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ABSTRACT

We propose a deep network that can be trained to tackle image reconstruction and
classification problems that involve detection of multiple object instances, without
any supervision regarding their whereabouts. The network learns to extract the
most significant K patches, and feeds these patches to a task-specific network –
e.g., auto-encoder or classifier – to solve a domain specific problem. The challenge
in training such a network is the non-differentiable top-K selection process. To
address this issue, we lift the training optimization problem by treating the result of
top-K selection as a slack variable, resulting in a simple, yet effective, multi-stage
training. Our method is able to learn to detect recurring structures in the training
dataset by learning to reconstruct images. It can also learn to localize structures
when only knowledge on the occurrence of the object is provided, and in doing so
it outperforms the state-of-the-art.

1 INTRODUCTION

Finding and processing multiple instances of characteristic entities in a scene is core to many
computer vision applications, including object detection (Ren et al., 2015; He et al., 2017; Redmon &
Farhadi, 2017), pedestrian detection (Dollár et al., 2012; Sewart & Andriluka, 2016; Zhang et al.,
2018a), and keypoint localization (Lowe, 2004; Bay et al., 2008). In traditional vision pipelines, a
common approach to localizing entities is to select the top-K responses in a heatmap and use their
locations (Lowe, 2004; Bay et al., 2008; Felzenszwalb et al., 2010). However, this type of approach
does not provide a gradient with respect to the heatmap, and cannot be directly integrated into neural
network-based systems. To overcome this challenge, previous work proposed to use grids (Redmon
et al., 2016; He et al., 2017; Detone et al., 2018) to simplify the formulation by isolating each
instance (Yi et al., 2016), or to optimize over multiple branches (Ono et al., 2018). While effective,
these approaches require additional supervision to localize instances, and do not generalize well
outside their intended application domain. Other formulations, such as sequential attention (Ba et al.,
2015; Gregor et al., 2015; Eslami et al., 2015) and channel-wise approaches (Zhang et al., 2018c) are
problematic to apply when the number of instances of the same object is large.

Here, we introduce a novel way to approach this problem, which we term Multiple Instance Spatial
Transformer, or MIST for brevity. As illustrated in Figure 1 for the image synthesis task, given an
image, we first compute a heatmap via a deep network whose local maxima correspond to locations
of interest. From this heatmap, we gather the parameters of the top-K local maxima, and then extract
the corresponding collection of image patches via an image sampling process. We process each patch
independently with a task-specific network, and aggregate the network’s output across patches.

Training a pipeline that includes a non-differentiable selection/gather operation is non-trivial. To solve
this problem we propose to lift the problem to a higher dimensional one by treating the parameters
defining the interest points as slack variables, and introduce a hard constraint that they must correspond
to the output that the heatmap network gives. This constraint is realized by introducing an auxiliary
function that creates a heatmap given a set of interest point parameters. We then solve for the relaxed
version of this problem, where the hard constraint is turned into a soft one, and the slack variables
are also optimized within the training process. Critically, our training strategy allows the network
to incorporate both non-maximum suppression and top-K selection. We evaluate the performance
of our approach for 1© the problem of recovering the basis functions that created a given texture,
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2© classification of handwritten digits in cluttered scenes, and 3© recognition of house numbers in
real-world environments. In summary, in this paper we:

• introduce the MIST framework for weakly-supervised multi-instance visual learning;
• propose an end-to-end training method that allows the use of top-K selection;
• show that our framework can reconstruct images as parts, as well as detect/classify

instances without any location supervision.

2 RELATED WORK

Attention models and the use of localized information have been actively investigated in the literature.
Some examples include discriminative tasks such as fine-grained classification (Sun et al., 2018),
pedestrian detection (Zhang et al., 2018a), and generative ones such as image synthesis from natural
language (Johnson et al., 2018). They have also been studied in the context of more traditional Multi-
ple Instance Learning (MIL) setup (Ilse et al., 2018). We now discuss a selection of representative
works, and classify them according to how they deal with multiple instances.

Grid-based methods. Since the introduction of Region Proposal Networks (RPN) (Ren et al., 2015),
grid-based strategies have been used for dense image captioning (Johnson et al., 2016), instance
segmentation (He et al., 2017), keypoint detection (Georgakis et al., 2018), and multi-instance
object detection (Redmon & Farhadi, 2017). Recent improvements to RPNs attempt to learn the
concept of a generic object covering multiple classes (Singh et al., 2018), and to model multi-scale
information (Chao et al., 2018). The multiple transformation corresponding to separate instances
can also be densely regressed via Instance Spatial Transformers (Wang et al., 2018), which removes
the need to identify discrete instance early in the network. However, all these methods are fully
supervised, requiring both class labels and object locations for training.

Heatmap-based methods. Heatmap-based methods have recently gained interest to detect fea-
tures (Yi et al., 2016; Ono et al., 2018; Detone et al., 2018), find landmarks (Zhang et al., 2018c;
Merget et al., 2018), and regress human body keypoint (Tekin et al., 2017; Newell et al., 2016). While
it is possible to output a separate heatmap per class (Zhang et al., 2018c; Tekin et al., 2017), most
heatmap-based approaches do not distinguish between instances. Yi et al. (2016) re-formulate the
problem based on each instance, but in doing so introduce a sharp difference between training and
testing. Grids can also be used with heatmaps (Detone et al., 2018), but this results in an unrealistic
assumption of uniformly distributed detections in the image. Overall, heatmap-based methods excel
when the “final” task of the network is generate a heatmap (Merget et al., 2018), but are problematic
to use as an intermediate layer in the presence of multiple instances.

Sequential inference methods. Another way to approach multi-instance problems is to attend to
one instance at a time in a sequentially. Training neural network-based models with sequential
attention is challenging, but approaches using policy gradient (Ba et al., 2015) and differentiable
attention mechanisms (Gregor et al., 2015; Eslami et al., 2015) have achieved some success for
images comprising small numbers of instances. However, Recurrent Neural Networks (RNN) often
struggle to generalize to sequences longer than the ones encountered during training, and while recent
results on inductive reasoning are promising (Gupta et al., 2018), their performance does not scale
well when the number of instances is large.

Knowledge transfer. To overcome the acquisition cost of labelled training data, one can transfer
knowledge from labeled to unlabeled dataset. For example, Inoue et al. (2018) train on a single
instance dataset, and then attempt to generalize to multi-instance domains, while Uijlings et al. (2018)
attempt to also transfer a multi-class proposal generator to the new domain. While knowledge transfer
can be effective, it is highly desirable to devise unsupervised methods such as ours that do not depend
on an additional dataset.

Weakly supervised methods. To further reduce the labeling effort, weakly supervised methods
have also been proposed. Wan et al. (2018) learn how to detect multiple instances of a single object
via region proposals and ROI pooling, while Tang et al. (2018) propose to use a hierarchical setup to
refine their estimates. Gao et al. (2018) provides an additional supervision by specifying the number
of instances in each class, while Oquab et al. (2015) and Zhang et al. (2018b) localize objects by
looking at the network activation maps (Zhou et al., 2016; Selvaraju et al., 2017). Shen et al. (2018)
introduce an adversarial setup, where detection boxes are supervised by distribution assumptions and
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Figure 1: The MIST architecture – A networkHη estimates locations and scales of patches encoded
in a heatmap h. Patches are then extracted via a sampler S, and then fed to a task-specific network
Tτ . In this example, the specific task is to re-synthesize the image as a super-position of (unknown
and locally supported) basis functions. As top-k operation is non-differentiable, we back-propagate
by lifting through G; see Section 3 for details.

classification objectives. However, all these methods still rely on region proposals from an existing
method, or define them via a hand-tuned process.

3 MIST FRAMEWORK

We first explain our framework at a high level, and then detail each component in Section 4. A
prototypical MIST architecture (Figure 1) is composed of two trainable components: 1© the first
module receives an image as input and extracts K patches, at image locations and scales given by the
top K local maxima of a heatmap computed by a trainable heatmap networkHη with weights η. 2©
the second module processes each extracted patch with a task-specific network Tτ whose weights τ
are shared across patches, and further manipulates these signals to express a task-specific loss Ltask.
The two modules are connected through non-maximum suppression on the scale-space heatmap
output ofHη, followed by a top-K selection process to extract the parameters defining the patches,
which we denote as EK . We then sample patches at these locations through (differentiable) bilinear
sampling S and feed them the task module.

The defining characteristic of the MIST architecture is that they are quasi-unsupervised: the only
supervision required is the number K of patches to extract. However, as we show in Section 5.2, our
method is not sensitive to the choice of K during training. In addition, our extraction process uses a
single heatmap for all instances that we extract. In contrast, existing heatmap-based methods (Eslami
et al., 2015; Zhang et al., 2018c) typically rely on heatmaps dedicated to each instance, which is
problematic when an image contains two instances of the same class. Conversely, we restrict the
role of the heatmap network Hη to find the “important” areas in a given image, without having to
distinguishing between classes, hence simplifying learning.

Formally, the training of the MIST architecture is summarized by:

minimize
τ,η

Ltask(Tτ (S(EK(Hη(I))))) (1)

where τ, η are the network trainable parameters. Unfortunately, the patch extractor EK is non-
differentiable, as it identifies the locations of the top-K local maxima of a heatmap and then selects
the corresponding patches from the input image. Differentiating this operation provides a gradient
with respect to the input, but no gradient with respect to the heatmap. Although it is possible to
smoothly relax the patch selection operation in the K = 1 case (Yi et al., 2016) (i.e. argmax),
it is unclear how to generalize this approach to the case of multiple distinct local maxima. It is
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Algorithm 1 Multi-stage optimization for MISTs

Require: K : number of patches to extract, Ltask : task specific loss, I : input image, G : the
keypoints to heatmap function,H : the heatmap network, η : parameters of the heatmap network,
T : the task network, τ : parameters of the task network, EK : the top-K operator.

1: function TRAINMIST(I, Ltask)
2: for each training batch do
3: τ ← Optimization step for Tτ with Ltask + λ‖{xk} − EK(Hη(I))‖22
4: {xk} ← Optimization step for {xk} with Ltask + λ‖{xk} − EK(Hη(I))‖22
5: η ← Optimization step for η with ‖G({xk})−Hη(I)‖22
6: end for
7: end function

thus impossible to train the patch selector parameters directly by backpropagation. We propose an
alternative approach to training our model, via lifting.

Differentiable top-K via lifting. The introduction of auxiliary variables to simplify the structure
of an optimization problem has proven effective in a range of domains ranging from non-rigid
registration (Taylor et al., 2016), to robust optimization (Zach & Bournaoud, 2018). To simplify
our training optimization, we start by decoupling the heatmap tensor from the optimization (1) by
introducing the corresponding auxiliary variables h, as well as the patch location variables {xk} from
the top-K extractor:

minimize
η,τ,h,{xk}

Ltask(Tτ (S({xk}))) s.t. h = Hη(I), {xk} = EK(h). (2)

We then relax the first constraint above to a least-squares penalty via a Lagrange multiplier λ:

minimize
η,τ,h,{xk}

Ltask(Tτ (S({xk}))) + λ‖h−Hη(I)‖22 s.t. {xk} = EK(h). (3)

As in many methods that use keypoint supervision to regress heatmaps (Cao et al., 2018), we assume
that a good heatmap generator G exists – that is {xk} ≈ EK(G({xk})) We can now rewrite our
optimization as:

minimize
η,τ,h,{xk}

Ltask(Tτ (S({xk}))) + λ‖h−Hη(I)‖22 s.t. h = G({xk}). (4)

We can now drop the auxiliary variable h and rewrite our optimization as:

minimize
η,τ,{xk}

Ltask(Tτ (S({xk}))) + λ‖G({xk})−Hη(I)‖22, (5)

and then approach the problem by block coordinate descent – where the energy terms not containing
the variable being optimized are safely dropped, and we apply EK to the penalty term of (5):

minimize
τ,{xk}

Ltask(Tτ (S({xk}))) + λ‖{xk} − EK(Hη(I))‖22, (6)

minimize
η

‖G({xk})−Hη(I)‖22. (7)

To accelerate training, we further split (6) into two stages, and alternate between optimizing τ and
{xk}. Being based on block coordinate descent, this process converges smoothly, as we show in
Section D of the appendix. The summary for the three stage optimization procedure is outlined in
Algorithm 1. Notice that we are not introducing any additional supervision signal that is tangent to
the given task.

4 IMPLEMENTATION

4.1 COMPONENTS

Multiscale heatmap network –Hη . Our multiscale heatmap network is inspired by LF-Net (Ono
et al., 2018). We improve the network by applying modifications on how the scores are aggregated
over scale. The network takes as input an image I, and outputs multiple heatmaps h′s of the same
size for each scale level s. To limit the number of necessary scales, we use a discrete scale space with
S scales, and resolve intermediate scales via interpolation; see Section A of the appendix for details.
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Top-K patch selection – EK . To extract the topK elements, we perform an addition cleanup through
a standard non-maximum suppression. We then find the spatial locations of the top K elements of
this suppressed heatmap, denoting the spatial location of the kth element as (xk, yk), which now
reflect local maxima. For each location, we compute the corresponding scale by weighted first order
moments (Suwajanakorn et al., 2018) where the weights are the responses in the corresponding
heatmaps, i.e. sk =

∑
s h
′
s(xk, yk)s

Generating model for ideal heatmap – G({xk}). For the generative model that turns keypoint and
patch locations into heatmaps, we apply a simple model where the heatmap is zero everywhere else
except the corresponding keypoint locations (patch center); see Section B of the appendix for details.

Patch resampling – S. As a patch is uniquely parameterized by its location and scale, i.e.
xk = (xk, yk, sk), we can then proceed to resample its corresponding tensor via bilinear inter-
polation (Jaderberg et al., 2015; Jiang et al., 2019) as {Pk} = S (I, {xk}).

4.2 TASK-SPECIFIC NETWORKS

We now introduce two applications of the MIST framework. We use the same heatmap network and
patch extractor for both applications, but the task-specific network and loss differ. We provide further
details regarding the task-specific network architectures in Section C of the appendix.

Image reconstruction / auto-encoding. As illustrated in Figure 1, for image reconstruction we
append our patch extraction network with a shared auto-encoder for each extracted patch. We can
then train this network to reconstruct the original image by inverting the patch extraction process
and minimizing the mean squared error between the input and the reconstructed image. Overall, the
network is designed to jointly model and localize repeating structures in the input signal. Specifically,
we introduce the generalized inverse sampling operation S−1(Pi,xi), which starts with an image
of all zeros, and places the patch Pi at xi. We then sum all the images together to obtain the
reconstructed image, optimizing the task loss

Ltask = ‖I −
∑
i

S−1 (Pi,xi)‖22. (8)

Multiple instance classification. By appending a classification network to the patch extraction
module, we can also perform multiple instance learning. For each extracted patch Pk we apply a
shared classifier network to output ŷk ∈ RC , where C is the number of classes. In turn, these are
then converted into probability estimates by the transformation p̂k = softmax(ŷk). With yl being the
one-hot ground-truth labels of instance l with unit norm, we define the multi-instance classification
loss as

Ltask =

∥∥∥∥∥ 1L
L∑
l=1

yl −
1

K

K∑
k=1

p̂k

∥∥∥∥∥
2

2

, (9)

where L is the number of instances in the image. We empirically found this loss to be more stable
compared to the cross-entropy loss, similar to Mao et al. (2017). Note here that we do not provide
supervision about the localization of instances, yet the detector network will automatically learn how
to localize the content with minimal supervision (i.e. the number of instances).

5 RESULTS AND EVALUATION

To demonstrate the effectiveness of our framework we evaluate the two different tasks. We first
perform a quasi-unsupervised image reconstruction task, where only the total number of instances in
the scene is provided, i.e. K is defined. We then show that our method can also be applied to weakly
supervised multi-instance classification, where only image-level supervision is provided. Note that,
unlike region proposal based methods, our localization network only relies on cues from the classifier,
and both networks are trained from scratch.

5.1 IMAGE RECONSTRUCTION

From the MNIST dataset, we derive two different scenarios. In the MNIST easy dataset, we consider
a simple setup where the sorted digits are confined to a perturbed grid layout; see Figure 2 (top).
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Figure 2: MNIST character synthesis examples for (top) the “easy” single instance setup and (bottom)
the hard multi-instance setup. We compare the output of MISTs to grid, channel-wise, sequential
Eslami et al. (Eslami et al., 2015) and Zhang et al. (Zhang et al., 2018c).
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Figure 3: Two auto-encoding examples learnt from MNIST-hard. In the top row, for each example we
visualize input, patch detections, and synthesis. In the bottom row we visualize each of the extracted
patch, and how it is modified by the learnt auto-encoder.

Specifically, we perturb the digits with a Gaussian noise centered at each grid center, with a standard
deviation that is equal to one-eighths of the grid width/height. In the MNIST hard dataset, the
positions are randomized through a Poisson distribution (Bridson, 2007), as is the identity, and
cardinality of each digit. We allow multiple instances of the same digit to appear in this variant. For
both datasets, we construct both training and test sets, and the test set is never seen during training.

Comparison baselines We compare our method against four baselines 1© the grid method divides
the image into a 3 × 3 grid and applies the same auto-encoder architecture as MIST to each grid
location to reconstruct the input image; 2© the channel-wise method uses the same auto-encoder
network as MIST, but we modify the heatmap network to produce K channels as output, where each
channel is dedicated to an interest point. Locations are obtained through a channel-wise soft-argmax
as in Zhang et al. (2018c); 3© Esl16 (Eslami et al., 2015) is a sequential generative model; 4©
Zha18 (Zhang et al., 2018c) is a state-of-the-art heatmap-based method with channel-wise strategy
for unsupervised learning of landmarks. For more details see Supplementary Section C.

Results for “MNIST easy” As shown in Figure 2 (top) all methods successfully re-synthesize the
image, with the exception of Eslami et al. (Eslami et al., 2015). As this method is sequential, with
nine digits the sequential implementation simply becomes too difficult to optimize through. Note how
this method only learns to describe the scene with a few large regions. We summarize quantitative
results in Table 1.

Results for “MNIST hard” As shown in Figure 2 (bottom), all baseline methods failed to properly
represent the image. Only MIST succeeded at both localizing digits and reconstructing the original
image. Although the grid method accurately reconstructs the image, it has no concept of individual
digits. Conversely, as shown in Figure 3, our method generates accurate bounding boxes for digits
even when these digits overlap, and does so without any location supervision. For quantitative results,
please see Table 1.
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Figure 4: Inverse rendering of Gabor noise; we annotate correct / erroneous localizations.

Figure 5: Two qualitative examples for detection and classification on our Multi-MNIST dataset.

Finding the basis of a procedural texture We further demonstrate that our methods can be used
to find the basis function of a procedural texture. For this experiment we synthesize textures with
procedural Gabor noise (Lagae et al., 2009). Gabor noise is obtained by convolving oriented Gabor
wavelets with a Poisson impulse process. Hence, given exemplars of noise, our framework is tasked
to regress the underlying impulse process and reconstruct the Gabor kernels so that when the two are
convolved, we can reconstruct the original image. Figure 4 illustrates the results of our experiment.
The auto-encoder learned to accurately reconstruct the Gabor kernels, even though in the training
images they are heavily overlapped. These results show that MIST is capable of generating and
reconstructing large numbers of instances per image, which is intractable with other approaches.

5.2 MULTIPLE INSTANCE CLASSIFICATION

Multi-MNIST – Figure 5. To test our method in a multiple instance classification setup, we rely on
the MNIST hard dataset. We compare our method to channel-wise, as other baselines are designed
for generative tasks. To evaluate the detection accuracy of the models, we compute the intersection
over union (IoU) between the ground-truth bounding box and the detection results, and assign it
as a match if the IoU score is over 50%. We report the number of correctly classified matches in
Table 2, as well as the proportion of instances that are both correctly detected and correctly classified.
Our method clearly outperforms the channel-wise strategy. Note that, even without localization
supervision, our method correctly localizes digits. Conversely, the channel-wise strategy fails to learn.
This is because multiple instances of the same digits are present in the image. For example, in the
Figure 5 (right), we have three sixes, two zeros, and two nines. This prevents any of these digits from
being detected/classified properly by a channel-wise approach.

Sensitivity to K – Table 3. To investigate the sensitivity to the correctness of K during training, we
train with varying number of of instances and test with ground-truth K. For example, with K = 6,

MIST Grid Ch.-wise Esl16 Zha18

MNIST easy .038 .039 .042 .100 .169
MNIST hard .053 .062 .128 .154 .191

Gabor .095 - - - -

Table 1: Reconstruction error (root
mean square error). Note that Grid
does not learn any notion of digits.

MIST Ch.-wise Supervised

IOU 50% 97.8% 25.4% 99.6%
Classif. 98.8% 75.5% 98.7%

Both 97.5% 24.8% 98.6%

Table 2: Instance level detec-
tion and classification perfor-
mance on “MNIST hard”.

Instances during train APIoU=.50

{9} 92.2%
{6, 7, 8, 9} 90.1%

{3, 4, 5, 6, 7, 8, 9} 90.8%

Table 3: Sensitivity exper-
iment of K on the MNIST
hard dataset.
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Figure 6: Qualitative SVHN results.

MIST Supervised

APIoU=.00 82.6% 65.6%
APIoU=.50 76.5% 62.8%
APIoU=.60 63.7% 59.8%
APIoU=.70 42.7% 51.9%
APIoU=.80 19.9% 34.6%
APIoU=.90 4.2% 11.0%

Table 4: Quantitative SVHN results.

where the ground truth could be anything within {3, 4, 5, 6, 7, 8, 9} – we mark the K used during
training with bold. Our method still is able to give accurate result with inaccurate K during training.
Knowing the exact number of objects is not a strict requirement at test time, as our detector generates
a heatmap for the entire image regardless of the K it was trained with. Note that while in theory
sequential methods are free from this limitation, in practice they are able to deal with limited number
of objects (e.g. up to three) due to their recurrent nature.

SVHN – Figure 6 and Table 4. We further apply MIST to the uncropped and unaligned Street View
House Numbers dataset (Netzer et al., 2011). Compared to previous work that has used cropped and
resized SVHN images (e.g. (Netzer et al., 2011; Ba et al., 2015; Goodfellow et al., 2014; Jaderberg
et al., 2015)), this evaluating setting is significantly more challenging, because digits can appear
anywhere in the image. We resize all images to 60× 240, use only images labeled as containing 2
digits, and apply MIST at a single scale. Although the dataset provides bounding boxes for the digits,
we ignore these bounding boxes and use only digit labels as supervision. During testing, we exclude
images with small bounding boxes (< 30 pixels in height). We report results in terms of APIoU=.X,
where X is the threshold for determining detection correctness. With IoU=0, we refer to a “pure”
classification task (i.e. no localization). As shown, supervised results provide better performance
with higher thresholds, but MIST performs even better than the supervised baseline for moderate
thresholds. We attribute this to the fact that, by providing direct supervision on the location, the
training focuses too much on having high localization accuracy.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduce the MIST framework for multi-instance image reconstruction/classification.
Both these tasks are based on localized analysis of the image, yet we train the network without
providing any localization supervision. The network learns how to extract patches on its own, and
these patches are then fed to a task-specific network to realize an end goal. While at first glance the
MIST framework might appear non-differentiable, we show how via lifting they can be effectively
trained in an end-to-end fashion. We demonstrated the effectiveness of MIST by introducing a
variant of the MNIST dataset, and demonstrating compelling performance in both reconstruction and
classification. We also show how the network can be trained to reverse engineer a procedural texture
synthesis process. MISTs are a first step towards the definition of optimizable image-decomposition
networks that could be extended to a number of exciting unsupervised learning tasks. Amongst these,
we intend to explore the applicability of MISTs to unsupervised detection/localization of objects,
facial landmarks, and local feature learning.

Even though our method is a significant step forward from existing methods, it is not complete
and has much potential for improvement. While our method is robust to K during training as
shown in Section 5.2, and K can be determined dynamically during test time, it would beneficial
to automatically determine K through an additional network. Patches could also be refined to have
varying aspect ratios similar to RPNs. Reconstruction could consider a global reconstructor to deal
with complex images. These are parts of our future work towards MIST in the wild.
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Appendix

A MULTISCALE HEATMAP NETWORK

Our multiscale heatmap network is inspired by LF-Net (Ono et al., 2018). We employ a fully
convolutional network with (shared) weights η at multiple scales, indexed by s = 1 . . . S, on the
input image I. The weights η across scales are shared so that the network cannot implicitly favor a
particular scale. To do so, we first downsample the image to each scale producing Is, execute the
networkHη on it, and finally upsample to the original resolution. This process generates a multiscale
heatmap tensor h = {hs} of size H ×W × S where hs = Hη(Is), and H is the height of the
image and W is the width. For the convolutional network we use 4 ResNet blocks (He et al., 2015),
where each block is composed of two 3 × 3 convolutions with 32 channels and relu activations
without any downsampling. We then perform a local spatial softmax operator (Ono et al., 2018)
with spatial extent of 15 × 15 to sharpen the responses. Then we further relate the scores across
different scales by performing a “softmax pooling” operation over scale. Specifically, if we denote the
heatmap tensor after local spatial softmax as h̃ = {h̃s}, since after the local spatial softmax Hη(Is)
is already an “exponentiated” signal, we do a weighted normalization without an exponential, i.e.
h′ =

∑
s h̃s(h̃s/

∑
s′(h̃s′ + ε)), where ε = 10−6 is added to prevent division by zero.

Comparison to LF-Net. Note that differently from LF-Net (Ono et al., 2018), we do not perform
a softmax along the scale dimension. The scale-wise softmax in LF-Net is problematic as the
computation for a softmax function relies on the input to the softmax being unbounded. For example,
in order for the softmax function to behave as a max function, due to exponentiation, it is necessary
that one of the input value reaches infinity (i.e. the value that will correspond to the max), or that
all other values to reach negative infinity. However, at the network stage where softmax is applied
in (Ono et al., 2018), the score range from zero to one, effectively making the softmax behave
similarly to averaging. Our formulation does not suffer from this drawback.

B GENERATIVE MODEL FOR THE HEATMAP

As discussed previously in Section 4.1, for the generative model that turns keypoint and patch
locations into heatmaps, we apply a simple model where the heatmap is zero everywhere else except
the corresponding keypoint locations (patch center). However, as the optimized patch parameters are
no longer integer values, we need to quantize them with care. For the spatial locations we simply
round to the nearest pixel, which at most creates a quantization error of half a pixel, which does
not cause problems in practice. For scale however, simple nearest-neighbor assignment causes too
much quantization error as our scale-space is sparsely sampled. We therefore assign values to the
two nearest neighboring scales in a way that the center of mass would be the optimized scale value,
making sure {xk} = EK(G({xk})).

C IMPLEMENTATION DETAILS

MIST auto-encoder network. The input layer of the autoencoder is 32× 32× C where C is the
number of color channels. We use 5 up/down-sampling levels. Each level is made of 3 standard
non-bottleneck ResNet v1 blocks (He et al., 2015) and each ResNet block uses a number of channels
that doubles after each downsampling step. ResNet blocks uses 3× 3 convolutions of stride 1 with
ReLU activation. For downsampling we use 2D max pooling with 2 × 2 stride and kernel. For
upsampling we use 2D transposed convolutions with 2× 2 stride and kernel. The output layer uses a
sigmoid function, and we use layer normalization before each convolution layer.

MIST classification network. We re-use the same architecture as encoder for first the task and
append a dense layer to map the latent space to the score vector of our 10 digit classes.

Baseline unsupervised reconstruction methods. To implement the Eslami et al. (Eslami et al.,
2015) baseline, we use a publicly available reimplementation.1 We note that Eslami et al. (Eslami

1https://github.com/aakhundov/tf-attend-infer-repeat

1

https://github.com/aakhundov/tf-attend-infer-repeat


Under review as a conference paper at ICLR 2020

(a) Ltask (b) ‖G({xk})−Hη(I)‖22 (c)Hη(I)

Figure 7: Evolution of the loss and heatmap during training. (a) the task (classification) loss Ltask

and (b) the heatmap related loss ‖G({xk})−Hη(I)‖22 for each iteration. In (c), we show how the
heatmap evolves for an example image from the SVHN dataset during training (from top to bottom) –
brighter the intensity, higher the scores; see Section D.

et al., 2015) originally applied their model to a dataset consisting of images of 0, 1, or 2 digits with
equal probability. We found that the model failed to converge unless it was trained with examples
where various number of total digits exist, so for fair comparison, we populate the training set with
images consisting of all numbers of digits between 0 and 9. For the Zhang et al. (Zhang et al., 2018c)
baseline, we use the authors’ implementation and hyperparameters.

D CONVERGENCE DURING TRAINING

As is typical for neural network training, our objective is non-convex and there is no guarantee that a
local minimum found by gradient descent training is a global minimum. Empirically, however, the
optimization process is stable, as shown in Figure 7. We reporpt both the training losses Ltask and
‖G({xk})−Hη(I)‖22, and visualize how the heatmap evolves for an example image from the SVHN
datset. We visualize the heatmap by showing brighter intensity values for higher scores. Each image
is normalized separately with their own maximum and minimum values for better visualization. In
Figure 7 (c) top, early in training, one can see that keypoints are detected at random locations as
the heatmaps are generated by networks with randomly initialized weights. However, as training
continues, keypoints that, by chance, land on locations nearby the correct object (e.g. numbers) for
certain samples in a random batch, and become reinforced. Ultimately, as shown in (c) middle and
bottom, MIST learns to detect these locations, thus learns to produce a peaky heatmap, and perform
the task of interest. Note that this is unsurprising, as our formulation is a lifted version of this loss to
allow gradient-based training.

E NON-UNIFORM DISTRIBUTIONS

Figure 8: Examples with uneven distributions of digits.

Although the images we show in Figure 2 involve small displacements from a uniformly spaced grid,
our method does not require the keypoints to be evenly spread. As shown in Figure 8, our method is
able to successfully learn even when the digits are placed unevenly. Note that, as our detector is fully
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convolutional and local, it cannot learn the absolute location of keypoints. In fact, we weakened the
randomness of the locations for fairness against (Zhang et al., 2018c), which is not designed to deal
with severe displacements.
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