Towards Reproducible Neural Architecture and
Hyperparameter Search

Aaron Klein Eric Christiansen
University of Freiburg Google
kleinaa@cs.uni-freiburg.de ericmc@google.com
Kevin Murphy Frank Hutter
Google University of Freiburg
kpmurphy@google.com fh@cs.uni-freiburg.de
Abstract

Recent advances in neural architecture and hyperparameter search demand tremen-
dous computational resources which makes it almost impossible to reproduce
experiments. We argue that this hinders the progress in this subfield since new
methods can not be thoroughly compared to already existing methods. In this work,
we generated a new benchmark for neural architecture search and hyperparameter
optimization which is based on tabular data for a feed forward neural network. Each
function evaluation is just a simple table look up and thus takes only milliseconds
but mimics the true underlying optimization problem. Furthermore, we analyze
the properties of this benchmark and compare a range of state-of-the-art neural
architecture and hyperparameter search methods.

1 Introduction

Despite the tremendous success achieved by deep neural networks in the last few years (Krizhevsky:
et al., [2012} [Sutskever et al.| [2014)) using them in practice remains challenging due to their sensitivity
against a large amount of hyperparameters and architectural choices. Even experts often find the right
setting to train the network successfully only by trial-and-error.

There has been a recent line of work in hyperparameter optimization (HPO) (Snoek et al., 2012;
Hutter et al., 2011; Bergstra et al.,|2011; [Hazan et al., 2018} |L1 et al.,|2017)) and neural architecture
search (NAS) (Baker et al.| [2017; Zoph and Le, 2017} Real et al., 2017} Elsken et al., [2018) that
tries to automate this process by casting it as an optimization problem. However, since each function
evaluation consists of training and evaluating a deep neural network, running these methods can take
several days even when using hundreds of GPUs.

Probably due to the high computational demands there is a certain lack of rigorous comparison
between methods. The goal of this work is to facilitate a better empirical evaluation of HPO and NAS
methods by providing a benchmark that is cheap to evaluate but still presents a realistic use case. We
believe that this benchmark provides an easy and efficient way to conduct and reproduce experiments
for neural architecture and hyperparameter search.

We collected a large grid of configurations of a feed forward neural network (see Section [2) for
regression. Based on the gathered data, we give an in-depth analysis of the importance of hyperpa-
rameters and architectural choices, as well as the properties of the optimization problem (see Section
[3). Finally, we compare a variety of well-known HPO and NAS methods from the literature, such
as Bayesian optimization, evolutionary algorithms, compressed sensing techniques, a bandit based
method and random-search (Section [4).

2nd Reproducibility in Machine Learning Workshop at ICML 2018, Stockholm, Sweden.

Table 1: The hyperparameter configuration space for the fully connected neural network architecture.

Hyperparameter Choices Best Configuration

Initial Learning Rate {0.0005,0.001, 0.005,0.01,0.05,0.1} 0.0005
Batch Size (8,16,32,64} 32

Learning Rate Schedule {cosine, fix} cosine
Activation Function Layer 1 {relu, tanh} relu
Activation Function Layer 2 {relu, tanh} relu
Number of Units Layer 1 {16, 32,64, 128,256,512} 256
Number of Units Layer 2 {16, 32, 64,128,256, 512} 256
Dropout Layer 1 {0.0,0.3,0.6} 0.3
Dropout Layer 2 {0.0,0.3,0.6} 0.0

2 Tabular Benchmark

In order to construct a benchmark, we used the UCI (Lichman) |2013) year prediction dataset, which
is a subset of the Million Song Dataset (Bertin-Mahieux et al.,2011). In total, the dataset contains
515345 data points with 90 features and we used 324 600 data points for training, 139115 for
validation and 51 630 for testing as described by Ruyu and Jiaying|(2017). The data set allows us to
train neural networks on CPU rather than GPUs and hence we can afford to run more configurations.
Besides that, regression based on featurized data is an interesting task for neural networks since they
scale much better with the number of data points than other methods such as for instance Gaussian
processes.

As base architecture, we used a two layer feed forward neural network followed by a linear output
layer on top. The configuration space (denoted in Table (1)) only includes a modest number of 4
architectural choice (number of units and activation functions for both layers) and 5 hyperparameters
(dropout rates per layer, batch size, initial learning rate and learning rate schedule) in order to
allow for an exhaustive evaluation of all the 62 208 configurations resulting from discretizing the
hyperparameters as in the table. We encode numerical hyperparameters as ordinals and all other
hyperparameters are coded as categorical. Each network was trained with Adam (Kingma and
Bal |2014)) for 100 epochs, optimizing the mean absolute error as was done by Ruyu and Jiaying
(2017). We repeated the training of each configuration 4 independent times with a different seed
for the random number generator and recorded the mean performance for each run. Generating
this benchmark in total took 12014 CPU days. The dataset, as well as the code to reproduce the
experiments, are publicly available at https://github.com/automl/nas_benchmarks,

3 Analysis

We now analyze the generated dataset through the lens of HPO and NAS to obtain a deeper under-
standing of the properties of the benchmark. If not stated otherwise, we always consider for each
configuration the average metric (such as test error or training time) over the 4 repetitions.

3.1 Level of Difficulty

To obtain a better understanding of how difficult it is to optimize this benchmark, we computed the
empirical cumulative distribution of the final test error and training runtime of all configurations
(see Figure . One can see that only roughly 3% of all configurations achieve a final test error that
is lower than 7. Furthermore, it seems that the dataset contains many outliers, i. e. configurations
that achieve an error that is multiple orders of magnitudes higher than the average. Maybe less
surprisingly, also the training runtime varies dramatically ranging from a few minutes to almost 9
hours (see Figure E] middle).

Due to the stochastic nature of the training process, evaluating the same configuration multiple times
will lead to slightly different results. We estimated this observation noise for each configuration by
computing the standard deviation between the repetitions of the final test performance. As can be seen
in Figure[T] (right) the observation noise is heteroscedastic, which means that different configurations
come with a different noise level.

https://github.com/automl/nas_benchmarks

10t 102 10* 104 10 10* 10% 10 10! 10t 10° 107
Mean Final Test Error 2 Runtime t (seconds) Noise =

Figure 1: The empirical cumulative distribution of all configurations for the final test performance
(left), the training runtime (middle) and the observation noise (right).

All Configurations Good Configurations
0.00025 0.06

0.00020
0.00015
0.00010
0.00005 I I
0.00000

Importance

2

0.00

ize
1
2

dropout

its_1
ts_2

init_Ir
init_Ir

n_units_1
n_units_2

batch_s
dropout
n_uni
n_uni
Importance
o o
o o
N)
activation_fn_2 .
dropout_1 I

batch_size

Ir_schedul
Ir_schedule

activation_fn_2
activation_fn_1

Figure 2: Hyperparameter importance based on fANOVA package for all configurations (left) and of
the subspace of configurations that achieve a better performance than 7 (right).

3.2 Hyperparameter Importance

To analyze the importance of hyperparameters, assessing the change of the final error with respect
to changing a single hyperparameter at a time we used the fANOVA tool developed by |Hutter et al.
(2014). It quantifies the importance of a hyperparameter by marginalizing the error obtained by
setting it to a specific value over all possible values of all other hyperparameters. The importance of a
hyperparameter is then the variation in error that is explained by this hyperparameter. In the default
setting the fANOVA fits a random forest model on the observed function values in order to compute
the marginal predictions. However, since we already evaluated the full configuration space, we do
not even need to use a model and can compute the integrals directly.

As it can be seen in Figure[2](left), on average across the entire configuration space, the initial learning
rate and the batch size obtained the highest importance value. However, the importance of individual
hyperparameters is very small due to a few outliers with very high errors, which only happen for a
few combinations of several hyperparameter values.

A better estimate of hyperparameter importance in a region of the configuration space with reasonable
performance can be obtained by capping validation errors before applying ANOVA; Figure 2] (right)
shows the results of this procedure with errors capped at a maximum of 7. This shows that in this
more interesting part of the configuration space, the dropout rate in the second layer is the most
important parameter, followed by the learning rate and the learning rate schedule. Interestingly, the
dropout rate in the first layer is much less important.

4 Comparison

In this section we use the generated benchmark to evaluate different HPO and NAS methods. To
mimic the randomness that comes with evaluating a configuration, in each function evaluation we
randomly sample one of the four performance values. To obtain a realistic estimate of the wall-clock
time required for each optimizer, we accumulated the stored runtime of each configuration the
optimizer evaluated. We do not take the additional overhead of the optimizer into account since it is
negligible compared to the training time of the neural network. After each function evaluation we
estimate the incumbent as the configuration with the lowest observed error and compute the regret
between the incumbent and the globally best configuration. We performed 500 independent runs of
each method and report the mean and the standard error of the mean.

—
o

—
o

— &S
SMAC (normalized)
— TPE
—— Differential-Evolution
—— Harmonica
—— Hyperband
GP-BO
— Vizier
10t 102 103 10* 10° 10° 107 102 10-1 10"
Estimated Wall-clock Time (seconds) Final Validation Regret

Immediate Validation Regret

Figure 3: On the left we plot the validation performance of the incumbent of each method. On the
right we show the empirical cumulative distribution of final validation regret of all methods.

4.1 Performance over time

We compared the following HPO and NAS methods from the literature (see Figure [3): random
search, SMAC (Hutter et al., 2011 ﬂ Tree Parzen Estimator (TPE) (Bergstra et al., 2011), differential
evolution (Storn and Price, |1997), Vizier (Golovin et al.,[2017)), the compressed sensing technique
Harmonica (Hazan et al., 2018)), Gaussian process based Bayesian optimization (GP-BO) (Snoek
et al.,[2012)|and Hyperband (Li et al., [2017).

Hyperband achieved a reasonable performance relatively quickly but it converged to simple random
search. The two Bayesian optimization methods, SMAC and TPE worked as well as random search
in the beginning but started to perform superior to all other methods once they obtained a meaningful
model. Differential evolution and Vizier needed more time than TPE and SMAC to outperform
random search; however, they were not able to achieve the same final performance as the other two
methods. Harmonica did not work better than random search on this benchmark; we assume that due
to the higher order correlation between hyperparameters (see Section [3)), the benchmark does not
fit Harmonica’s assumptions and cannot be model with sparse and low degree polynomials. Also
GP-BO has problems on this benchmark, which is to be expected since Gaussian processes tend to
work best for continuous input spaces whereas our configuration space is discretized. We note that
running the same evaluation for all these optimization techniques on the real benchmark would have
taken 169.6 CPU years.

4.2 Robustness

Besides achieving good performance, we argue that robustness plays an important role in practice for
HPO and NAS methods. Figure 3| (right) shows the empirical cumulative distribution of the regret for
the final incumbent across all 500 runs of each method. Interestingly, even though SMAC achieves
the lowest average performance only less than 20% of the runs achieve a final regret below 1072,
whereas for TPE roughly half of all runs achieved a regret that is lower than 10~2. This is even more
dramatic for GP-BO, for which the top 20% of all runs are roughly on par with SMAC but the mean
performance is worse than random search (see Figure E] left).

5 Conclusions

We presented a new tabular benchmark for neural architecture and hyperparameter search that is cheap
to evaluate but still recovers the original optimization problem, enabling us to rigorously compare
various methods from the literature. Based on the data that we generated for this benchmarks,
we had a closer look at the difficulty of the optimization problem and the importance of different
hyperparameters.

In future work we will generate more of these benchmarks for other architectures and datasets.
Ultimately, we hope that such benchmarks will help the community to easily reproduce experiments
and evaluate new developed methods without spending enormous GPU resources.

"We used SMAC3 from https://github. com/automl/SMAC3
2We used the implementation from [Klein et al.| (2017)

https://github.com/automl/SMAC3

6 Acknowledgements

This work has partly been supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under grant no. 716721. Frank Hutter
also gratefully acknowledges a Google Faculty Research Award. The authors acknowledge support
by the state of Baden-Wiirttemberg through bwHPC and the German Research Foundation (DFG)
through grant no INST 39/963-1 FUGG.

References

Baker, B., Otkrist, G., Nikhil, N., and Ramesh, R. (2017). Designing neural network architectures using rein-
forcement learning. In Proceedings of the International Conference on Learning Representations (ICLR’17).

Bartlett, P., Pereira, F., Burges, C., Bottou, L., and Weinberger, K., editors (2012). Proceedings of the 26th
International Conference on Advances in Neural Information Processing Systems (NIPS’12).

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter optimization.
In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K., editors, Proceedings of the
25th International Conference on Advances in Neural Information Processing Systems (NIPS’11), pages
2546-2554.

Bertin-Mahieux, T., Ellis, D., Whitman, B., and Lamere, P. (2011). The million song dataset. In Ismir, volume 2,
page 10.

Elsken, T., Metzen, J. H., and Hutter, F. (2018). Multi-objective architecture search for cnns. arXiv:1804.09081.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley, D. (2017). Google vizier: A service for
black-box optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1487-1495. ACM.

Hazan, E., A, K., and Yuan, Y. (2018). Hyperparameter optimization: A spectral approach. In International
Conference on Learning Representations (ICLR) 2018 Conference Track.

Hutter, F., Hoos, H., and Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm
configuration. In Coello, C., editor, Proceedings of the Fifth International Conference on Learning and
Intelligent Optimization (LION’11), volume 6683 of Lecture Notes in Computer Science, pages 507-523.
Springer-Verlag.

Hutter, F., Hoos, H., and Leyton-Brown, K. (2014). An efficient approach for assessing hyperparameter
importance. In Xing, E. and Jebara, T., editors, Proceedings of the 31th International Conference on Machine
Learning, (ICML’14), pages 754-762. Omnipress.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:1412.6980.

Klein, A., Falkner, S., Mansur, N., and Hutter, F. (2017). Robo: A flexible and robust bayesian optimization
framework in python. In NIPS 2017 Bayesian Optimization Workshop.

Krizhevsky, A., Sutskever, L., and Hinton, G. (2012). ImageNet classification with deep convolutional neural
networks. In|Bartlett et al.|(2012)), pages 1097-1105.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017). Hyperband: Bandit-based
configuration evaluation for hyperparameter optimization. In Proceedings of the International Conference on
Learning Representations (ICLR’17).

Lichman, M. (2013). UCI machine learning repository.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A. (2017). Large-scale
evolution of image classifiers. In Proceedings of the 34th International Conference on Machine Learning
(ICML’17).

Ruyu, T. and Jiaying, L. (2017). Release year prediction for songs. Technical report.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical Bayesian optimization of machine learning
algorithms. InBartlett et al|(2012)), pages 2960-2968.

Storn, R. and Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization
over continuous spaces. Journal of global optimization, 11(4):341-359.

Sutskever, 1., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks.
arXiv:1409.3215.

Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning. In Proceedings of the
International Conference on Learning Representations (ICLR’17).

	Introduction
	Tabular Benchmark
	Analysis
	Level of Difficulty
	Hyperparameter Importance

	Comparison
	Performance over time
	Robustness

	Conclusions
	Acknowledgements

