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Abstract

Minwise Hashing (MinHash) is a fundamental method to compute set simi-
larities and compact high-dimensional data for efficient learning and search-
ing. The bottleneck of MinHash is computing k (usually hundreds) Min-
Hash values. One Permutation Hashing (OPH) only requires one permuta-
tion (hash function) to get k MinHash values by dividing elements into k
bins. One drawback of OPH is that the load of the bins (the number of ele-
ments in a bin) could be unbalanced, which leads to the existence of empty
bins and false similarity computation. Several strategies for densification,
that is, filling empty bins, have been proposed. However, the densification
is just a remedial strategy and cannot eliminate the error incurred by the
unbalanced load. Unlike the densification to fill the empty bins after they
undesirably occur, our design goal is to balance the load so as to reduce the
empty bins in advance. In this paper, we propose a load-balanced hash-
ing, Amortization Hashing (AHash), which can generate as few empty bins
as possible. Therefore, AHash is more load-balanced and accurate without
hurting runtime efficiency compared with OPH and densification strategies.
Our experiments on real datasets validate the claim. All source codes and
datasets have been released on GitHub anonymously 1.

1 Introduction

1.1 Background

MinHash (Broder et al., 2000; Broder, 1997) is a powerful tool in processing high-dimensional
data (e.g., texts) that is often viewed as a set. For a set, MinHash produces k minimum
hash values, which are called MinHash values. MinHash values can support similarity
computing (Broder, 1997; Chien & Immorlica, 2005; Henzinger, 2006b; Bayardo et al., 2007),
large-scale linear learning (Li & König, 2010; Li et al., 2011; 2012; Yu et al., 2012), fast near
neighbour searching (Shrivastava & Li, 2014a; Li et al., 2010; Indyk & Motwani, 1998;
Shrivastava & Li, 2012) and so on. Due to the importance of MinHash, many recent works
strive to improve its performance such as One Permutation Hashing (OPH) (Li et al.,
2012), Densified OPH (DOPH) (Shrivastava & Li, 2014a), and Optimal OPH (OOPH)
(Shrivastava, 2017).

1.2 Prior Art and Their Limitations

MinHash (Broder et al., 2000; Broder, 1997) is the most classical method but has
unacceptable computation cost. Given a set S ∈ U (U is the universe of all elements),
MinHash applies k random permutations (hash functions) πi : U → U , on all elements in S
(see Figure 1). For each hash function, it computes |S| hash values but only maintains the
minimum one. Then we get the k MinHash values. In practice, to achieve high accuracy,
users need to compute a large number of MinHash values, i.e., k needs to be very large.
Unfortunately, computing k hash functions for each element is a computational and resource
bottleneck when k is large. It is showed that some large-scale learning applications need to

1https://github.com/AHashCodes/AHash
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compute more than 4000 MinHash values, which takes a non-negligible portion of the total
computation time (Fernandez et al., 2019; Li, 2015).

One Permutation Hash (OPH) (Li et al., 2012) overcomes the drawback of Min-
Hash, but the produced MinHash values may be less than the demand. To
overcome the drawback of MinHash, OPH reduces the number of hash computations per
element from k to 1. As shown in Figure 1, the key idea of OPH is that all elements are
divided into k bins by hashing, and each bin maintains the minimum hash value respec-
tively. Ideally, each bin will produce a MinHash value. Unfortunately, if the data is skewed
or sparse, some bins could have many elements, but some bins could be empty. As a result,
the number of produced MinHash values could be smaller than k.

Figure 1: A toy example of existing works and our design goal with k = 5. The hash values
of elements at the bottom are MinHash values.

Existence of empty bins is fatal for some applications. To compute similarities, it is
known that the existence of empty bins leads to the false similarity estimation (see detailed
reasons in Section 2) (Shrivastava, 2017; Shrivastava & Li, 2014a; Fernandez et al., 2019).
To search near neighbours, using the empty bins as indexes leads to the false positives (see
detailed reasons in Section 2) (Shrivastava & Li, 2012; 2014a). Therefore, every empty bin
needs a MinHash value, and how to appropriately fill empty bins attracts research interests
in recent years (Li et al., 2012; Shrivastava, 2017; Shrivastava & Li, 2014a;b).

Densification is helpful for filling empty bins but does not fairly use the original
data. Densification, proposed by Shrivastava & Li (2014a), is to fill the empty bins by
reusing the minimum values of the non-empty bins to fix the drawback of OPH. Many
densification strategies have been proposed (Li et al., 2012; Shrivastava & Li, 2014a;b;
Shrivastava, 2017). Among all densification strategies, OOPH (Shrivastava, 2017) achieves
the smallest variance. It hashes IDs of empty bins to select a non-empty bin to reuse
(See Figure 1). Although it achieves the smallest variance, it is often impossible to choose
the optimal value to fill each empty bin. As shown as Figure 1, OOPH just reuses the
MinHash values of non-empty bins. Because OPH only involves three elements {A,D,C}
to compute MinHash values, it places the constrains on OOPH which can only reuse these
three elements. Such a reuse is unfair: the Minhash values could be reused multiple times,
but other elements ({B,E}) will never be reused. Unfairness probably incurs error.

1.3 Our Solution: Amortization Hashing

Instead of filling empty bins, this paper proposes, Amortization Hashing (AHash), which can
produce fewer empty bins, so as to achieve high accuracy. As shown in Figure 1, to minimize
the unfairness of the densification, we aim to design a load-balanced hash (AHash) which
produces as few empty bins as possible. After using Amortization Hashing, there could be
still empty bins for very sparse sets, and we use OOPH to fill the remaining empty bins.
We have proved (see Theorem 3) that the lower the number of empty bins is, the higher
accuracy will be. This paper is the first attempt to design a load-balanced hash for OPH.
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Intuitively, if a bin holds too many elements, it is wasted . In contrast, if a bin holds no
element, it is starved . Therefore, if we can pair up a wasted bin and a starved bin, and
amortize the elements between them, we can eliminate the unfairness of using densification.
The details of amortization hashing are provided in Section 3.

AHash is a novel solution which is orthogonal with densification, and can improve accuracy
of all densification strategies. For densification strategies, filling each empty bin could incur
small error. Filling more empty bins will incur larger error. To minimize the error of filling
empty bins, we are expected to minimize the number of empty bins during dividing elements
into bins. It is worth mentioning that AHash does not incur additional computation cost.

1.4 Key Contributions

1) We propose a load-balanced hashing, Amortization Hashing, which can improve accuracy
while retaining the same runtime efficiency. (Section 3)

2) We conduct theoretical analysis and extensive experiments, and results show that AHash
can achieve higher accuracy. (Section 4)

3) We apply AHash for two data mining tasks, linear SVM, and near neighbour search, and
results show AHash significantly outperforms the state-of-the-art in practical applications.
(Section 4)

2 Preliminaries

2.1 Formal Defnitions of MinHash, OPH and OOPH

Formal definitions of MinHash, OPH and OOPH are as follows:

• MinHash (Broder, 1997; Broder et al., 2000): the ith MinHash value of S is defined as:

hMinHash
i (S) =

0≤i<k

min{πi(S)} (1)

where πi(S) denotes the ith hashing on S.

• One Permutation Hashing (Li et al., 2012): the ith MinHash value of S is defined as:

hOPH
i (S) =

0≤i<k

{
min{π(S) ∩ Ωi} if {π(S) ∩ Ωi 6= ∅}
Empty no element falls in this bin

(2)

where π(S) denotes the hashing on S and Ωi denotes ith partition of the rang space of
π(S).

• One Permutation Hashing with Optimal Densification (Shrivastava, 2017): the ith Min-
Hash value of S is defined as:

hOOPH
i (S) =

0≤i<k

{
min{π(S) ∩ Ωi} if {π(S) ∩ Ωi 6= ∅}
hOOPH
j (S) no element falls in this bin

(3)

where huniv(i) denotes 2-universal hashing (Shrivastava, 2017) and j = huniv(i).

2.2 Use MinHash Values for Computing Similarities

Computing similarities is a key step for many applications like duplicate detection (Broder,
1997; Henzinger, 2006a), semantic similarity estimation (Chien & Immorlica, 2005), frequent
pattern mining (Buehrer & Chellapilla, 2008; Chierichetti et al., 2009) and more. In the ap-
plications, the data (e.g., texts) can be viewed as 0/1 binary data (e.g., the absence/presence
of a word), which is equivalent to a set. Given two sets, S1 and S2, the similarity is usually
measured by Jaccard Similarity, which is defined as J(S1, S2) = |S1 ∩ S2|/|S1 ∪ S2|. For S1

and S2 with the same hashing, the probability of the two minimum hash values being the
same is equal to Jaccard Similarity of S1 and S2, which is formally shown as follow:

Pr[h(S1) = h(S2)] =
|S1 ∩ S2|
|S1 ∪ S2|

= J(S1, S2) (4)
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Such a property is called Locality Sensitive Hash (LSH) Property (Indyk & Motwani, 1998;
Charikar, 2002). Note that, if h(S1) and h(S2) are simultaneously empty, they are certain to
collide, which violates the LSH Property. So we must handle empty bins. Given MinHash
values of S1 and S2, the J(S1, S2) can be approximated as:

Ĵ(S1, S2) =
1

k

k∑
j=1

1{hj(S1) = hj(S2)} (5)

with 1{x} being the indicator function that takes value 1 when x is true and otherwise 0.

2.3 Use MinHash Values for Large-scale Learning

Large-scale linear learning like training SVM (Fan et al., 2008; Hsieh et al., 2008; Joachims,
2006) is faced with extremely high-dimensional data, which emphasizes the application of
hashing algorithms. Given a dataset {xi, yi}li=1,xi ∈ Rn, yi ∈ {−1,+1}, L2-SVM solves
the following unconstrained optimization problem:

min
w

1

2
wTw + C

l∑
i=1

max(1− yiwTxi, 0)2 (6)

where C > 0 is a penalty parameter.

MinHash can be used to compact the feature vectors to reduce the feature dimensionality
if the dataset is binary (i.e., each feature vector consists of only 0s and 1s) (Li et al., 2011).
Actually, each feature vector can be viewed as a set: if the i-th element of the vector is 1,
then the i-th element is in the set. Thus we can use MinHash values to represent a feature
vector. We use one-hot encoding (Coates & Ng, 2011; Buckman et al., 2018) for each hash
value and concatenate these k values to get the new feature vector. To further reduce the
dimension, Li et al. (2010) proposes that we can use only the lowest b (e.g., b=8) bits of each
hash value (usually 64 bits). Thus the new feature vector is only 2b × k-bit long, regardless
of the dimensionality of the original data.

2.4 Use MinHash Values for Fast Near Neighbour Search

Fast near neighbour search is important in many areas like databases (Broder, 1997; Fried-
man et al., 1975) and machine learning (Shrivastava & Li, 2012), especially applications
with high-dimensional data. Given a query set S, near neighbour search is to return other
sets whose similarities with S are more than a threshold.

Shrivastava & Li (2012) proposed MinHash values can be used in near neighbour search
in sub-linear time complexity (i.e., without scanning the whole dataset). Specifically, a
signature for a set is generated by concatenating k MinHash values like this:

Signature(S) = [h1(S);h2(S); ....;hk(S)] (7)

In this way, those similar sets are more likely to have the same signature (It is not true
if empty bins occur). So we can build hash tables by using the signatures as indexes and
the sets as the values of the hash table entries. Moreover, to reduce the number of hash
table entries, we only concatenate the lowest b bits of k hashed values to generate signatures
(Li et al., 2010). To improve the recall of the query results, we can calculate L different
signatures for each set and build L hash tables, and return the union of entries from these L
hash tables as the query result. For different hash tables, we should use independent hash
functions to compute MinHash values. Parameters b, L, and k can be used to control the
threshold of near neighbor search. Using L hash tables, the processing cost of MinHash for
one query set is O(nkL) (n is the size of the query set). Shrivastava & Li (2014a) proposes
that OPH can generate k × L MinHash values only by one hashing with k × L bins, so the
processing cost of OPH is O(n+ kL). (O(n) is for hashing on n elements and O(kL) is for
filling empty bins).
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3 Algorithm

3.1 Amortization Hashing

Algorithm 1: Insertion

Input: k bins B[.], a hash function h(.), a
set S

1 Ω ← output range of h(.)
2 Initialize B[.].EvenMin=+∞

B[.].OddMin=+∞
3 for each element e in S do
4 V ← h(e)
5 i ← h(e)/(Ω/k)
6 if V%2=1 then
7 B[i].OddMin = min(V , B[i].OddMin)

8 if V%2=0 then
9 B[i].EvenMin = min(V , B[i].EvenMin)

Algorithm 2: Amortization

Input: k bins B[.] after Insertion
1 for i=0; i < k; i+=2 do
2 if B[i] is empty and B[i+1] is non-empty

then
3 B[i].OddMin = B[i+1].EvenMin

4 if B[i] is non-empty and B[i+1] is empty
then

5 B[i+1].EvenMin = B[i].OddMin

6 If empty bins still exist:
7 Densification

Figure 2: A toy example of AHash with k = 5.

To generate k MinHash values, Amortization Hashing (AHash) has two key steps: Insertion
and Amortization.

Insertion: As shown in Algorithm 1 and Figure 2, AHash divides all elements into k bins
by hashing and each bin maintains one even min and one odd min. Even min refers to
the minimum one among all even hash values. Odd min refers to the minimum one among
all odd hash values.

Amortization: As shown in Algorithm 2 and Figure 2, AHash pairs up k bins as follows:
ith and (i + 1)th bins are a pair (i = 0, 2, .., bk−2

2 c). For a pair, the ith bin is called even

bin and the (i + 1)th bin is called odd bin. For the pairs with only one empty bin, there
are two cases:

• If the even bin Be is empty, we reassign Be.EvenMin with the even min of the odd
bin.

• If the odd bin Bo is empty, we reassign Bo.OddMin with the odd min of the even
bin.

For the pairs with two simultaneously non-empty or empty bins, we keep them unchanged.
After the amortization, we collect k MinHash values from k bins and there are two cases
(See Figure 2):

• For each even bin with both even and odd mins, we delete the odd min.

• For each odd bin with both even and odd mins, we delete the even min.
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If there are still empty bins, we conduct densifying like OOPH, which rarely happens because
AHash significantly reduces the empty bins. Formally, for even bins,

hAHash
i (S) =


min{πe(S) ∩ Ωi} πe(S) ∩ Ωi 6= ∅
min{πo(S) ∩ Ωi} πe(S) ∩ Ωi = ∅ and πo(S) ∩ Ωi 6= ∅
min{πe(S) ∩ Ωj} ith bin is empty and πe(S) ∩ Ωj 6= ∅
Empty others

(8)

j = b i
2
c+ (i+ 1)%2 (9)

where πe(S) (πo(S)) denotes the even (odd) hash values of S and Ωi denotes i-th partition
of the range space of π(S). The formula for odd bins is similar.

3.2 Time and Memory Overhead

For time overhead, AHash keeps comparable runtime efficiency with OPH, the fastest variant
of MinHash. Although each bin maintains one more hash values than OPH, the additional
runtime cost is negligible because of the memory access locality of the insertion (two values
in a bin). Note that AHash has much less empty bins which require densification compared
with OOPH, which can save the time cost.

For memory overhead, AHash also provides k MinHash values, which is the same as MinHash
and OOPH. During the Insertion, the cost of storing two hash values in a bin is acceptable.
For the common setting (hundreds of bins and 64-bit MinHash values), the vector of bins
with two values per bin can be totally fitted into L1 cache (usually larger than 32 KB), the
fastest memory.

4 Experiments and Applications

4.1 Setup

We use three publicly available datasets 2:
a) RCV1: The dataset is a collection for text categorization. It has 20, 242 sets and the
size of the set is on average 73. The dimensionality (range space) of elements is 47, 236.
b) NEWS20: The dataset is a collection of newsgroup documents. It has 19, 996 sets
and the size of the set is on average 402. The dimensionality (range space) of elements is
1, 355, 191.
c) URL: The dataset is a collection for identifying suspicious URLs. It has 100, 000 sets
and the size of the set is on average 115. The dimensionality (range space) of elements is
3, 231, 961.

We use two metrics to measure the performance:
a) Mean Square Error (MSE) is defined as E[(Ĵ − J)2]. We use MSE to measure the
accuracy of computing the Jaccard Similarity.
b) F1-score is defined as 2P ·R

(P+R) , where P is the precision rate and R is the recall rate. We

use F1-score to evaluate the performance of fast near neighbour search.

We implemented all algorithms in C++ which are publicly available 3 on GitHub. All
experiments are conducted on laptop with 2.9 GHZ Intel Core i7 CPU.

2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
3https://github.com/AHashCodes/AHash
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4.2 Accuracy and Speed

Table 1: Pairs of Sets
Pairs JS |S1| |S2|

A 0.27 750 567
B 0.34 750 748
C 0.44 750 870
D 0.53 750 751
E 0.61 750 892
F 0.71 750 719

Table 2: Time (Second) to compute 256 MinHash val-
ues

Hash RCV1 NEWS20 URL
MinHash 3.44 20.45 25.83
OOPH 0.024 0.13 0.18
AHash 0.025 0.14 0.18
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Figure 3: Average MSE in Jaccard Similarity estimation with varing the number of MinHash
values (k). Results are averaged over 2000 repetitions.

To measure the accuracy of AHash, we generate 6 pairs of sets from the data RCV1, with
varying similarities. Because it is difficult to use original sets to form the pairs with high
similarity, we unite some original sets as a new set to form the pairs. Detailed statistics is
shown in Table 1.

Figure 3 presents the results about the accuracy of computing similarities with varying k
(the number of Minhash values). Regardless of the similarity level, AHash is more accurate
than OOPH and MinHash (e.g., at k = 512, the MSE of AHash is lower than OOPH by
13.2%-31.7%). For Figure 3, the absolute values of MSE are too small, so it’s a little hard
to see the difference in the values. But the improvements are significant (up to 29.021%),
e.g., the MSE of AHash is 29% lower than OOPH with k = 512 in Figure 3(b).Note that the
gain of AHash is more significant when the number of bins is appropriate (not extremely
small or large). The reason is that if k is extremely small, all bins are non-empty. Therefore,
AHash has no need for amortization. To the other extreme, if k is extremely large, only a
small portion of bins are non-empty and the amortization plays a limited role. Fortunately,
with a practical and commonly used configuration, AHash presents significant gains.

Table 2 shows that the speed of computing k MinHash values of AHash is comparable
with OOPH, which is two orders of magnitude faster than MinHash. AHash does not hurt
the runtime efficiency of OOPH. AHash and OOPH both use much less runtime to more
accurately compute the similarity.

7



Under review as a conference paper at ICLR 2020

4.3 Linear Learning
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Figure 4: SVM test accuracy. We set k as 150 and apply the b-bit hash with b as 8.

We use LIBLINEAR (Fan et al., 2008) to train a L2-nomarlized SVM to measure the
effectiveness of AHash in reducing the dimensionality of the training data. We experimented
with varing penalty parameter C, which follows other works (Li et al., 2011; Yu et al., 2012).
In this way, it is more easy to reproduce our experiments.

Figure 4 shows that AHash can achieve 99% test accuracies and outperforms OOPH. Com-
pared with training with the original high-dimensional data, the training based on the new
feature vectors built by AHash is usually two orders of magnitude faster. Figure 4 shows
AHash can further reduce the error, e.g., the error of AHash on average is 46.81% lower
than OOPH in Figure 4(b). AHash can achieve the satisfied accuracy, close to 100%.

4.4 Near Neighbour Search
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Figure 5: F1-score of fast near neighbour search. We set k as 10 and apply the b-bit hash
with b as 32. Results are averaged over 2000 queries.

We apply AHash with the optimization of b-bit hashing (Li et al., 2010) for fast near
neighbour search. Given a query set, threshold of the similarity is 0.5, that is, near neighbour
search should return sets whose similarity with the query set is more than 0.5. It is important
to balance the precision and recall to measure the effectiveness on near neighbour search.
Therefore, we use F1-score as the metric.

Figure 5 shows that the F1-score of AHash is significantly higher than MinHash and OOPH
on all three datasets. Note that the trend of F1-score with varying L is not monotonous.
With L increasing, the number of reported elements and the number of reported near
neighbours both increases, but their growth trends are of randomness. In spite of this,
AHash can outperform OOPH and MinHash under most of parameter settings.

5 Conclusion
We propose Amortization Hashing which can improve the accuracy of One Permutation
Hashing and densification strategies without loss in runtime efficiency. AHash outperforms
the state-of-the-art OOPH in similarity estimating, large-scale learning and fast near neigh-
bour searching.
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A Theoretical Analysis

Theorem 1 Unbiased Estimator

Pr[hAHash(S1) = hAHash(S2)] =
|S1 ∩ S2|
|S1 ∪ S2|

= J(S1, S2) (10)

E(ĴAHash) = J (11)

where ĴAHash denotes the estimator given by AHash. Theorem 1 is to show the estimator of AHash
is following the LSH property and unbiased.

Proof A.1 For convenience, we define some Boolean values:

Iemp,i =
0≤i<k

{
1 For both ith bins of S1 and S2, no elements falls in them

0 otherwise
(12)

Imat,i =
0≤i<k

{
1 Before Amortization, the values of the ith bins of S1 and S2 are the same

0 otherwise
(13)

IAemp,i =
0≤i<k

{
1 hAHash

i (S1)=hAHash
i (S2)=Empty

0 otherwise
(14)

IAmat,i =
0≤i<k

{
1 hAHash

i (S1)=hAHash
i (S2)

0 otherwise
(15)

Obviously, for simultaneously non-empty bins, AHash is following the LSH property:

E(Imat,i|Iemp,i = 0) = J (16)

Next, we prove that the Amortization for simultaneously empty bins is unbiased:

Iemp,i = 1 and IAemp,i = 0 −→ Iemp,j = 1 (j = b i
2
c+ (i + 1)%2)

E(IAmat,i|Iemp,i = 1 and IAemp,i = 0) = E(Imat,j |Iemp,j = 1) = J (17)

If IAemp,i = 1, i.e., there is still the pair of bins which are simultaneously empty after Amortization,
we use unbiased Optimal Densification (Shrivastava, 2017) to fill such bins.

Theorem 2 Reducing Empty Bins

E(NAHash
emp ) ≤ E(NOPH

emp ) (18)

where Nemp =
∑k

i=1 I
i
emp is the number of simultaneously empty bins.

Proof A.2 (Li et al., 2012) proves the expectation of the number of simultaneously empty bins of
OPH is:

E(NOPH
emp ) = y(k) = k

f∏
i=0

D(1− 1
k

)− i

D − i
(19)

where f is |S1∪S2| and D is the dimensionality of the universal hashing function used. The process
of OPH can be viewed as randomly throwing f balls into k bins. For AHash, because k bins are
paired up, the process of AHash can be viewed as randomly throwing f balls into k

2
bins. Obviously,

Nemp of AHash is smaller than OPH:

E(NAHash
emp ) = y(

k

2
) ≤ y(k) (20)

Theorem 3 Improving Variance

V ar(ĴAHash) ≤ V ar(ĴOOPH) (21)
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Proof A.3 We define two Boolean values with 1{x} being the indicator function that takes 1 when
x is true and otherwise 0.

MA
j = 1{IAemp,j = 0 and hAHash

j (S1) = hAHash
j (S2)} (22)

ME
j = 1{IAemp,j = 1 and hAHash

j (S1) = hAHash
j (S2)} (23)

The estimator given by AHash and the variance of AHash can be rewritten as follows using these
two values.

ĴAHash =
1

k

k∑
j=1

[MA
j + ME

j ] (24)

V ar(ĴAHash) = E((
1

k

k∑
j=1

[MA
j + ME

j ])2)− (E(ĴAHash))2 (25)

Theorem 1 proves (E(ĴAHash))2 = J2. Define two notations:

NOPH
emp =

k∑
i=1

Iemp,i NAHash
emp =

k∑
i=1

IAemp,i (26)

OOPH uses conditional expectation to simplify variance analysis. To conveniently compare with
OOPH, we follow its method where E(.|m) means E(.|k − NAHash

emp = m). We compute f(m) =

E(( 1
k

∑k−1
j=0 [ME

j + MN
j ])2|m) By expanding,

k2f(m) = E[

k∑
i=1

((MA
i )2 + (ME

i )2)|m] + E(
∑
i 6=j

MA
i MA

j |m)

+E(
∑
i 6=j

MA
i ME

j |m) + E(
∑
i 6=j

ME
i ME

j |m)

(27)

Because MA
i and ME

i are Boolean values,

E[

k∑
i=1

((MA
i )2 + (ME

i )2)|m] = E[

k∑
i=1

(MA
i + ME

i )|m] = k × J (28)

To analyze another three terms, we provide four probability equations for bins before the amortiza-
tion.

Pr(Iemp,j = 1) = Pe = (
k − 1

k
)|S1∪S2| (29)

Pr(Iemp,j = 0) = Pf = 1− Pe (30)

Pr(Iemp,j=0 and the mins from two j-th bins have one and only one position)

= Ps = Pf × 2× (
1

2
)|S1∪S2|/(k−NOPH

emp ) (31)

Pr(Iemp,j=0 and the mins from two j-th bins have two positions (odd/even))

= Pd = Pf − Ps (32)

Define one notation:

Ĵ =
|S1 ∩ S2| − 1

|S1 ∪ S2| − 1
(33)

The values of following three terms is proved by classifying different combinations of bins and
applying probability equations and the property of indicator functions.

E(
∑
i 6=j

MA
i MA

j |m) = m(m− 1)[JĴ
k − 2

k − 1
+ J

1

k − 1
× PsPe + JĴ

1

k − 1
× 2PdPe] ≤ m(m− 1)JĴ

(34)
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E(
∑
i 6=j

MA
i ME

j |m) = 2m(k −m)[
J

m
+

(m− 2)JĴ

m
+ J

1

m
× PsPe + JĴ

1

m
PdPe]

≤ 2m(k −m)[
J

m
+

(m− 1)JĴ

m
]

(35)

E(
∑
i 6=j

ME
i ME

j |m) = (k −m)(k −m− 1)[
J

m
+

(m− 1− m−1
k−1

)JĴ

m
+ JĴ

1

k − 1
× 2PdPe

+J
1

k − 1
× PsPe + JĴ

1

k − 1
× PfPf ] ≤ (k −m)(k −m− 1)[

J

m
+

(m− 1)JĴ

m
]

(36)

Hence, we get that

k2f(m) ≤ h(m) = k × J + m(m− 1)JĴ + 2m(k −m)[
J

m
+

(m− 1)JĴ

m
]

+(k −m)(k −m− 1)[
J

m
+

(m− 1)JĴ

m
]

(37)

For OOPH, the variance is

V ar(ĴOOPH) = E((
1

k

k−1∑
j=0

[MN
j + MD

j ])2)− (E(ĴOOPH))2, (38)

MN
j = 1{Iemp,j = 0 and hOPH

j (S1) = hOPH
j (S2)}

MD
j = 1{Iemp,j = 1 and hOOPH

j (S1) = hOOPH
j (S2)}.

(39)

For OOPH, the conditional expectation is

E((
1

k

k∑
j=1

[MN
j + MD

j ])2|k −NOPH
emp = m′) = h(m′) (40)

∂h(m)

m
=

k2 − k + m2

m2
(JĴ − J) ≤ 0 and m ≥ m′

=⇒ h(m) ≤ h(m′) =⇒ V ar(ĴAHash) ≤ V ar(ĴOOPH)

(41)

Because AHash reduces Nemp, AHash using Optimal Densification (Shrivastava, 2017) can achieve
lower variance compared with OOPH.

13


	Introduction
	Background
	Prior Art and Their Limitations
	Our Solution: Amortization Hashing
	Key Contributions

	Preliminaries
	Formal Defnitions of MinHash, OPH and OOPH 
	Use MinHash Values for Computing Similarities
	Use MinHash Values for Large-scale Learning 
	Use MinHash Values for Fast Near Neighbour Search

	Algorithm
	Amortization Hashing
	Time and Memory Overhead

	Experiments and Applications
	Setup
	Accuracy and Speed
	Linear Learning
	Near Neighbour Search

	Conclusion
	Theoretical Analysis

