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Abstract

Predicting the behavior of surrounding vehicles is a critical problem in automated
driving. We present a novel game theoretic behavior prediction model that achieves
state of the art prediction accuracy by explicitly reasoning about possible future
interaction between agents. We evaluate our approach on the NGSIM vehicle
trajectory data set and demonstrate lower root mean square error than state-of-the-
art methods.

1 Introduction

Predicting the future motion of surrounding vehicles is a critical problem in autonomous driving
research and development. One of the key difficulties associated with behavior prediction is inter-
action between traffic participants. Existing models vary in the way they reason about interactive
driver behavior. Some models ignore interaction completely, predicting the future behavior of a target
vehicle based solely on that vehicle’s previous motion [2; 3; 11; 13; 15; 18]. Other models implicitly
reason about interaction by conditioning motion prediction on the local traffic scene (including the
current state or motion history of other nearby vehicles) [1; 8; 9; 14; 16; 17]. Still other models
reason explicitly about interaction, addressing the prediction task from a game-theoretic perspective
[10; 12; 19; 20; 21].

We present a novel game theoretic behavior prediction model that we call Multi-Fidelity Recursive
Behavior Prediction (MFRBP). MFRBP achieves better prediction accuracy (as measured by root
mean squared error) than previous state-of-the-art models by explicitly reasoning about possible
future interaction between agents. The proposed algorithm employs a recursive trajectory prediction
scheme inspired by the Level-k [7] and Cognitive Hierarchy [4] recursive reasoning paradigms.

This paper gives a condensed overview of the general Multi-Fidelity Recursive Behavior Prediction
algorithm. We also discuss several specific implementations of our model, all of which incorporate
specific elements from Convolutional Social Pooling for Vehicle Trajectory Prediction as proposed
by Deo and Trivedi [8] in 2018. All experiments are conducted with the publicly available NGSIM
data set.

2 Methods

Consider a traffic scene consisting of n agents. The motion history of the traffic scene from the
initial time t0 to the current time t can be compactly represented by the set of time histories
Xhist = {xt0:t

1 , . . . ,xt0:t
n }, where x(t)

i is the state of agent i at time t. The corresponding set of future
trajectories (from time t+ 1 to time tf ) is Xfuture = {xt+1:tf

1 , . . . ,x
t+1:tf
n }. The input to our model

is Xhist, and the output is P̂ (Xfuture), a probability distribution over the future trajectories of all agents.
In all experiments presented here, we choose to model P̂ (Xfuture) as a set of Gaussian trajectory
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predictions {(x̂(t+1:tf )
1 ,Σ1), . . . , (x̂

(t+1:tf )
n ,Σn)}, where x̂i and Σi represent the mean vector and

covariance matrix of a Gaussian distribution over the future trajectory of the ith agent.

The general Multi-Fidelity Recursive Behavior Prediction algorithm is outlined in Algorithm 1. In the
remainder of this section, we discuss two important characteristics of our model: recursive prediction
and multi-fidelity modeling.

Recursive Prediction Our model employs a game-theoretic recursive prediction scheme inspired
by Level-k Reasoning [7] and Cognitive Hierarchy [4]. Within this paradigm, a “level k” agent model
assumes that all other agents act according to a level k − 1 (or lower) agent model.

First, the algorithm assigns a reasoning level ki and a corresponding sequence of policy models
(πi,0, . . . , πi,ki

) to each agent i ∈ {1, . . . , n} in the scene. At each level k (starting from k = 0 and
proceeding upward) a predicted trajectory is generated for each agent i ∈ {1, . . . , n} if that agent’s
assigned reasoning level ki is greater than or equal to k. The crucial detail is that, for k > 0, the level
k trajectory prediction for a given agent is explicitly conditioned on the highest level (up to k − 1)
previously computed trajectory predictions associated with each other agent.

When the highest reasoning level has been reached (i.e. when k = maxi∈{1,...,n} ki), the algorithm
returns a set containing the final predicted trajectory for each agent.

Multi-Fidelity Behavior Modeling For a given traffic scene history Xhist, the output of our model
depends entirely on the reasoning levels and sequences of policy models assigned to the agents. These
assignments are determined by the user-defined methods on lines 3 and 4 of Algorithm 1.

In our experiments, we show that this design flexibility can be used for multi-fidelity modeling,
meaning higher-fidelity motion prediction for some agents than for others. Multi-fidelity modeling
can be useful in applications (e.g. automated driving) where we may know and/or care more about
some agents than others.

Algorithm 1 Multi-Fidelity Recursive Behavior Prediction

1: procedure MULTIFIDELITYRECURSIVEBEHAVIORPREDICTION(Xhist)
2: for i ∈ 1 : n
3: ki ← ASSIGNREASONINGLEVEL(Xhist, i)
4: (πi,0, . . . , πi,ki)← ASSIGNPOLICYMODELS(Xhist, i, ki)

5: (x̂
(t+1:tf )
i,0 ,Σi,0) = πi,0

(
{x(t0:t)

j | j ∈ {1, . . . , n}, j 6= i}
)

6: for k ← 0, . . . ,maxi∈{1,...,n} kn
7: for i ∈ 1 : n
8: if k ≤ ki
9: (x̂

(t+1:tf )
i,k ,Σi,k) = πi,k

(
{(x(t0:t)

j , x̂
(t+1:tf )

j,min(kj ,k−1)) | j ∈ {1, . . . , n}, j 6= i}
)

10: return {(x̂(t+1:tf )
1,k1

,Σ1,k1
), . . . , (x̂

(t+1:tf )
n,kn

,Σn,kn
)}

Policy models used in our experiments Our simple experiments incorporate three distinct policy
models. The first two policy models condition only on motion history Xhist. whereas, the third policy
model explicitly conditions on previously computed level 0 trajectory predictions.

The Constant Velocity (πCV) model simply predicts that a target vehicle will travel at constant velocity
equal to the average velocity vector (both longitudinal and lateral components) over the last second.
This can be thought of as “low-fidelity” motion prediction.

The Convolutional Social Pooling (πCSP) model was originally proposed by Deo and Trivedi [8].
πCSP combines a Long Short-Term Memory network (LSTM) encoder-decoder architecture with a
convolution neural network (CNN) “social pooling” architecture to generate multimodal trajectory
predictions. This model is depicted in blue in Figure 1. For each target, πCSP accepts as input the
state-histories of both the target vehicle and its neighbors (vehicles that fall in a rectangular region
around the target). The final output is a set of six Gaussian distributions, each with an associated
likelihood, that represent six possible trajectories. In our experiments, we take only the mode with
the highest probability for prediction. In contrast to πCV, πCSP is a “high-fidelity” motion prediction
model.
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Figure 1: Future-Conditional Convolutional Social Pooling (πFC-CSP) Architecture. All compo-
nents shown in blue are part of the original πCSP architecture as proposed by Deo and Trivedi [8]. The
yellow elements represent the portion of the model that processes the predicted future trajectories.

The Future-Conditional Convolutional Social Pooling (πFC-CSP) model, shown in Figure 1, is a novel
extension of πCSP, allowing the model to explicitly condition on predicted motion in addition to the
motion history. This is accomplished by adding a “future” social pooling block (lower block), which
is architecturally identical to the history social pooling block but receives as input the predicted
future trajectories of the vehicles surrounding the target vehicle. The decoder LSTM layer in πFC-CSP
receives the concatenation of both past and future “social context” tensors, and outputs a multimodal
Gaussian trajectory distribution of the same form as the output of πCSP. As with πCSP, our experiments
use only the highest probability mode.

3 Experiments

We perform three experiments to evaluate the performance of Multi-Fidelity Recursive Behavior
Prediction. The first experiment is designed to compare our model against the existing state-of-the-art
(the πCSP baseline), while the other two experiments are intended to evaluate our algorithm in a
setting that is more representative of an autonomous driving scenario.

All three experiments are conducted on the publicly available NGSIM I-80 [6] and US101 [5] datasets.
There are 3 subsets of both US-101 and I-80, consisting of vehicle trajectories recorded by overhead
camera at a frequency of 10 Hz. The test set consists of one quarter of the vehicle trajectories from
each of the subsets of the US-101 and I-80 datasets. We split the trajectories into segments of 8
s (sampled at 10 Hz), where we use 3 s of track history and a 5 s prediction horizon. We use the
common metric of Root Mean Square Error (RMSE) for evaluating the performance of our models.

3.1 Experiment 1: Level 1 Recursive Behavior Prediction

Our first experiment compares a specific implementation of Multi-Fidelity Recursive Behavior
Prediction against the performance of the πCSP baseline. This implementation is called Level 1
Recursive Behavior Prediction (L1-RBP). In L1-RBP, all agents are assigned a reasoning level of
1. The level 0 policy model for each agent is Convolutional Social Pooling (πCSP), and the level
1 policy for each agent is Future-Conditional Convolutional Social Pooling (πFC-CSP). Formally:
(ki, πi,0, πi,1) := (1, πCSP, πFC-CSP) ∀i ∈ {1, . . . , n}.
We train both the πCSP (level 0 policy) model and πFC-CSP (level 1 policy) models jointly from scratch.
As in the original πCSP implementation, we use the leaky-ReLU activation with α = 0.1 for all layers
and use Adam for optimization.

Results for Experiment 1 We compare the output of (L1-RBP) against the πCSP baseline. The left
part of Table 1 shows RMSE values obtained at varying time horizons for πCSP and L1-RBP. Note
that πCSP

u corresponds to the original values reported by Deo and Trivedi [8] and πCSP
∗ is our own

implementation of the baseline πCSP model.
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Table 1: Comparison on RMSE.
Prediction Baselines Experiment 1 Experiment 2 Experiment 3
Horizon (s)

1
2
3
4
5

πCSP
u πCSP

∗

0.62 0.54
1.29 1.20
2.13 2.03
3.20 3.09
4.52 4.39

L1-RBP

0.53
1.19
1.95
2.87
3.97

L1-MFRBP

0.54
1.20
1.99
2.97
4.16

L1-MFRBP (planning)

0.54
1.19
1.95
2.88
4.01

3.2 Experiment 2: Level 1 Multi-Fidelity Recursive Behavior Prediction

For experiment 2, we introduce Level 1 Multi-Fidelity Recursive Behavior Prediction (L1-MFRBP)
(L1-MFRBP). L1-MFRBP targets the “ego-centric” prediction task, which is more representative of
the autonomous driving use case: We randomly select a vehicle to treat as an “ego” agent, limiting
the set of other agents in the scene to those within a plausible “sensor range” of this agent. This is
repeated for many different “ego” agents during both training and testing. L1-MFRBP is identical to
L1-RBP, except that it incorporates a multi-fidelity scheme wherein agents at the periphery of the
designated ego agent’s sensor range are assigned to a lower reasoning level (ki = 0) and a lower
fidelity (πi,0 = πCV) policy model. The L1-MFRBP πCSP and πFC-CSP policies are jointly trained. The
training process includes generating and using lower-fidelity constant velocity trajectory predictions
for the peripheral agents.

Results for Experiment 2 It would take too long to exhaustively evaluate L1-MFRBP on the full
test set (i.e. by treating every single vehicle in turn as the ego agent). Instead, we sample enough ego
agents to ensure that a single level 1 prediction can be computed for each vehicle in the test set. We
report the average results of the level 1 predictions from 10 full iterations through the test set in this
manner. Our results are presented in Table 1 alongside the results from Experiment 1. L1-MFRBP
exhibits slight improvement over πCSP, indicating that a multi-fidelity recursive prediction scheme
can enhance performance even if the “low-fidelity” models are very naive. Improvement is more
pronounced over longer prediction horizons.

3.3 Experiment 3: L1-MFRBP conditioned on Ego Future

Experiment 3 seeks to quantify the performance improvement that results from conditioning motion
prediction on a candidate future ego trajectory. To explore this question, we use the ground truth
future trajectory as a surrogate for the ego agent’s “planned” trajectory. This takes the place of the
ego agent’s level 0 trajectory in a “planning-aware” version of L1-MFRBP. In other words, we “cheat”
by allowing the model to observe the ground truth future trajectory for each designated ego agent
during training and testing. We wish to make it clear, therefore, that experiment 3 is not meant to
compete with the other models.

Results for Experiment 3 RMSEs for planning-aware L1-MFRBP are shown in italics in the last
column of Table 1. The numbers are better than for L1-MFRBP, which suggests that conditioning on
a planned trajectory (as in a real automated driving scenario) can improve motion prediction.

4 Conclusion

We have demonstrated that motion prediction in traffic scenes can be improved by recursively
reasoning about future interaction between agents. We have also shown that multi-fidelity modeling
can be effectively incorporated in the recursive prediction process.

Immediate directions for future work include extending our method to reason about multiple possible
future scenarios (i.e. multi-modal scene motion prediction), incorporating a more flexible and diverse
set of policy models, reasoning about input state uncertainty, and devising a more comprehensive set
of experiments and performance metrics to evaluate our models. We aim to eventually implement a
refined version of our algorithm on a real automated vehicle.

Acknowledgment We appreciate the support of Prof. Mykel J. Kochenderfer for his thorough
reviews and insightful suggestions.
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