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ABSTRACT

For numerous domains, including for instance earth observation, medical imag-
ing, astrophysics,..., available image and signal datasets often irregular space-
time sampling patterns and large missing data rates. These sampling properties
is a critical issue to apply state-of-the-art learning-based (e.g., auto-encoders,
CNNs,...) to fully benefit from the available large-scale observations and reach
breakthroughs in the reconstruction and identification of processes of interest. In
this paper, we address the end-to-end learning of representations of signals, im-
ages and image sequences from irregularly-sampled data, i.e. when the training
data involved missing data. From an analogy to Bayesian formulation, we con-
sider energy-based representations. Two energy forms are investigated: one de-
rived from auto-encoders and one relating to Gibbs energies. The learning stage
of these energy-based representations (or priors) involve a joint interpolation is-
sue, which resorts to solving an energy minimization problem under observation
constraints. Using a neural-network-based implementation of the considered en-
ergy forms, we can state an end-to-end learning scheme from irregularly-sampled
data. We demonstrate the relevance of the proposed representations for different
case-studies: namely, multivariate time series, 2 images and image sequences.

1 INTRODUCTION

In numerous application domains, the available observation datasets do not involve gap-free and
regularly-gridded signals or images. The irregular-sampling may result both from the characteristics
of the sensors and sampling strategy, e.g. considered orbits and swaths in spacebone earth observa-
tion and astrophysics, sampling schemes in medical imaging, as well as environmental conditions
which may affect the sensor, e.g. atmospheric conditions and clouds for earth observation.

A rich literature exists on interpolation for irregularly-sampled signals and images (also referred to
as inpainting in image processing (4)). A classic framework states the interpolation issue as the
miminisation of an energy, which may be interpreted in a Bayesian framework. A variety of en-
ergy forms, including Markovian priors (12), patch-based priors (20), gradient norms in variational
and/or PDE-based formulations (4), Gaussian priors () as well as dynamical priors in fluid dynamics
(3). The later relates to optimal interpolation and kriging (8), which is among the state-of-the-art
and operational schemes in geoscience (10). Optimal schemes classically involve the inference of
the considered covariance-based priors from irregularly-sampled data. This may however be at the
expense of Gaussianity and linearity assumptions, which do not often apply for real signals and im-
ages. For the other types of energy forms, their parameterization are generally set a priori and not
learnt from the data. Regarding more particularly data-driven and learning-based approaches, most
previous works (2; 11; 20) have addressed the learning of interpolation schemes under the assump-
tion that a representative gap-free dataset is available. This gap-free dataset may be the image itself
(9; 20; 18). For numerous application domains, as mentionned above, this assumption cannot be
fulfilled. Regarding recent advances in learning-based schemes, a variety of deep learning models,
e.g. (7; 16; 24; 23), have been proposed. Most of these works focus on learning an interpolator. One
may however expect to learn not only an interpolator but also some representation of considered data,
which may be of interest for other applications. In this respect, RBM models (Restricted Boltzmann
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Machines) (22; 6) are particularly appealing at the expense however of computationally-expensive
MCMC schemes.

In this paper, we aim to learn representations of signals or images from irregularly-sampled obser-
vation datasets. Our contribution is three-fold:

• an end-to-end learning of energy-based representations from irregularly-sampled training
data. Based on a neural-network architecture, it jointly embeds the considered energy form
and an associated interpolation scheme.

• besides classic auto-encoder representations, we introduce NN-based Gibbs-Energy repre-
sentations, which relate to Markovian priors embedded in CNNs.

• the demonstration of the relevance of the proposed end-to-end learning framework for dif-
ferent data types, namely time series, images and image sequences, with possibly very high
missing data rates.

The remainder is organized as follows. Section 2 formally states the considered issue. We introduce
the proposed end-to-end learning scheme in Section 3. We report numerical experiments in Section
4 and discuss our contribution with respect to related work in Section ??.

2 PROBLEM STATEMENT

In this section, we formally introduce the considered issue, namely the end-to-end learning of rep-
resentations and interpolators from irregularly-sampled data. Within a classic Bayesian or energy-
based framework, interpolation issues may be stated as a minimization issue

X̂ = arg min
X

Uθ (X) subject to XΩ = YΩ (1)

where X is the considered signal, image or image series (referred to hereafter as the hidden state),
Y the observation data, only available on a subdomain Ω of the entire domain D, and Uθ() the
considered energy prior parameterized by θ. As briefly introduced above, a variety of energy priors
have been proposed in the literature, e.g. (4; 20; 5).

We assume we are provided with a series of irregularly-sampled observations, that is to say a set
{Y (i),Ω(i)}i∈{1,...,N}, such that Ω(i) ⊂ D and Y (i) is only defined on subdomain Ω(i). Assum-
ing that all X(i) share some underlying energy representation Uθ(), we may define the following
operator I

I
(
Uθ, Y

(i),Ω(i)
)

= arg min
X

Uθ (X) subject to XΩ(i) = Y
(i)

Ω(i) (2)

such that I(Y (i),Ω(i)) = X(i). Here, we aim to learn the parameters θ() of the energy Uθ() from
the available observation dataset {Y (i),Ω(i)}i. Assuming operator I is known, this learning issue
can be stated as the minimization of reconstruction error for the observed data

θ̂ = arg min
θ

∑
i

∥∥∥Y (i) − I
(
Uθ, Y

(i),Ω(i)
)∥∥∥2

Ω(i)
(3)

where ‖.‖2Ω refers to the L2 norm evaluated on subdomain. Learning energy Uθ() from observation
dataset {Y (i),Ω(i)}i clearly involves a joint interpolation issue solved by operator I.

Given this general formulation, the end-to-end learning issue comes to solve minimization (3) ac-
cording to some given parameterization of energy Uθ(). In (3), interpolation operator I is clearly
critical. In Section 3, we investigate a neural-network implementation of this general framework,
which embeds a neural-network formulations both for energy Uθ() and interpolation operator I.

3 PROPOSED END-TO-END LEARNING FRAMEWORK

In this section, we detail the proposed neural-network-based implementation of the end-to-end for-
mulation introduced in the previous section. We first present the considered paramaterizations for
energy Uθ() in (3) (Section 3.1). We derive associated NN-based interpolation operators I (Section
3.2) and describe our overall NN architectures for the end-to-end learning of representations and
interpolators from irregularly-sampled datasets (Section 3.3).
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3.1 NN-BASED ENERGY FORMULATION

We first investigate NN-based energy representations based on auto-encoders (15). Let us denote
by φE and φD the encoding and decoding operators of an auto-encoder (AE), which may comprise
both dense auto-encoders (AEs), convolutional AEs as well as recurrent AEs when dealing with
time-related processes. The key feature of AEs is that the encoding operator φE maps the state X
into a low-dimensional space. Auto-encoders are naturally associated with the following energy

Uθ(X) = ‖X − φD (φE (X))‖2 (4)
Minimizing (1) according to this energy amounts to retrieving the hidden state whose low-
dimensional representation in the encoding space matches the observed data in the original decoded
space. Here, parameters θ refer to the parameters of the encoder φE and decoder φD, respectively
θE and θD.

The mapping to lower-dimensional space may be regarded as a potential loss in the representation
potential of the representation. Gibbs models provide an appealing framework for an alternative
energy-based representation, with no such dimensionality reduction constraint. Gibbs models intro-
duced in statistical physics have also been widely explored in computer vision and pattern recog-
nition (13) from the 80s. Gibbs models relate to the decomposition of Uθ as a sum of potentials
Uθ(X) =

∑
c∈C Vc (Xc) where C is a set of cliques, i.e. a set of interacting sites (typically, local

neighbors), and Vc the potential on clique c. In statistical physics, this formulation states the global
energy of the system as the sum of local energies (the potential over locally-interacting sites). Here,
we focus on the following parameterization of the potential function

Uθ(X) =
∑
s∈D
‖Xs − ψ (XNs) ‖2 (5)

with Ns the set of neighbors of site s for the entire domain D and ψ a potential function. Low-
energy state for this energy refers to state X which operator ψ provides a good prediction at any
site s knowing the state in the neighborhood Ns of s. This type of Gibbs energy relates to Gaussian
Markov random fields, where the conditional likelihood at one site given its neighborhood follows
a Gaussian distribution. We implement this type of Gibbs energy using the following NN-based
parameterization of operator ψ:

ψ(X) = ψ2 (ψ1(X)) (6)
It involves the composition of a space and/or time convolutional operator ψ1 and a coordinate-wise
operator ψ2. The convolutional kernel for operator ψ1 is such that the coefficients for the center of
convolutional window are set to zero. This property fulfills the constraint that X(s) is not involved
in the computation of ψ (XNs) at site s. As an example, for a univariate image, ψ1 can be set
as a convolutional layer with NF filters with kernels of size 3x3x1, such that for each kernel Kf

Kf (1, 1, 0) = 0 (the same applies to biases). In such a case, operator ψ2 would be a convolution
layer with one filter with a kernel of size 1x1xNF . Both ψ1 and ψ2 can also involve non-linear
activations. Without loss of generality, given this parameterization for operator ψ, we may rewrite
energy Uθ as Uθ(X) = ‖X − ψ (X) ‖2 where ψ (X)) at site s is given by ψ (XNs).

Overall, we may use the following common formulation for the two types of energy-based represen-
tation

Uθ(X) = ‖X − ψ (X) ‖2 (7)
They differ in the parameterization chosen for operator ψ.

3.2 NN-BASED INTERPOLATOR

Besides the NN-based energy formulation, the general formulation stated in (3) involves the def-
inition of interpolation operator I, which refers to minimization (1). We here derive NN-based
interpolation architectures from the considered NN-based energy parameterization.

Given parameterization (7), a simple fixed-point algorithm may be considered to solve for (3). This
algorithm at the basis of DINEOF algorithm and XXX for matrix completion under subspace con-
straints (2; 14) involves the following iterative update

X
(k+1)
p = ψ

(
X(k)

)
X(k+1) (Ω) = Y (Ω)

X(k+1)
(
Ω
)

= X
(k+1)
p

(
Ω
) (8)
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Interestingly, the algorithm is parameter-free and can be readily implemented in a NN architecture
given the number of iterations to be considered.

Given some initialisation, one may typically consider an iterative gradient-based descent which
applies at each iteration k

X
(k+1)
p = X(k) − λJUθ

(
X(k)

)
X(k+1) (Ω) = Y (Ω)

X(k+1)
(
Ω
)

= X
(k+1)
p

(
Ω
) (9)

with JUθ the gradient of energy Uθ w.r.t. state X , λ the gradient step and Ω the missing data area.
Automatic differentiation tool embedded in neural network frameworks may provide the numerical
computation for gradient JUθ given the NN-based parameterization for energy Uθ. This proved
numerically too expensive and was not further investigated in our experiments. Given the considered
form for energy Uθ, its gradient w.r.t. X decomposes as a product

JUθ (X) = Jψ (X) (X − ψ (X)) (10)

and X − ψ (X) may be regarded as a suboptimal gradient descent. Hence, rather than considering
the true Jacobian Jψ for operator ψ, we may consider an approximation through a trainable CNN
G() such that the gradient descent becomes

X
(k+1)
p = X(k) −G

(
X(k), ψ

(
X(k)

))
X(k+1) (Ω) = Y (Ω)

X(k+1)
(
Ω
)

= X
(k+1)
p

(
Ω
) (11)

where G(X(k), ψ(X(k))) = G̃(X(k) − ψ(X(k))) and G̃ is a CNN to be learnt jointly to ψ during
the learning stage. Interestingly, this gradient descent embeds the fixed-point algorithm when G̃ is
the identity.

Let us denote respectively by IFP and IG the fixed-point and gradient-based NN-based interpola-
tors, which implement NI iterations of the proposed interpolation updates. Below, INN will denote
both IFP and IG. Whereas IFP is parameter-free, IG involves the parameterization of operator
G. We typically consider a CNN with ReLu activations with increasing numbers of filter through
layers up to the final layer which applies a linear convolutional with a number of filters given by the
dimension of the state.

Figure 1: Sketch of the considered end-to-end architecture: we depict the considered NI -block
architecture which implements a NI -step interpolation algorithm described in Section 3.2. Operator
ψ is defined through energy representation (7) and G refers to the NN-based approximation of the
gradient-based update for minimization (1). This architecture uses as input a mask Ω corresponding
to the missing-data-free domain and an initial gap-filling X(0) for state X . We typically initially fill
missing data with zeros for centered and normalized states.

3.3 END-TO-END ARCHITECTURE AND IMPLEMENTATION DETAILS

Given the parameterizations for energy Uθ and the associated NN-based interpolators presented pre-
viously, we design an end-to-end learning for energy representation Uθ and associated interpolator
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INN , which uses as inputs an observed sample Y (i) and the associated missing-data-free domain
Ω(i). Using a normalization preprocessing step, we initially fill missing data with zeros to provide
an initial interpolated state to the architecture. We provide a sketch of the architecture in Fig.1.

Regarding implementation details, beyond the design of the architectures, which may be application-
dependent for operators ψ and G̃ (see Section 4), we consider an implementation under keras using
tensorflow as backend. Regarding the training strategy, we use adam optimizer. We iteratively in-
crease the number of blocksNI (number of gradient steps) to avoid the training to diverge. Similarly,
we decrease the learning rate accross iterations, typically from 1e-3 to 1e-6. In our experiments, we
typically consider from 5 to 15 blocks. All the experiments were run under workstations with a
single GPU (Nvidia GTX 1080 and GTX 1080 Ti).

4 EXPERIMENTS

In this section, we report numerical experiments on different datasets to evaluate and demonstrate
the proposed scheme. We consider three different case-studies: an image dataset, namely MNIST; a
multivariate time-series through an application to Lorenz-63 dynamics (17) and an image sequence
dataset through an application to ocean remote sensing data with real missing data patterns. In all
experiments, we refer to the AE-based framework, respectively as FP(d)-ConvAE and G(d)-ConvAE
using the fixed-point or gradient-based interpolator where the value of d refers to the number of
interpolation steps. Similarly, we refer to the Gibbs-based frameworks respectively as FP(d)-GENN
and G(d)-GENN.

4.1 MNIST DATASETS

We evaluate the proposed framework on MNIST datasets for which we simulate missing data pat-
terns. The dataset comprises 60000 28x28 grayscale images. For this dataset, we only evaluate the
AE-based setting. We consider the following convolutional AE architecture with a 20-dimensional
encoding space:

• Encoder operator φE : Conv2D(20)+ ReLU + AvPooling + Conv2D(40) + ReLU + Aver-
agePooling + Dense(80) + ReLU + Dense(20);

• Decoder operator φE : Conv2DTranspose(40) + ResNet(2), ResNet:
Conv2D(40)+ReLU+Conv2D(20)

We generate random missing data patterns composed of NS squares of size WSxWS , the center of
the square is randomly sampled uniformly over the image grid. As illustrated in Fig.3, we consider
four missing data patterns: NS = 20 and WS = 5, NS = 30 and WS = 5, NS = 3 and WS = 9,
NS = 6 and WS = 9. As performance measure, we evaluate an interpolation score (I-score), a
global reconstruction score (R-score) for the interpolated images and an auto-encoding (AE-score)
score of the trained auto-encoder applied to gap-free data, in terms of explained variance. We also
evaluate a classification score (C-score), in terms of mean accurcay, using the 20-dimensional encod-
ing space as feature space for classification with a 3-layer MLP. We report all performance measures
for both the test dataset in Tab.1 for MNIST dataset. For benchmarking purposes, we also report
the performance of DINEOF framework, which uses a 20-dimensional PCA trained on the gap-free
dataset, the auto-encoder architecture trained on gap-free dataset as well as the considered convo-
lutional auto-encoder trained using an initial zero-filling for missing data areas and a training loss
computed only of observed data areas. The later can be regarded as a FP(1)-ConvAE architecture us-
ing a single block in Fig.1. Overall, these results illustrate that representations trained from gap-free
data may not apply when considering significant missing data rates as illustrated by relatively poor
performance of PCA-based and AE schemes, when trained from gap-free data. Similarly, training
an AE representations using as input a zero-filling strategy lowers the auto-encoding power when
applied to gap-free data. Overall, the proposed scheme guarantees a good representation in terms of
AE score with an additional gain in terms of interpolation performance, typically between ≈ 15%
and 30% depending of the missing data patterns, the gain being greater when considering larger
missing data areas.
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New
MNIST Model I-score R-score AE-score C-score

NS = 30 DINEOF -9.41%
(-10.95%)

21.54%
(20.48%)

64.36%
(65.11%) 96.23%

W = 5 ConvAE 55.98%
(55.39%)

80.98%
(80.58%)

93.42%
(92.35%) 98.12%

Zero-ConvAE 61.79%
(61.63%)

82.22%
(81.64%)

87.64%
(87.56%) 97.55%

FP(15)-ConvAE 74.99%
(72.80%)

88.78%
(87.31%)

91.62%
(91.13%) 97.96%

G(14)-ConvAE 76.50%
(75.56%)

89.81%
(88.81%)

91.77%
(91.21%) 97.91%

NS = 30 DINEOF -8.86%
(-10.19%)

13.89%
(12.71%)

64.36%
(65.11%) 96.23%

W = 5 ConvAE 38.32%
(38.16%)

67.42%
(67.32%)

93.42%
(92.35%) 98.12%

Zero-ConvAE 53.69%
(53.44%)

74.97%
(74.44%)

85.67%
(85.83%) 97.03%

FP(15)-ConvAE 69.27%
(67.68%)

83.81%
(82.54%)

90.22%
(90.04%) 97.59%

G(14)-ConvAE 69.82%
(68.52%)

84.96%
(83.76%)

90.98%
(90.66%) 97.45%

NS = 3 DINEOF -41.65%
(-44.77%)

33.08%
(32.26%)

64.36%
(65.11%) 96.23%

W = 9 ConvAE -1.21%
(-3.08%)

72.57%
(71.96%)

93.42%
(92.35%) 98.12%

Zero-ConvAE 3.55%
(1.85%)

74.04%
(72.93%)

89.21%
(89.05%) 97.76%

FP(15)-ConvAE 46.91%
(44.12%)

85.13%
(83.79%)

91.87%
(91.38%) 97.90%

G(14)-ConvAE
**

46.74%
(43.76%)

85.72%
(83.98%)

92.09%
(91.39%) 97.76%

NS = 6 DINEOF -37.47%
(-40.00%)

16.83%
(15.50%)

64.36%
(65.11%) 96.23%

W = 9 ConvAE -27.02%
(-28.28%)

46.95%
(46.44%)

93.42%
(92.35%) 98.12%

Zero-ConvAE -9.94%
(-12.03%)

55.41%
(54.09%)

86.52%
(86.73%) 97.33%

FP(15)-ConvAE 26.90%
(22.56%)

71.18%
(68.45%)

91.03%
(90.41%) 97.71%

G(10)-ConvAE 26.18%
(24.73%)

70.70%
(69.58%)

90.30%
(90.23%) 97.86%

Table 1: Performance of AE schemes in presence of missing data for Fashion MNIST dataset:
for a given convolutional AE architecture (see main text for details), a PCA and ConvAE mod-
els trained on gap-free data with a 15-iteration projection-based interpolation (resp., DINEOF and
ConvAE), a zero-filling stratefy with the same ConvAE architecture (Zero-ConvAE) and the fixed-
point and gradient-based versions of the proposed scheme. For each experiment, we evaluate four
measures: the reconstruction performance for the known image areas (R-score), the interpolation
performance for the missing data areas (I-score), the reconstruction performance of the trained AE
when applied to gap-free images (AE-score), the classification score of a MLP classifier trained in
the trained latent space for training images involving missing data.
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4.2 MULTIVARIATE TIME SERIES

We present an application to the Lorenz-63 dynamics (17), which involve a 3-dimensional state
governed by the following ordinary differential equation:

dXt,1
dt = σ (Xt,2 −Xt,2)

dXt,2
dt = ρXt,1 −Xt,2 −Xt,1Xt,3

dXt,3
dt = Xt,1Xt,2 − βXt,3

(12)

Under parameterization σ = 10, ρ = 28 and β = 8/3 considered here, Lorenz-63 dynamics are
chaotic dynamics, which make then challening in our context. They can be regarded as a reduced-
order model of turbulence dynamics. We simulate Lorenz-63 time series of 200 time steps using a
Runge-Kutta-4 ODE solver with an integration step of 0.01 from an initial condition in the attractor.
For a given experiment, we first subsample the simulated series to a given time step dt and then
generate using a uniform random samplong a missing data mask accounting for 75% of the data.
Overall, training and test time series are formed by subsequences of 200 time steps. We report
experiments with the GE-NN setting. The AE-based framework showed lower performance and is
not included here. The considered GE-NN architecture is as follows: a 1D convolution layer with
120 filters with a kernel width of 3, zero-weight-constraints for the center of the convolution kernel
and a Relu activation, a 1D convolution layer with 6 filters a kernel width of 1 and a Relu activation,
a residual network with 4 residual units using 6 filters with a kernel width of 1 and a linear activation.
The last layer is a convolutional layer with 3 filters, a kernel width of 1 and a linear activation.

Figure 2: Example of missing data interpolation for Lorenz-63 dynamics: from left to right, the
time series of each of the three components of Lorenz-63 states for dt = 0.02 and a 75% miss-
ing data rate. We depict the irregularly-sampled observed data (black dots), the true state (green,-),
the interpolated states using DINEOF (blue, -) and the interpolated states using the proposed ap-
proach (G-NN-FP-OI) (red, -). Visually, the interpolated sequence using our approach can hardly be
distinguished from the true states.

For benchmarking purposes, we report the interpolation performance issued from an ensemble
Kalman smoother (EnKS) (10) knowing the true model, regarded as a lower-bound of the inter-
polation performance. The parameter setting of the EnKS is as follows: 200 members, noise-free
dynamical model and spherical observation covariannce to 0.1 · I . We also compare the proposed
approach to DINEOF (2; 21). Here, the learning of the PCA decomposition used in the DINEOF
scheme relies on gap-free data. Fig.2 illustrates this comparison for one sequence of 200 time steps
with dt = 0.02. In this example, one can hardly distinguish the interpolated sequence using the pro-
posed approach (FP(15)-GE-NN). By contrast, DINEOF scheme cannot retrieve some of the largest
deviations. We report in Appendix Tab.3 the performance of the different interpolation schemes.
The proposed approach clearly outperforms DINEOF by about one order of magnitude for the ex-
periments with a time-step dt = 0.02. The interpolation error for observed states (first line in Tab.3)
also stresses the improved prior issued from the proposed Gibbs-like energy setting. For chaotic dy-
namics, global PCA representation seems poorly adapted where local representations as embedded
by the considered Gibbs energy setting appear more appealing.
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4.3 IMAGE SEQUENCE DATASET WITH VERY LARGE MISSING DATA RATES

The third case-study addresses satellite-derived Sea Surface Temperature (SST) image time series.
Due to their sensitivity to the cloud cover, such SST datasets issued from infrared sensors may
involve large missing data rates (typically, between 70% and 90%, Fig.?? for an illustration). For
evaluation purposes, we build a groundtruthed dataset from high-resolution numerical simulations,
namely NATL60 data (1), using real cloud masks from METOP AVHRR sensor (19). We sample
128x512 images over five consecutive days from June to August at a 0.05◦resolution in an open
ocean region in the North-East Atlantic from (40.58◦N,46.3◦W) to (53.04◦N, 16.18◦W). Overall,
we randomly sample 400 128x512x11 image series as training data and 150 as test dataset.

For this case-study, we consider the following four architectures for the AEs and the GE-NNs:

• ConvAE1: the first convolutional auto-encoder involves the following encoder architecture:
five consecutive blocks with a Conv2D layer, a ReLu layer and a 2x2 average pooling
layer, the first one with 20 filters the following four ones with 40 filters, and a final linear
convolutional layer with 20 filters. The output of the encoder is 4x16x20. The decoder
involves a Conv2DTranspose layer with ReLu activation for an initial 16x16 upsampling
stage a Conv2DTranspose layer with ReLu activation for an additional 2x2 upsampling
stage, a Conv2D layer with 16 filters and a last Conv2D layer with 5 filters. All Conv2D
layers use 3x3 kernels. Overall, this model involves ≈ 400,000 parameters.

• ConvAE2: we consider a more complex auto-encoder with an architecture similar to
ConvAE1 where the number of filters is doubled (e.g., The output of the encoder is a
4x16x40 tensor). Overall, this model involves ≈ 900,000 parameters.

• GE-NN1,2: we consider two GE-NN architectures. They share the same global architecture
with an initial 4x4 average pooling, a Conv2D layer with ReLu activation with a zero-
weight constraint on the center of the convolution window, a 1x1 Conv2D layer with N
filters, a ResNet with a bilinear residual unit, composed of an initial mapping to an initial
32x128x(5*N) space with a Conv2D+ReLu layer, a linear 1x1 Conv2D+ReLu layer with
N filters and a final 4x4 Conv2DTranspose layer with a linear activation for an upsampling
to the input shape. GE-NN1 and GE-NN2 differ in the convolutional parameters of the first
Conv2D layers and in the number of residual units. GE-NN1 involves 5x5 kernels, N = 20
and 3 residual units for a total of ≈ 30,000 parameters. For GE-NN2, we consider 11x11
kernels, N = 100 and 10 residual units for a total of ≈ 570,000 parameters.

These different parameterizations were selected so that ConvAE1 and GE-NN2 involve a modeling
complexity in the same range. We may point out that the considered GE-NN architecture are not
applied to the finest resolution but to downscaled grids by a factor of 4. The application of GE-
NNs to the finest resolution showed poor performance. This is regarded as an illustration of the
requirement for considering a scale-selection problem when applying a given prior. The upscaling
involves the combination of a Conv2DTranspose layer with 11 filters, a Conv2D layer with a ReLu
activation with 22 filters and a linear Conv2D layer with 11 filters.

Similarly to MNIST dataset, we report the performance of the different models in terms of interpola-
tion score (I-score), reconstruction score (R-score) and auto-encoding score (AE-score) both for the
training and test dataset. We compare the performance of the four models using the fixed-point and
gradient-based interpolation. Overall, we can draw conlusions similar to MNIST case-study. Rep-
resentations trained from gap-free data lead to poor performance and the proposed scheme reaches
the best performance (gain over 50% in terms of explained variance for the interpolation and re-
construction score). Here, models trained with a zero-filling strategy show good interpolation and
reconstruction performance, but very poor AE score, stressing that cannot apply beyond the con-
sidered interpolation task. When comparing GE-NN and AE settings, GE-NNs show slightly bet-
ter performance with a much lower complexity (e.g., 30,000 parameters for GE-NN1 vs. 400,000
parameters for ConvAE1). Regarding the comparison between the fixed-point and gradient-based
interpolation strategies, the later reaches slightly better interpolation and reconstruction score. We
may point out the significant gain w.r.t. OI, which is the current operational tool for ocean remote
sensing data. We illustrate these results in Appendix (Fig.6), which further stresses the gain w.r.t.
OI for the reconstruction of finer-scale structures.

8



Under review as a conference paper at ICLR 2020

SST Model I-Score R-score AE-score

OI 67.59%
(57.29%)

70.97%
(61.00%) -

FP(5)-PCA(20) 32.52%
(39.22%)

34.94%
(30.39%)

74.17%
(56.00%)

AE models FP(5)-PCA(80) 28.01%
(34.83%)

30.91%
(25.28%)

89.95%
(64.53%)

Zero-ConvAE1
89.12%

(86.98%)
89.65%

(87.33%)
67.42%

(60.41%)

FP(10)-ConvAE1
87.63%

(85.24%)
89.82%

(87.28%)
83.81%

(77.20%)

G(8)-ConvAE1
89.08%

(87.89%)
89.51%

(88.25%)
84.22%

(76.32%)

Zero-ConvAE2
86.70%

(86.37%)
87.14%

(86.87%)
67.20%

(54.77%)

FP(10)-ConvAE2
88.71%

(85.02%)
89.14%

(85.49%)
86.24%
(80.76)

G(8)-ConvAE2
90.47%

(88.00%)
90.98%

(88.39%)
86.33%

(78.33%)

Zero-GE-NN1
85.46%

(79.39%)
86.71%

(80.30%)
-94.84%

(-172.68%)

FP(15)-GE-NN1
89.22%

(87.45%)
90.07%

(88.50%)
92.61%

(90.18%)
GE-NN
models G(12)-GE-NN1

89.83%
(89.16%)

90.56%
(90.00%)

92.23%
(90.98%)

Zero-GE-NN2
86.60%

(77.38%)
87.48%

(78.01%)
-141.64%

(-235.50%)

FP(15)-GE-NN2
90.56%

(85.93%)
91.33%

(87.26%)
93.04%

(91.17%)

G(12)-GE-NN2
91.10%
(87.98%)

91.83%
(88.81%)

92.36%
(90.37%)

Table 2: Performance on SST dataset: We evaluate for each model interpolation, reconstruction
and auto-encoding scores, resp. I-score, R-score and AE-score, in terms of percentage of explained
variance resp. for the interpolation of missing data areas, the reconstruction of the whole image
with missing data and the reconstruction of gap-free images. For each model, we evaluate these
score for the training data (first row) and the test dataset (second row in brackets). We consider four
different auto-encoder models, namely 20 and 80-dimensional PCAs and ConvAE1,2 models, and
two GE-NN models, GE-NN1,2, combined with three interpolation strategies: the classic zero-filling
strategy (Zero) and proposed iterative fixed-point (FP) and gradient-based (G) schemes, the figure
in brackets denoting the number of iterations. For instance, FP(10)-GE-NN1 refers to GE-NN1

with a 10-step fixed-point interpolation scheme. The PCAs are trained from gap-free data. We also
consider an Optimal Interpolation (OI) with a space-time Gaussian covariance with empirically-
tuned parameters. We refer the reader to the main text for the detailed parameterization of the
considered models.

5 CONCLUSION

In this paper, we have addressed the learning of energy-based representations of signals and images
from observation datasets involving missing data (with possibly very large missing data rates). Us-
ing the proposed architectures, we can jointly learn relevant representations of signals and images
while jointly providing the associated interpolation schemes. Our experiments stress that learning
representations from gap-free data may lead to representations poorly adapted to the analysis of data
with large missing data areas. We have also introduced a Gibbs priors embedded in a neural net-
work architecture. Relying on local characteristics rather than global ones as in AE schemes, these
priors involve a much lower complexity. Our experiments support their relevance for addressing
inverse problems in signal and image analysis. Future work may further explore multi-scale exten-
sions of the proposed schemes along with couplings between global and local energy representations
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and hybrid minimization schemes combining both gradient-based and fixed-point strategies in the
considered end-to-end formulation.
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A APPENDIX

A.1 SUPPLEMENTARY FOR MNIST DATASET

We illustrate below both the considered masking patterns as well as reconstruction examples for the
proposed framework applied to MNIST dataset.

N = 20,W = 5 N = 30,W = 5

N = 3,W = 9 N = 6,W = 9

Figure 3: Illustration of the considered MNIST dataset with the selected missing data patterns:
we randomly remove data from N squared areas of size W .

Figure 4: Illustration of reconstruction results for FP-ConvAE model for MNIST examples: for
each panel, the first column refers to Zero-ConvAE1 results and the second one to Fp(15)-ConvAE1.
The first row depicts the reference image, the second row the missing data mask and the third one
the interpolated image. The first two panels illustrate interpolation results for training data and last
two for test data. We depict grayscale mnist images using false colors to highmight differences.

A.2 SUPPLEMENTARY FOR LORENZ-63 DYNAMICS

We report below a Table which details the interpolation performance of the proposed GE-NN rep-
resentation applied to Lorenz-63 time series in comparison with a PCA-based scheme and a lower-
bound provided by the interpolation assuming the ODE model is known.

A.3 SUPPLEMENTARY FOR SST DATASET

We report below reconstruction examples for the application of the proposed GE-NN approach to
SST time series with real missing data masks, which involve very large missing data rates (typi-
cally above 80%). The consistency between the interpolation results and the reconstruction of the
gap-free image from the learnt energy-based representation further stresses the ability of the pro-
posed approach to extract a generic representation from irregularly-sampled data. These reulsts
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Missing data EnKS DINEOF G-NN-FP-OI

1/4 (dt = 0.01) 9.91e-3 5.27E-01 5.97e-04
2.83e-3 1.10e0 6.55e-03

1/4 (dt = 0.02) 6.15e-02 4.53e-01 2.17e-03
1.92E-02 4.31e0 5.60e-02

1/4 (dt = 0.04) 5.41e-01 5.78e-01 7.90e-03
4.17e-01 1.33e01 7.39e-01

Table 3: Interpolation performance for Lorenz-63 dynamics with different missing data
rates: we compare the proposed neural-network aproach (FP(15)-GE-NN) to an ensemble Kalman
Smoother (EnKS) assuming the dynamical model (12) is known, and a DINEOF scheme (21). We
report interpolation results for a 75% missing data rate with uniform random sampling for three
different sampling time steps, dt = 0.01, dt = 0.02 and dt = 0.04. We report the mean square error
of the interpolation for the observed data (first row) and masked ones (second row).

also emphasize a much greater ability of the proposed learning-based scheme to reconstruct fine-
scale structures, which can hardly be reconstructed by an OI scheme with a Gaussian space-time
covariance model. We may recall that the later is the stae-of-the-art approach for the processing of
satellite-derived earth observation data (8).

Figure 5: Interpolation examples for SST data used during training: first row, reference SST im-
ages corresponding to the center of the considered 11-day time window; second row, associated SST
observations with missing data, third row, interpolation issued from FP(15)-GE-NN2 model; third
row, reconstruction of the gap-free image series issued from FP(15)-GE-NN2 model; interpolation
issued from an optimal interpolation scheme using a Gaussian covariance model with empirically
tuned parameters.
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Figure 6: Interpolation examples for SST data never seen during training: first row, reference
SST images corresponding to the center of the considered 11-day time window; second row, as-
sociated SST observations with missing data, third row, interpolation issued from FP(15)-GE-NN2

model; third row, reconstruction of the gap-free image series issued from FP(15)-GE-NN2 model;
interpolation issued from an optimal interpolation scheme using a Gaussian covariance model with
empirically tuned parameters.

13


	Introduction
	Problem statement
	Proposed end-to-end learning framework
	NN-based energy formulation
	NN-based interpolator
	End-to-end architecture and implementation details

	Experiments
	MNIST datasets
	Multivariate time series
	Image sequence dataset with very large missing data rates

	Conclusion
	Appendix
	Supplementary for MNIST dataset
	Supplementary for Lorenz-63 dynamics
	Supplementary for SST dataset


