in order to solve (6). Secondly, every time we update the parameters θ of
the policy πθ, the system trajectories, and thus also the objective function (4), change. This is in
contrast to submodular optimization, which considers the objective function f to be fixed.

We overcome these issues by using an algorithm inspired by streaming submodular optimization,
see Sec. 2. The resulting algorithm is summarized in Algorithm 1. It starts by sampling a summary
set Ms uniformly at random from the domain M in Line 2. Then the algorithm proceeds to the
policy optimization loop. At each iteration, it starts by rolling out trajectories for each configuration
m ∈Ms under the current policy in the simulator. This updates the objective function (4) based on
the new trajectories under the policy. As a next step, the algorithm samplesNs new simulator config-
urations uniformly at random as in standard domain randomization, and updates the summaryMs
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Algorithm 1 Diverse Domain Summarization

1: Input: πθ,M, Ns
2: Sample summaryMs ⊂M uniformly at random.
3: for n = 1, . . . do
4: Evaluate trajectories τm for simulators m ∈Ms.
5: for k = 1, . . . , Ns do
6: Sample parameter m ∈M uniformly at random.
7: Evaluate trajectory τm.
8: Update summaryMs with (3) and objective (4).
9: Policy update based on trajectories τm, m ∈Ms.

by replacing elements in Ms whenever an improvement in the objective is possible in Lines 6-8.
Lastly, the algorithm uses the current summaryMs and already computed, corresponding trajecto-
ries in order to update the policy using standard policy gradient methods. While the algorithm still
samples and evaluates Ns simulator configurations uniformly at random, this number can be small,
as the policy, and therefore the optimal summary with respect to f , change relatively slowly between
policy updates.

When the model set M is discrete, we can recover theoretical guarantees for the solution quality
of the STREAM-GREEDY algorithm (3) for solving (6). The only additional requirement is that
the objective function changes slowly enough in terms of maximum pointwise distance, which is
typically satisfied if the learning rate of the policy update is chosen small and the dynamics, policy,
and rewards are Lipschitz continuous. In this case, it follows from the theoretical analysis in (Krause
& Gomes, 2010, Thm. 4) that this variant of the algorithm can track the optimal summary up to a
constant factor.

Practical considerations The main tuning parameters of Algorithm 1 are the diversity measure and
kernel, the size of the summary N , and the number of simulator configurations that are sampled
at each iteration Ns. As discussed, the kernel has a physically meaningful interpretation in terms
of distance of trajectories. However, while the relative weighting of the parameters l is physically
meaningful, the overall magnitude is arbitrary. Overall we have found that multplying all li by a
constant does not affect the resulting summary significantly. Only the two limit cases, where li
is so large that almost all summaries are equivalent or where li is so small that the difference in
similarity drops below numerical accuracy, can cause problems. We avoid these by making sure that
the current solution f(M) lies between 20% and 70% of the maximal possible value f that would be
achieved ifKMs

was the identity matrix. We enforce this constraint via an efficient line search. The
appropriate size of the summary depends on the complexity of the dynamics, the number of different
dynamic modes one expects to cover, and on how many rollouts are required to obtain sufficiently
low variance in the policy gradients. The number of random rollouts should be as large as possible,
but we have found that Ns = 0.2N is typically sufficient.

Many variants of Algorithm 1 are possible, which may combine random samples into the gradient-
based updates or consider additional weightings inside the summary more akin to the algorithms
in Yu et al. (2017); Rajeswaran et al. (2016). We consider this paper a first step towards highlighting
the importance of coverage in terms of state-trajectories when training universal policies.

4 EXPERIMENTS

In this section, we evaluate Algorithm 1 on two benchmark problems: The illustrative example
in Fig. 2a using DPG, and a high-dimensional robotic environment example based on PyBul-
let (Coumans & Bai, 2016) using PPO. As performance measures, we consider the average per-
formance over M and the diverse performance that is computed by sampling large amounts of
environments and using the greedy algorithm to compute a representative summary. Note that this is
computationally expensive and that Algorithm 1 only has access to small batches for training, which
means its summary can only ever approximate the diverse performance objective during training.

Illustrative Example We consider the illustrative example in Fig. 2a. The dynamics are given by the
Dubins car model; a simplistic model of a car that moves at constant velocity. It has two states that
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Figure 3. Example run of Algorithm 1 for the example system in Fig. 2a. Random sampling in the parameter
space leads to initial conditions that are biased to the left of the obstacle (black line, Fig. 3c). While the average
performance in Fig. 3a is good for all methods, only our method is able to counteract the sampling bias by
keeping track of diverse environments in Fig. 3c. This is also reflected in the performance over a diverse
summary of environments in Fig. 3b. EP-opt only works with significantly more samples than available here.

correspond to the x and y position. With the steering angle a ∈ [−π/4, π/4] as control input, the
continuous time dynamics are given by ẋ = sin(a) and ẏ = cos(a). The simulator is parameterized
by the initial x-position, M = [−2, 2], while the initial y-position is equal to −2. An episode
terminates with a reward of +10 if the car enters the goal circle with radius 0.5 at (0, 2) and a reward
of −10 if it enters the obstacle ball at the origin with radius 1, or if the state trajectory diverges and
leaves the ball with radius 3. Intermediate rewards are equal to r(s, a) = 0.2 − 0.1‖s − (0, 2)‖22,
which consists of a 0.2 bonus for staying alive and a cost that penalizes distance from the goal.

This is an easy RL problem. To make it more challenging, we reparameterize the initial position
so that uniform sampling fromM leads to initial x positions that follows a beta distribution, x0 ∼
B(0.5, 2). This causes typical trajectories to lie on the left of the obstacle (x < 0), see Fig. 2a (gray
lines). This is representative of higher-dimensional problems, where one may see only few random
samples for certain, challenging situations. As a result, the average error over parameters m is no
longer a suitable objective. To overcome this challenge, we use Algorithm 1 with a summary size
of N = 7 in order to cover diverse dynamics modes, similar to the blue lines in Fig. 2a. The kernel
is defined as in (5) and considers the average distance with l0 = l1. As a result, the algorithm aims
to find parameters that lead to different trajectories (e.g., starting from the left and right).

We use the DDPG algorithm from (Lillicrap et al., 2015) to train a deterministic policy. The only
difference is that the value function baseline must additionally depend on the environment parame-
term. This is necessary, since DDPG is an actor-critic algorithm and the value function must be able
to capture the different future values depending on the parameters. The policy is a two-layer neural
network with relu activations and a tanh activation at the output to saturate actions. It only depends
on the state. For each environment that is selected by the algorithm, we rollout in simulation with
the policy corrupted by noise for 1000 time steps in order obtain policy gradient estimates.

We compare against two baselines. The first on is random sampling, which samples parameters
uniformly and thus initial x-positions from the beta distribution. The second baseline is EP-OPT,
the method from (Yu et al., 2017) and (Rajeswaran et al., 2016), which also samples uniformly, but
where we only train on the worst 7 environments. For a fair comparison, each algorithm is allowed
to select at most N +Ns = 10 rollouts and all algorithms use the same policy gradient method with
the same tuning parameters and network structure.

The results can be seen in Fig. 3, which shows the average cumulative reward over initial positions x.
Note that this is different from the model parameters m. Confidence intervals (shaded region) show
the standard deviation across 10 different random seeds. We do not optimize over random seeds.
The two baselines that sample randomly from the domainM solve the task with respect to their own
metrics, which effectively considers initial conditions samples from the prior distribution in Fig. 3c
(black line), and achieve high average performance in Fig. 3a. However, due to the sampling bias
they only rarely encounter initial conditions on the right side of the obstacle, so that the resulting
policy only works for starting positions to the left of the obstacle. This is reflected in the poor diverse
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Model Average performance Diverse performance

Summary 2078.32± 345.18 1956.06± 357.59

Random 2056.40± 575.05 1845.58± 750.19

Table 1. Average and diverse performance on the PyBullet HalfCheetah environment across 8 random seeds.

performance in Fig. 3b. Under the constraint on the number of rollouts, EP-OPT does not work,
since it is unable to conduct large amounts of rollouts to identify the worst environments. In contrast,
Algorithm 1 does not resample at every step, but keeps track of a diverse summary. This summary
covers all starting positions, as can be seen in Fig. 3c. Thus, the algorithm counteracts the sampling
bias and allows it to solve all environments. This is also reflected in a high performance over diverse
environments, even though the algorithm does not waste large amounts of samples to compute a
diverse summary at every step. Notably, the summarization method achieves an even better average
performance, since it can additionally solve the rare samples to the right of the obstacle. All methods
solve the task successfully without the reparameterization.

Robotics We also apply our method to a higher-dimensional system. We use the simulated robotic
half-cheetah provided by the PyBullet simulation environments (Coumans & Bai, 2016), but modify
the simulation parameters. In particular, we introduce uncertainty in all seven body masses and
the friction constant between the two feet and the ground, with errors of up to 50% of the original
parameters. We use the PPO implementation in Tensorflow Agents (Hafner et al., 2017) in order to
train a two-layer relu network as a policy. The hyperparameters of the training algorithm are set as
suggested in (Coumans & Bai, 2016; Hafner et al., 2017).

As in the previous example, we randomly sample parameters from the high-dimensional parameter
setM and use the kernel from (5) to summarize this set. Since the states have different magnitudes,
we normalize the position and rotation parameters in order to compare unit-free states in the kernel
computation. To summarize the parameter space, we use N = 24 environment summaries with
Ns = 6 random samples. The summary size is larger, since the higher-dimensional system has more
diverse dynamic modes than the previous illustrative example. For ease of implementation and since,
in higher dimensional system, the variance of the policy gradients becomes a significant factor, we
train the robot on both the environment summaries and the Ns random rollouts. This means that the
resulting objective is a mixture of average and diverse performance. We compute the average and
diverse performance of the resulting policies by sampling 1000 parameter configurations and rolling
them out on the robot. The diverse performance is computed by using the greedy algorithm on this
large set. This data information is not available to the training algorithm.

We train each policy for 250 million timesteps based on 8 random seeds. We did not optimize over
the seeds. The resulting performances are shown in table Sec. 4. Both the method based on domain
randomization and the summary achieve similar average performance, but the standard deviation of
the summary method is significantly lower. Based on the insights from the previous illustrative ex-
ample, a likely cause is that diverse summaries more regularly encounter difficult training scenarios
than pure random sampling, which leads to more robust optimization behavior. The diverse per-
formance of the summary method is both higher in expectation and has a standard deviation that is
50% smaller than that of domain randomization. This shows that the summary has more consistent
performance across all configurations, rather than focusing on the ones that are likely to be sampled.

In summary, it can be seen that the summarization method can help identify relevant dynamic modes
and help improve the performance of the model across all state trajectories, independently of how
likely they are to be sampled under domain randomization. Importantly, adding this randomization
typically does not decrease average performance. However, it can help improve performance in
situations that are not represented sufficiently during training.

5 CONCLUSION

We presented Algorithm 1, a data-efficient summarization method that maintains representative
summaries of simulator configurations in order to train robust policies using policy gradient meth-
ods. We showed that these summaries are invariant under reparameterization and can help in chal-
lenging situations where uniform sampling might not be appropriate.
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