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Abstract—Partially observable Markov decision processes
(POMDPs) are a natural model for scenarios where one has to
deal with incomplete knowledge and random events. Applications
include, but are not limited to, robotics and motion planning.
However, many relevant properties of POMDPs are either unde-
cidable or very expensive to compute in terms of both runtime
and memory consumption. In our work, we develop a game-based
abstraction method that is able to deliver safe bounds and tight
approximations for important sub-classes of such properties. We
discuss the theoretical implications and showcase the applicability
of our results on a broad spectrum of benchmarks.

I. CHALLENGE

In offline motion planning, we aim to find a strategy for an agent
that ensures certain desired behavior, even in the presence of
dynamical obstacles and uncertainties [1]. If random elements –
like uncertainty in the outcome of an action or in the movement
of dynamic obstacles – need to be taken into account, the
natural model for such scenarios are Markov decision processes
(MDPs). MDPs are non-deterministic models which allow
the agent to perform actions under full knowledge of the
current state of the agent its surrounding environment. In
many applications, though, full knowledge cannot be assumed,
and we have to deal with partial observability [2]. For such
scenarios, MDPs are generalized to partially observable MDPs
(POMDPs). In a POMDP, the agent does not know the exact
state of the environment, but only an observation that can be
shared between multiple states. Additional information about
the likelihood of being in a certain state can be gained by
tracking the observations over time. This likelihood is called
the belief state. Using an update function mapping a belief
state and an action as well as the newly obtained observation
to a new belief state, one can construct a (typically infinite)
MDP, commonly known as the belief MDP.

While model checking and strategy synthesis for MDPs are,
in general, well-manageable problems, POMDPs are much

harder to handle and, due to the potentially infinite belief
space, many problems are actually undecidable [3]. Our aim is
to apply abstraction and abstraction refinement techniques to
POMDPs in order to get good and safe approximative results
for different types of properties.

II. APPROACH

As a case study, we work with a scenario featuring a control-
lable agent. Within a certain area, the agent needs to traverse a
room while avoiding both static obstacles and randomly moving
opponents. The area is modeled as a grid, the static obstacles
as grid cells that may not be entered. Our assumption for this
scenario is that the agent always knows its own position, but
the positions of an opponent is only known if its distance from
the agent is below a given threshold and if the opponent is not
hidden behind a static obstacle. We assume that the opponents
move probabilistically. This directly leads to a POMDP model
for our case study. For simplification purposes, we only deal
with one opponent, although our approach supports an arbitrary
number of opponents. We assume the observation function of
our POMDPs to be deterministic, but more general POMDPs
can easily be simplified to this case.

The goal is to find a strategy which maximizes the probability
to navigate through the grid from an initial to a target location
without collision. For a grid size of n × n cells and one
opponent, the number of states in the POMDP is in O(n4),
i. e., the state space grows rapidly with increasing grid size.
In order to handle non-trivial grids, we propose an approach
using game-based abstraction [4].

Intuitively, we lump together all states that induce the same
observation; for each position of the agent, we can distinguish
between all states in which the opponent’s position is known,
but states in which the position is unknown are merged into
one far away state [5]. In order to get a safe approximation



TABLE I: Comparing the POMDP solution (PRISM-pomdp) with the PG abstraction solution (PRISM-games).

POMDP solution PG solution Lifting MDP
Grid size States Choices Result Model Time Sol. Time States Choices Result Model Time Sol. Time Result Result

3× 3 299 515 0.8323 0.063 0.26 396 639 0.8323 0.075 0.040 0.8323 0.8323
4× 4 983 1778 0.9556 0.099 1.81 1344 2192 0.9556 0.098 0.078 0.9556 0.9556
5× 5 2835 5207 0.9882 0.144 175.94 6016 10448 0.9740 0.193 0.452 0.9825 0.9882
5× 6 4390 8126 0.9945 0.228 4215.06 7986 14199 0.9785 0.220 0.534 0.9893 0.9945
6× 6 6705 20086 ? 0.377 – MO – 10544 19150 0.9830 0.267 1.414 0.9933 0.9970
8× 8 24893 47413 ? 1.735 – MO – 23128 43790 0.9897 0.470 6.349 0.9992 0.9998

10× 10 66297 127829 ? 9.086 – MO – 40464 78054 0.9914 0.921 12.652 0.9999 0.9999
20× 20 – Time out during model construction – 199144 395774 0.9921 9.498 127.356 0.9999 0.9999
30× 30 – Time out during model construction – 477824 957494 0.9921 40.929 489.369 – MO – 0.9999
40× 40 – Time out during model construction – 876504 1763214 0.9921 135.551 1726.489 – MO – 0.9999
50× 50 – Time out during model construction – 1395184 2812934 0.9921 355.732 3963.281 – MO – – MO –

of the behavior of the opponent, for all of these lumped states
we add a non-deterministic choice over the potential positions
of the opponent. We formalize this as a 2-player probabilistic
game [4] (PG), in which one player controls the actions of the
agent, and the other controls the non-determinism added by the
abstraction. Both players can optimize according to different
goals. The abstraction player can create a worst-case scenario
to over-approximate the realistic behavior, thus ensuring that
the obtained bounds are safe and the resulting strategy cannot
perform worse when mapped back to the original scenario.

III. SOUNDNESS

We show that any strategy computed with our abstraction that
guarantees a certain level of safety can be mapped to a strategy
for the original POMDP guarantiing at least the same level of
safety. In particular, we establish a simulation relation between
paths in the probabilistic game and paths in the POMDP.
Intuitively, each path in the POMDP can be reproduced in
the probabilistic game if the second player resolves the non-
determinism in a certain way. Game-based model checking
assumes the non-determinism to be resolved in the worst way
possible, so it will provide a lower bound on the level of safety
achievable in the actual POMDP. For full proof see [5].

IV. RESULTS

We analyzed the game-based models using the PRISM-games
model checker and compared the obtained results with the state-
of-the-art POMDP model checker PRISM-pomdp [6], showing
that we can handle grids that are considerably larger than what
PRISM-pomdp can handle, while still getting schedulers that
induce values which are close to optimal. Table I shows a few

TABLE II: Results for the PG for differently sized models with
and without refinement.

PG Run times
Grid States Choices Result Create Model Solve

w
/o

re
f. 4× 40 50880 93734 0.9228 0.01 1.6 37

4× 60 77560 143254 0.8923 0.01 3.1 41
4× 80 104240 192774 0.8628 0.01 5.4 128
4× 100 130920 242294 0.8343 0.02 8.6 101

w
ith

re
f. 4× 40 68316 131858 0.9733 0.01 2.46 102

4× 60 104516 202338 0.9733 0.01 4.94 324
4× 80 140716 272818 0.9733 0.01 8.45 697
4× 100 176916 343298 0.9733 0.02 12.10 1332

of our experiments for verifying a reach-avoid property on a
grid without obstacles. The result colums show the probability
(computed by the respective method) to reach a goal state
without a collision. As one can see, the abstraction approach
is faster by orders of magnitude than solving the POMDP
directly, and the game model also is much smaller for large
grids while still getting very good approximations for the actual
probabilities. The strategies induce even better values when
they are mapped back to the original POMDP.

V. COMPLETENESS

While being provably sound, our approach is still targeting an
undecidable problem and as such not complete in the sense that
in general no strategy with maximum probability for success
can be deduced. In particular for cases with few paths to the
goal location, the gap between the obtained bounds and the
actual maximum can become large. For those cases, we define
a scheme to refine the abstraction by encoding one or several
steps of history into the current state, which leads to larger
games and accordingly longer computation times, but also to
better results. Table II showcases an implementation of this
one-step history refinement. We use a benchmark representing a
long, narrow tunnel, in which the agent has to pass the opponent
once, but, due to the abstraction, can actually run into the it
repeatedly if the abstraction-player has the opponent re-appear
in front of the agent. With longer tunnels, the probability to
safely arrive in a goal state diminishes. Adding a refinement
which remembers the last known position of the opponent
and thus restricting the non-deterministic movement keeps the
probability constant for arbitrary length.

VI. CONCLUSION

We developed a game-based abstraction technique to synthesize
strategies for a class of POMDPs. This class encompasses
typical grid-based motion planning problems under restricted
observability of the environment. For these scenarios, we
efficiently compute strategies that allow the agent to maneuver
the grid in order to reach a given goal state while at the
same time avoiding collisions with faster moving obstacles.
Experiments show that our approach can handle state spaces
up to three orders of magnitude larger than general-purpose
state-of-the-art POMDP solvers in less time, while at the same
time using fewer states to represent the same grid sizes.
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