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Abstract

Meta-learning will be crucial to creating lifelong,
generalizable AI. In practice, however, it is hard
to define the meta-training task distribution that is
used to train meta-learners. If made too small,
tasks are too similar for a model to meaning-
fully generalize. If made too large, generaliza-
tion becomes incredibly difficult. We argue that
both problems can be alleviated by introducing a
teacher model that controls the sequence of tasks
that a meta-learner is trained on. This teacher
model is incentivized to start the student meta-
learner on simple tasks then adaptively increase
task difficulty in response to student progress.
While this approach has been previously studied
in curriculum generation, our main contribution
is in extending it to meta-learning.

1. Introduction
Humans are incredibly good at generalizing to unseen tasks.
But, humans are only able to do so because they lean on a
vast history of experience. Within a single lifespan, we begin
by learning simple tasks: crawling, walking, talking. As we
age, we learn progressively more and more difficult tasks,
borrowing from the simpler to inform the more complex.

In order for machines to exhibit this same behavior, they
have to learn how to generalize and borrow from previous
experiences. Once they can do so reliably, we move a step
closer to the holy grail of Artificial General Intelligence.
However, artificial intelligence systems are incredibly brittle.
Because we have an incomplete understanding of how to
best learn from past experiences, it is unclear how we can
create robust, generalizable AI agents.

We propose to tackle this problem by combining curriculum
learning and meta learning into an approach called meta-
teaching. We aim to teach meta-AI agents to start from easy
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Algorithm 1 Adaptive Meta-Teaching
Require: p(T ): Task-space distribution
Require: ψ(p(T )): Task-difficulty
Require: LS : Meta-Student Loss function
Require: LT : Meta-Teacher Loss function
Require: θ: Meta-learner parameters
Require: ω: Meta-teacher parameters

1: while not done do
2: Sample meta-batch of tasks from perturbed task-

space distribution Ti ∼ p(T ) +N
3: for all Ti do
4: Evaluate LSTi with respect to K samples from

task
5: Compute adapted student parameters using either

a gradient based or gradient free update
6: end for
7: Approximate difficulty gradient of current task-space

∇ψLT (LS)
8: Update adapted task-space parameters with gradient

descent over i student losses: ω
′ ← ωi−∇ψLT (LS).

9: end while

tasks, progressively learn harder tasks, and use information
about easy tasks to inform the harder ones. In order to do
so, we introduce a teacher that updates the difficulty of the
current task in response to student progress.

Before describing meta-teaching, we will discuss related
works and provide preliminary information.

2. Related Works
Meta-learning, life-long, curriculum, few-shot, one-shot and
incremental learning are all concerned with one core chal-
lenge: when a model is given a task it has never seen before,
how can it use prior knowledge to solve that problem?

Meta-learning, or learning to learn, first began by learning
the best way to pre-update models by learning update rules
(Schmidhuber, 1987)(Bengio et al., 1992). Some of these
earlier approaches used random search to perform this pre-
update, (Abraham, 2004), and showed that pre-training a
model on a previous set of similar tasks improved perfor-
mance on current tasks. Recently, approaches like MAML
(Finn et al., 2017), FOMAML (Antoniou et al., 2018), and



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Meta Teaching

REPTILE (Nichol & Schulman, 2018) started using first
or second order gradient information to perform this meta-
learning update. Generally, we can divide meta-learning
approaches into three categories: those that use random
search or evolutionary methods (Baldwinian/Lamarckian
Evolution (Fernando et al., 2018)), those that use gradient
information for gradient descent or optimization (MAML
(Finn et al., 2017)), and those that explicitly use past infor-
mation (RNNs (Zaremba & Sutskever, 2014))

Curriculum learning addresses a similar problem, but cen-
ters on reusing previous experience either sequentially or
in a manner that maximizes learner progress(Bengio et al.,
2009). The term self-paced learning has been used recently
to describe this, (Jiang et al., 2014)(Jiang et al., 2015)(Zhao
et al., 2015)(Kumar et al., 2010), but the approach boils
down to the same concept: how can a student most effec-
tively guide its learning? This is done with the hope that we
can build systems that are continuously learning and using
past experience, a concept which itself has been extensively
explored (Mitchell et al., 2018)(Thrun, 1998)(Thrun & Pratt,
2012)(Lopez-Paz et al., 2017)(Sukhbaatar et al., 2017)(Xiao
et al., 2014)(Khan et al., 2011). Multiple approaches have
also been proposed to use curriculum learning for transfer-
ring information between tasks (Pentina et al., 2015)(Gong
et al., 2016).

The closest approach to our own is detailed in (Matiisen
et al., 2017) and is referred to as teacher-student curriculum
learning. In this set up, the teacher chooses to train the
student on N discrete tasks. Depending on how well the
student learns a task, the teacher updates the probability
with which it samples that task at the next training iteration.
This method borrows from multi-arm bandit literature and
incentivizes the teacher to choose tasks that the student has
previously achieved high reward progress on. Although this
method can be extended to continuous task-space problems,
it is unable to take advantage of progressive task knowledge
and does not directly address either of the core problems in
meta-learning.

Another similar approach shown in (Gupta et al., 2018) also
uses diversity to perform unsupervised meta-learning. How-
ever, this work again does not attempt to perform curriculum
learning nor does it transfer from simpler policies to more
difficult policies.

3. Preliminaries
We follow the setup proposed in (Finn et al., 2017). We seek
to learn an initial set of parameters θ? for a model across a
distribution of tasks p(T ) such that a task Ti sampled from
the distribution can be solved in the smallest number of
algorithm updates.

The meta-learner’s objective is defined as the following:

min
θ
ETi∼p(T )LTi(θ′i) (1)

where we take an expectation over the task space, LTi refers
to the loss on the ith example of the current task, and θ′i are
the parameters adapted to fit K examples of the current task.
We can then use any meta-learning algorithm, whether it
be gradient-based or gradient-free, to update towards this
objective.

We can use ωp(T ) to refer to the parameters that define the
distribution of tasks p(T ) and these can either be contin-
uous or discrete. Furthermore, Our next insight is that all
tasks have a level of difficulty and can therefore be directly
compared by their difficulties. We assume to have access
to ψ(ω), which defines the difficulty of the distribution of
tasks currently being used. The current difficulty ψ can be
changed by modulating our distribution of tasks ω, and we
make no assumption on the relationship between ω and ψ.

4. Meta-Teaching
Borrowing from our discussion about task space difficulty
above, we would like our meta-learner to effectively nav-
igate task difficulty and apply insight from simpler tasks
to more difficult tasks. To that end, we introduce a meta-
teacher model parameterized as a neural network. Given the
task space parameters as input and the student’s learning
curve as loss, the teacher model must modulate task space
difficulty.

This approach is similar in spirit to (Ha et al., 2016) and
(?), but uses this external model not to update the student’s
weights, but rather to update the task space parameters that
define the tasks that the student is trained on. This model
acts as a teacher that uses insight about student progress to
update task difficulty in an unsupervised manner.

4.1. Static Meta-Teaching

To highlight the novelty of this approach, we will first de-
scribe the type of curriculum learning that is most commonly
used, and has previously been applied to the meta-learning
setting (Bengio et al., 2009).

This ”static teacher” operates as follows. Before training,
we define a static set of progressively more difficult task dis-
tributions. These task distributions can either be manually
defined or drawn from another distribution. Then, during
meta-training time, whenever the student model’s meta val-
idation loss goes below a specific threshold, we switch to
the next, slightly harder set of tasks. We continue doing so
until we reach the the final, most difficult set of tasks.

Though this approach is simple to implement, it relies heav-
ily on knowledge of task-space parameters. In turn, it can
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fail catastrophically. For example, if we switch to a harder
task distribution and it becomes too difficult for our model
to solve the task, it will never reach our threshold and will
never progress to the next set of tasks. Furthermore, in the
chance that our model records a meta validation loss below
the threshold on a set of tasks that do not encompass the
full difficulty of the current task distribution, it would move
on to more difficult tasks when, in reality, it was not able to
fully solve the easier tasks.

We can alleviate these problems by creating more inter-
pretable task space parameterizations and using higher-order
information about student progress, but this puts more bur-
den on task design and, ultimately, only adds to model
brittleness.

4.2. Adaptive Meta-Teaching

Having discussed several of the issues with static meta-
teaching, we introduce our key contribution, the adaptive
teacher. The adaptive teacher’s goal is to decrease student
loss while increasing task complexity. Ideally, we would
like our teacher to observe several behaviors:

1. If the student is consistently over-performing on the
current set of tasks, the teacher should increase task
difficulty.

2. If the student is consistently under-performing on the
current set of tasks, the teacher should decrease task
difficulty.

3. The teacher should update in the direction of ∇ψ at ω.
In other words, the teacher should capture how much a
change in each task distribution parameter affects the
difficulty of the task distribution.

4. The teacher should eventually push the student to ex-
plore more difficult tasks.

In order to meet these requirements, we introduce a teacher
model that updates task parameters by approximating how
much its previous parameter changes affected task diffi-
culty. To do so, we implicitly use information about student
progress in order to estimate the gradient of the task space
difficulty with respect to task space parameters. This is then
used to update the teacher model.

4.2.1. TEACHER LOSS

Next, we describe the modified loss function that is used
to train the teacher model and why this loss sufficiently
encodes our four requirements.

The teacher’s loss can be any kind of absolute value function
on the average slope of the student’s training loss. This
means that we penalize the teacher whenever the student’s

performance is either too high or too low. In addition, we
add an additional term on the total change in task space
parameters to encourage the teacher to explore more difficult
tasks. This combination of terms, in turn, allows us to
progressively and continuously update our task difficulty in
response to student performance.

4.2.2. ALGORITHM OVERVIEW

We now present a summary of the adaptive meta-teaching
algorithm.

We start by initializing with the simplest set of task space
parameters. During meta-training, the meta-learner samples
from the task distribution that is parameterized by these pa-
rameters. Next, during each meta-training step, we store the
meta-learner’s loss on a set of meta-validation tasks drawn
from the current task distribution. After N meta-training up-
date steps, we calculate the modified loss described above,
and use this to update the teacher model via gradient de-
scent. Then, the teacher model produces a new set of task
parameters. We continue to do so until termination.

The full approach is shown in Algorithm 1.

5. Challenges
There are several challenges to implementing a meta-
teaching approach in a meaningful manner.

First, this approach relies on the notion that our task space
can be described using a continuous difficulty function. This
might be simple to implement when difficulty is analogous
to domain size. For example, we might assume that a larger
task distribution is equivalent to a harder one. However, in
more meaningful task spaces, it is unclear how this diffi-
culty function would be applied. For example, the space of
tasks that humans can perform is characterized by difficulty
across an enormous amount of difficulty parameters. Would
we have to define the difficulty of each task manually or
fall back manual labelling? Ideally, could we learn a task
difficulty space that encodes difficulty relationships between
all pairwise tasks?

Second, because we assume that our task space distribution
can be updated using gradient descent, we have to carefully
bound the meta-teacher’s outputs so that they correspond to
valid task distribution parameters.

Third, adding a meta-teaching adds an additional layer to
meta-optimization, which is already notoriously difficult
to train. Making meta-teaching practical requires simul-
taneously addressing the underlying difficulty of current
meta-learning algorithms.
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6. Future Work
We are incredibly excited to apply this type of approach to
a wide variety of meta learning problems. In the future, we
hope to apply it to meta-learning distributions that cannot
be solved by learning on the entire distribution at once.This
type of approach might be useful for unifying meta-learning,
curriculum learning, and lifelong learning, and make it more
accessible to use past knowledge to guide future tasks.

We believe that this kind of approach will be instrumental in
creating lifelong agents, and are motivated to see it working
in lifelong settings.
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