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ABSTRACT

We propose a novel attention mechanism to enhance Convolutional Neural Net-
works for fine-grained recognition. The proposed mechanism reuses CNN feature
activations to find the most informative parts of the image at different depths with
the help of gating mechanisms and without part annotations. Thus, it can be used
to augment any layer of a CNN to extract low- and high-level local information to
be more discriminative.
Differently, from other approaches, the mechanism we propose just needs a single
pass through the input and it can be trained end-to-end through SGD. As a con-
sequence, the proposed mechanism is modular, architecture-independent, easy to
implement, and faster than iterative approaches.
Experiments show that, when augmented with our approach, Wide Residual Net-
works systematically achieve superior performance on each of five different fine-
grained recognition datasets: the Adience age and gender recognition benchmark,
Caltech-UCSD Birds-200-2011, Stanford Dogs, Stanford Cars, and UEC Food-
100, obtaining competitive and state-of-the-art scores.

1 INTRODUCTION

Humans and animals process vasts amounts of information with limited computational resources
thanks to attention mechanisms which allow them to focus resources on the most informative chunks
of information. These biological mechanisms have been extensively studied (see Anderson (1985);
Desimone & Duncan (1995)), concretely those mechanisms concerning visual attention, e.g. the
work done by Ungerleider & G (2000).

In this work, we inspire on the advantages of visual and biological attention mechanisms for fine-
grained visual recognition with Convolutional Neural Networks (CNN) (see LeCun et al. (1998)).
This is a particularly difficult task since it involves looking for details in large amounts of data
(images) while remaining robust to deformation and clutter. In this sense, different attention mech-
anisms for fine-grained recognition exist in the literature: (i) iterative methods that process images
using ”glimpses” with recurrent neural networks (RNN) or long short-term memory (LSTM) (e.g.
the work done by Sermanet et al. (2015); Zhao et al. (2017b)), (ii) feed-forward attention mecha-
nisms that augment vanilla CNNs, such as the Spatial Transformer Networks (STN) by Jaderberg
et al. (2015), or a top-down feed-forward attention mechanism (FAM) (Rodrı́guez et al. (2017)).
Although it is not applied to fine-grained recognition, the Residual Attention introduced by Wang
et al. (2017) is another example of feed-forward attention mechanism that takes advantage of resid-
ual connections (He et al. (2016)) to enhance or dampen certain regions of the feature maps in an
incremental manner.

Inspired by all the previous research about attention mechanisms in computer vision, we propose a
novel feed-forward attention architecture (see Figure 1) that accumulates and enhances most of the
desirable properties from previous approaches:

1. Detect and process in detail the most informative parts of an image: more robust to defor-
mation and clutter.

2. Feed-forward trainable with SGD: faster inference than iterative models, faster convergence
rate than Reinforcement Learning-based (RL) methods like the ones presented by Sermanet
et al. (2015); Liu et al. (2016).
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Figure 1: The proposed mechanism. Feature maps at different levels are processed to generate
spatial attention masks and use them to output a class hypothesis based on local information and a
confidence score (C). The final prediction consists of the average of all the hypotheses weighted by
the normalized confidence scores.

3. Preserve low-level detail: unlike Residual Attention (Wang et al. (2017)), where low-level
features are subject to noise after traversing multiple residual connections, our architecture
directly uses them to make predictions. This is important for fine-grained recognition,
where low-level patterns such as textures can help to distinguish two similar classes.

Moreover, the proposed mechanism possesses other interesting properties such as:

1. Modular and incremental: the attention mechanism can be replicated at each layer on any
convolutional architecture, and it is easy to adapt to the task at hand.

2. Architecture independent: the mechanism can accept any pre-trained architecture such as
VGG (Simonyan & Zisserman (2014)) or ResNet.

3. Low computational impact: While STNs use a small convnet to predict affine-transform
parameters and Residual Attention uses the hourglass architecture, our attention mechanism
consists of a single 1× 1 convolution and a small fully-connected layer.

4. Simple: the proposed mechanism can be implemented in few lines of code, making it
appealing to be used in future work.

The proposed attention mechanism has been included in a strong baseline like Wide Residual Net-
works (WRN) (Zagoruyko & Komodakis (2016)), and applied on five fine-grained recognition
datasets. The resulting network, called Wide Residual Network with Attention (WRNA) systemati-
cally enhances the performance of WRNs, obtains competitive results using low resolution training
images, and surpasses the state of the art in the Adience gender recognition task, Stanford dogs, and
UEC Food-100. Table 1 shows the gain in performance of WRNA w.r.t. WRN for all the datasets
considered in this paper.

In the next section, we review the most relevant work concerning attention mechanisms for visual
fine-grained recognition.

2 RELATED WORK

As reviewed by Zhao et al. (2017a), there are different approaches to fine-grained recognition: (i)
vanilla deep CNNs, (ii) CNNs as feature extractors for localizing parts and do alignment, (iii) en-
sembles, (iv) attention mechanisms.

In this paper we focus on (iv), the attention mechanisms, which aim to discover the most discrim-
inative parts of an image to be processed in greater detail, thus ignoring clutter and focusing on
the most distinctive traits. These parts are central for fine-grained recognition, where the inter-class
variance is small and the intra-class variance is high.
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Task WRN WRNA ∆

Age 58.6 59.7 +1.1
Birds 81.0 82.0 +1.0
Food 84.3 85.5 +1.2
Dogs 89.6 89.9 +0.4
Cars 87.8 90.0 +2.2
Gend 93.9 94.8 +0.9

Table 1: Performance of WRN and our approach (WRA) on the Adience benchmark for Age, Gender
(Gend); CUB200-2011 (Birds); Stanford cars (Cars); Stanford dogs (Dogs); and UEC Food-100
(Food). The absolute accuracy improvement (in %) is marked as ∆. Bold performance indicates
outperforming the state of the art. The augmented network consistently outperforms the baseline up
to a relative 18% relative error decrease on Cars.

Different fine-grained attention mechanisms can be found in the literature. Xiao et al. (2015) pro-
posed a two-level attention mechanism for fine-grained classification on different subsets of the
ICLR2012 (Russakovsky et al. (2012)) dataset, and the CUB200 2011. In this model, images are
first processed by a bottom-up object proposal network based on R-CNN (Zhang et al. (2014)) and
selective search (Uijlings et al. (2013)). Then, the softmax scores of another ILSVRC2012 pre-
trained CNN, which they call FilterNet, are thresholded to prune the patches with the lowest parent
class score. These patches are then classified to fine-grained categories with a DomainNet. Spectral
clustering is also used on the DomainNet filters in order to extract parts (head, neck, body, etc.),
which are classified with an SVM. Finally, the part- and object-based classifier scores are merged
to get the final prediction. The two-level attention obtained state of the art results on CUB200-2011
with only class-level supervision. However, the pipeline must be carefully fine-tuned since many
stages are involved with many hyper-parameters.

Differently from two-level attention, which consists of independent processing and it is not end-
to-end, Sermanet et al. proposed to use a deep CNN and a Recurrent Neural Network (RNN)
to accumulate high multi-resolution ”glimpses” of an image to make a final prediction (Sermanet
et al. (2015)), however, reinforcement learning slows down convergence and the RNN adds extra
computation steps and parameters.

A more efficient approach was presented by Liu et al. in (Liu et al. (2016)), where a fully-
convolutional network is trained with reinforcement learning to generate confidence maps on the
image and use them to extract the parts for the final classifiers whose scores are averaged. Com-
pared to previous approaches, in the work done by Liu et al. (2016), multiple image regions are
proposed in a single timestep thus, speeding up the computation. A greedy reward strategy is also
proposed in order to increase the training speed. The recent approach presented by Fu et al. (2017)
uses a classification network and a recurrent attention proposal network that iteratively refines the
center and scale of the input (RA-CNN). A ranking loss is used to enforce incremental performance
at each iteration.

Zhao et al. proposed Diversified Visual Attention Network (DVAN), i.e. enforcing multiple non-
overlapped attention regions (Zhao et al. (2017b)). The overall architecture consists of an attention
canvas generator, which extracts patches of different regions and scales from the original image; a
VGG-16 (Simonyan & Zisserman (2014)) CNN is then used to extract features from the patches,
which are aggregated with a DVAN long short-term memory (Hochreiter & Schmidhuber (1997))
that attends to non-overlapping regions of the patches. Classification is performed with the average
prediction of the DVAN at each region.

All the previously described methods involve multi-stage pipelines and most of them are trained
using reinforcement learning (which requires sampling and makes them slow to train). In contrast,
STNs, FAM, and our approach jointly propose the attention regions and classify them in a single
pass. Moreover, they possess interesting properties compared to previous approaches such as (i)
simplicity (just a single model is needed), (ii) deterministic training (no RL), and (iii) feed-forward
training (only one timestep is needed), see Table 2. In addition, since our approach only uses one
CNN stream, it is far more computationally efficient than STNs and FAM, as described next.
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Publication Single
Stream

Single
Pass

SGD
Trainable

Sermanet et al. (2015) × × ×
Xiao et al. (2015) × × ×
Liu et al. (2016) × × ×
Fu et al. (2017) × × X
Rodrı́guez et al. (2017) × × X
Lin et al. (2017) × × X
Jaderberg et al. (2015) ×∗ X X
Zhao et al. (2017b) X × X
Ours X X X

Table 2: Comparison of Attention models in the Computer Vision Literature. Single Stream: input
data is fed through a single CNN tower. Single pass: train and inference outputs are obtained in
a single pass trough the model. SGD Trainable: the model can be trained end-to-end with SGD.
Multiple Regions: the attention mechanism can extract information of multiple regions of the image
at once. (∗) the size of the attention module is unbounded (thus could consist of a whole CNN
pipeline).

3 OUR APPROACH

Our approach consists of a universal attention module that can be added after each convolutional
layer without altering pre-defined information pathways of any architecture. This is helpful since it
allows to seamlessly augment any architecture such as VGG and ResNet with no extra supervision,
i.e. no part labels are necessary. The attention module consists of three main submodules: (i) the
attention heads H, which define the most relevant regions of a feature map, (ii) the output heads
O, generate an hypothesis given the attended information, and (iii) the confidence gates G, which
output a confidence score for each attention head. Each of these modules is explained in detail in
the following subsections.

3.1 OVERVIEW

As it can be seen in Fig 1, 2a, and 2b, a 1× 1 convolution is applied to the output of the augmented
layer, producing an attentional heatmap. This heatmap is then element-wise multiplied with a copy
of the layer output, and the result is used to predict the class probabilities and a confidence score.
This process is applied to an arbitrary number N of layers, producing N class probability vectors,
and N confidence scores. Then, all the class predictions are weighted by the confidence scores
(softmax normalized so that they add up to 1) and averaged (using 9). This is the final combined
prediction of the network.

3.2 ATTENTION HEAD

Inspired by DVAN (Zhao et al. (2017b)) and the transformer architecture presented by Vaswani
et al. (2017), and following the notation established by Zagoruyko & Komodakis (2016), we have
identified two main dimensions to define attentional mechanisms: (i) the number of layers using the
attention mechanism, which we call attention depth (AD), and (ii) the number of attention heads
in each attention module, which we call attention width (AW). Thus, a desirable property for any
universal attention mechanism is to be able to be deployed at any arbitrary depth and width.
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Figure 2: Scheme of the submodules in the proposed mechanism. (a) depicts the attention heads, (b)
shows a single output head.

This property is fulfilled by including K attention heads Hk (width), depicted in Figure 2a, into
each attention module (depth)1. Then, the attention heads at layer l, receive the feature activations
Zl of that layer as input, and output K weighted feature maps, see Equations 1 and 2:

Ml = spatial softmax(Wl
H ∗ Zl), (1)

Hl = Ml � Zl, (2)

where Hl is the output matrix of the lth attention module, WH is a 1 × 1 convolution kernel with
output dimensionality K used to compute the attention masks corresponding to the attention heads
Hk, ∗ denotes the convolution operator, and � is the element-wise product. Please note that Ml

k
is a 2d flat mask and the product with each of the N input channels of Z is done by broadcasting.
Likewise, the dimensionality of Hl

k is the same as Zl. The spatial softmax is used to enforce the
model to learn the most relevant region of the image. Sigmoid units could also be used at the risk of
degeneration to all-zeros or all-ones.

Since the different attention heads in an attention module are sometimes focusing on the same exact
part of the image, similarly to DVAN, we have introduced a regularization loss LR that forces the
multiple masks to be different. In order to simplify the notation, we set ml

k to be kth flattened
version of the attention mask M in Equation 1. Then, the regularization loss is expressed as:

LR =

K∑
i=1

∑
j 6=i

||Ml
i(M

l
j)

T ||22, (3)

i.e., it minimizes the squared Frobenius norm of the off-diagonal cross-correlation matrix formed by
the squared inner product of each pair of different attention masks, pushing them towards orthogo-
nality (LR = 0). This loss is added to the network loss Lnet weighted by a constant factor γ = 0.1
which was found to work best across all tasks:

L∗net = Lnet + γLR (4)

1Notation: H,O,G are the set of attention heads, output heads, and attention gates respectively. Uppercase
letters are used as functions or constants, and lowercase letters are used as indices. Bold uppercase represent
matrices and bold lowercase represent vectors.
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AD AW G ∆

1 1 +1.2
2 1 +1.4
2 2 +1.5
2 2 X +1.6

Table 3: Average performance impact across datasets on (in accuracy %) of the attention depth
(AD), attention width (AW ), and the presence of gates (G) on WRN.

3.3 OUTPUT HEAD

The output of each attention module consists of a spatial dimensionality reduction layer:

F : Rx×y×n → R1×n, (5)

followed by a fully-connected layer that produces an hypothesis on the output space, see Figure 2b.

ol = F (Hl)Wl
O (6)

We consider two different dimensionality reductions: (i) a channel-wise inner product by W1×n
F ,

where WF is a dimensionality reduction projection matrix with n the number of input channels;
and (ii) an average pooling layer. We empirically found (i) to work slightly better than (ii) but at a
higher computational cost. WF is shared across all attention heads in an attention module.

3.4 ATTENTION GATES

Each attention module makes a class hypothesis given its local information. However, in some cases,
the local features are not good enough to output a good hypothesis. In order to alleviate this problem,
we make each attention module, as well as the network output, to predict a confidence score c by
means of an inner product by the gate weight matrix WG:

cl = tanh(F (Hl)Wl
G). (7)

The gate weights g are then obtained by normalizing the set of scores by means of a softmax
function:

glk =
ec

l
k∑|G|

i=1 e
ci
, (8)

where |G| is the total number of gates, and ci is the ith confidence score from the set of all confidence
scores. The final output of the network is the weighted sum of the output heads:

output = gnet · outputnet +
∑

h in{1..|H|}

∑
k∈{1..K}

glk · ol
h, (9)

where gnet is the gate value for the original network output (outputnet), and output is the final
output taking the attentional predictions ol

h into consideration. Please note that setting the output of
G to 1

|G| , corresponds to averaging all the outputs. Likewise, setting {G\Goutput} = 0, Goutput = 1,
i.e. the set of attention gates is set to zero and the output gate to one, corresponds to the original
pre-trained model without attention.

In Table 3 we show the importance of each submodule of our proposal on WRN. Instead of aug-
menting all the layers of the WRN, in order to have the minimal computational impact and to attend
features of different levels, attention modules are placed after each pooling layer, where the spatial
resolution is divided by two. Attention Modules are thus placed starting from the fourth pooling
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layer and going backward when AD increases. As it can be seen, just adding a single attention
module with a single attention head is enough to increase the mean accuracy by 1.2%. Adding ex-
tra heads and gates increase an extra 0.1% each. Since the first and second pooling layers have a
big spatial resolution, the receptive field for AD > 2 was too small and did not result in increased
accuracy.

The fact that the attention mask is generated by just one 1× 1 convolution and the direct connection
to the output makes the module fast to learn, thus being able to generate foreground masks from the
beginning of the training and refining them during the following epochs. A sample of these attention
masks for each dataset is shown on Figure 3.

(a) (b) (c)

(d) (e) (f)

Figure 3: Attention masks for each dataset: (a) dogs, (b) cars, (c) gender, (d) birds, (e) age, (f)
food. As it can be seen, the masks help to focus on the foreground object. In (c), the attention mask
focuses on ears for gender recognition, possibly looking for earrings.

In the next section, we test the performance of the previously described mechanisms on different
datasets.

4 EXPERIMENTS

In this section, we first test the design principles of our approach through a set of experiments on
Cluttered Translated MNIST, and then demonstrate the effectiveness of the proposed mechanisms
for fine-grained recognition on five different datasets: and age and gender (Adience dataset by Ei-
dinger et al. (2014)), birds (CUB200-2011 by Wah et al. (2011)), Stanford cars Krause et al. (2013),
Stanford dogs (Khosla et al. (2011)), and food (UECFOOD-100 by Matsuda et al. (2012)).

4.1 CLUTTERED TRANSLATED MNIST

In order to support the design decisions of Section 3, we follow the procedure of Mnih et al. (2014),
and train a CNN on the Cluttered Translated MNIST dataset2, consisting of 40×40 images contain-
ing a randomly placed MNIST digit and a set of D randomly placed distractors, see Figure 4a. The
distractors are random 8× 8 patches from other MNIST digits. The CNN consists of five 3× 3 con-
volutional layers and two fully-connected in the end, the three first convolution layers are followed
by a spatial pooling. Batch-normalization was applied to the inputs of all these layers. Attention
modules were placed starting from the fifth convolution (or pooling instead) backwards until AD

2https://github.com/deepmind/mnist-cluttered
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Figure 4: Ablation experiments on Cluttered Translated MNIST.

is reached. Training is performed with SGD for 200 epochs, and a learning rate of 0.1, which is
divided by 10 after epoch 60. Models are trained on a 200k images train set, validated on a 100k
images validation set, and tested on 100k test images.

First, we tested the importance of AW and AD for our model. As it can be seen in Figure 4b,
greater AD results in better accuracy, reaching saturation at AD = 4, note that for this value the
receptive field of the attention module is 5 × 5 px, and thus the performance improvement from
such small regions is limited. Figure 4c shows training curves for different values of AW . As it
can be seen, small performance increments are obtained by increasing the number of attention heads
despite there is only one object present in the image.

Then, we used the best AD and AW to verify the importance of using softmax on the attention
masks instead of sigmoid (1), the effect of using gates (Eq. 8), and the benefits of regularization
(Eq. 3). Figure 4d confirms that, ordered by importance: gates, softmax, and regularization result
in accuracy improvement, reaching 97.8%. Concretely, we found that gates pay an important role
discarding the distractors, especially for high AW and high AD.

Finally, in order to verify that attention masks are not overfitting on the data, and thus generalize to
any amount of clutter, we run our best model so far (Figure 4d) on the test set with an increasing
number of distractors (from 4 to 64). For the comparison, we included the baseline model before
applying our approach and the same baseline augmented with an STN Jaderberg et al. (2015) that
reached comparable performance as our best model in the validation set. All three models were
trained with the same dataset with eight distractors. Remarkably, as it can be seen in Figure 4e, the
attention augmented model demonstrates better generalization than the baseline and the STN.

4.2 RESULTS

In order to demonstrate that the proposed generalized attention can easily augment any recent archi-
tecture, we have trained a strong baseline, namely a Wide Residual Network (WRN) (Zagoruyko &
Komodakis (2016)) pre-trained on the ImageNet. We chose to place attention modules after each
pooling layer to extract different level features with minimal computational impact. The modules
described in the previous sections have been implemented on pytorch, and trained in a single work-
station with two NVIDIA 1080Ti. All the experiments are trained for 100 epochs, with a batch size
of 64. The learning rate is first set to 10−3 to all layers except the attention modules and the classi-
fier, for which it ten times higher. The learning rate is reduced by a factor of 0.5 every 30 iterations
and the experiment is automatically stopped if a plateau is reached. The network is trained with
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(a) Adience dataset. (b) CUB200-2011. (c) Stanford Cars.

(d) Stanford dogs. (e) UEC Food100.

Figure 5: Samples from the five fine-grained datasets.

standard data augmentation, i.e. random 224 × 224 patches are extracted from 256 × 256 images
with random horizontal flips3. Training curves are included in the Appendix.

For the sake of clarity and since the aim of this work is to demonstrate that the proposed mechanism
universally improves CNNs for fine-grained recognition, we follow the same training procedure in
all datasets. Thus, we do not use 512 × 512 images which are central in STNs, RA-CNNs, or
B-CNNs to reach state of the art performances. Accordingly, we do not perform color jitter and
other advanced augmentation techniques such as the ones used by Hassannejad et al. (2016) for
food recognition. The proposed method is able to obtain state of the art results in Adience Gender,
Stanford dogs and UEC Food-100 even when trained with lower resolution.

In the following subsections the proposed approach is evaluated on the five datasets.

Adience dataset. The adience dataset consists of 26.5 K images distributed in eight age categories
(02, 46, 813, 1520, 2532, 3843, 4853, 60+), and gender labels. A sample is shown in Figure 5a.

The performance on this dataset is measured by both the accuracy in gender and age recognition
tasks using 5-fold cross-validation in which the provided folds are subject-exclusive. The final score
is given by the mean of the accuracies of the five folds. This dataset is particularly challenging due
to the high level of deformation of face pictures taken in the wild, occlusions and clutter such as
sunglasses, hats, and even multiple people in the same image.

As it can be seen in Table 4, the Wide ResNet augmented with generalized attention surpasses the
baseline performance, etc.

Caltech-UCSD Birds 200 The birds dataset (see Figure 5b) consists of 6K train and 5.8K test
bird images distributed in 200 categories. The dataset is especially challenging since birds are
in different poses and orientations, and correct classification often depends on texture and shape
details. Although bounding box, bough segmentation, and attributes are provided, we perform raw
classification as done by Jaderberg et al. (2015).

In Table 5, the performance of our approach is shown in context with the state of the art. Please note
that even our approach is trained in lower resolution crops, i.e. 224× 224 instead of 448× 448, we
reach the same accuracy as the recent fully convolutional attention by Liu et al. (2016).

3The code will be publicly available on github.
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Model Publication DSP age gender
CNN Levi & Hassner (2015) 50.7 86.8
VGG-16 Ozbulak et al. (2016)∗ X 57.9 -
FAM Rodrı́guez et al. (2017)∗ X 61.8 93.0
DEX Rothe et al. (2016)∗∗ X 64.0 -
WRN Zagoruyko & Komodakis (2016) 58.6 93.9
WRNA This work 59.7 94.8

Table 4: Performance on the adience dataset. DSP indicates Domain-Specific Pre-training, i.e. pre-
training on millions of faces.

Model Publication High Res. Accuracy
FCAN Liu et al. (2016) X 82.0
PD Zhang et al. (2016) X 82.6
B-CNN Lin et al. (2015) X 84.1
STN Jaderberg et al. (2015) X 84.2
RA-CNN Fu et al. (2017) X 85.3
WRN Zagoruyko & Komodakis (2016) 81.0
WRNA This work 82.0

Table 5: Performance on Caltech-UCSD Birds 200. High Res. indicates whether training is per-
formed with images with resolution higher than 224× 224.

Stanford Cars. The Cars dataset contains 16K images of 196 classes of cars, see Figure 5c. The
data is split into 8K training images and 8K testing images. The difficulty of this dataset resides in
the identification of the subtle differences that distinguish between two car models.

Model Publication High Res. Accuracy
DVAN Zhao et al. (2017b) 87.1
FCAN Liu et al. (2016) X 89.1
B-CNN Lin et al. (2017) X 91.3
RA-CNN Fu et al. (2017) X 92.5
WRN Zagoruyko & Komodakis (2016) 87.8
WRNA This work 90.0

Table 6: Performance on Stanford Cars. High res. indicates that resolutions higher than 256× 256
are used.

In Table 6 the performance of our approach with respect to the baseline and other state of the art
is shown. The augmented WRN shows better performance than the baseline, and even surpasses
recent approaches such as FCAN.

Stanford Dogs. The Stanford Dogs dataset consists of 20.5K images of 120 breeds of dogs, see
Figure 5d. The dataset splits are fixed and they consist of 12k training images and 8.5K validation
images. Pictures are taken in the wild and thus dogs are not always a centered, unique, pose-
normalized object in the image but a small, cluttered region.

Table 7 shows the results on Stanford dogs. As it can be seen, performances are low in general
and nonetheless, our model was able to increase the accuracy by a 0.3% (0.1% w/o gates), being
the highest score obtained on this dataset to the best of our knowledge. This performance has been
achieved thanks to the gates, which act as a detection mechanism, giving more importance to those
attention masks that correctly guessed the position of the dog.

UEC Food 100 is a Japanese food dataset with 14K images of 100 different dishes, see Figure 5e.
Pictures present a high level of variation in the form of deformation, rotation, clutter, and noise. In

10
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Model Publication High Res. Accuracy
VGG-16 Simonyan & Zisserman (2014) 76.7
DVAN Zhao et al. (2017b) 81.5
FCAN Liu et al. (2016) X 84.2
RA-CNN Fu et al. (2017) X 87.3
WRN Zagoruyko & Komodakis (2016) 89.6
WRNA This work 89.9

Table 7: Performance on Stanford Dogs. High res. indicates that resolutions higher than 256× 256
are used.

order to follow the standard procedure in the literature (e.g. Chen & Ngo (2016); Hassannejad et al.
(2016)), we use the provided bounding boxes to crop the images before training.

Approach Publication Accuracy
DCNN-FOOD Yanai & Kawano (2015) 78.8
VGG Chen & Ngo (2016) 81.3
Inception V3 Hassannejad et al. (2016) 81.5
WRN Zagoruyko & Komodakis (2016) 84.3
WRNA This work 85.5

Table 8: Performance on UEC Food-100.

Table 8 shows the performance of our model compared to the state of the art. As it can be seen, our
model is able to improve the baseline by a relative 7% with a 85.5% of accuracy, the best-reported
result compared to previous publications.

5 CONCLUSION

We have presented a novel attention mechanism to improve CNNs for fine-grained recognition. The
proposed mechanism finds the most informative parts of the CNN feature maps at different depth
levels and combines them with a gating mechanism to update the output distribution.

Moreover, we thoroughly tested all the components of the proposed mechanism on Cluttered Trans-
lated MNIST, and demonstrate that the augmented models generalize better on the test set than
their plain counterparts. We hypothesize that attention helps to discard noisy uninformative regions,
avoiding the network to memorize them.

Unlike previous work, the proposed mechanism is modular, architecture independent, fast, and sim-
ple and yet WRN augmented with it show higher accuracy in each of the following tasks: Age
and Gender Recognition (Adience dataset), CUB200-2011 birds, Stanford Dogs, Stanford Cars, and
UEC Food-100. Moreover, state of the art performance is obtained on gender, dogs, and cars.
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APPENDIX
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(a) Adience age accuracy curve (fold0).
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(b) Adience gender accuracy curve (fold0).
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(c) CUB Birds accuracy curve.
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(d) Stanford Cars accuracy curve.
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(e) Stanford Dogs accuracy curve.
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(f) UEC Food-100 accuracy curve.

Figure 6: Test accuracy logs for the five fine-grained datasets. As it can be seen, the augmented
models (WRNA) achieve higher accuracy at similar convergence rates. For the sake of space we
only show one of the five folds of the Adience dataset.
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