
A GAN based solver of black-box inverse problems

Michael Gillhofer Hubert Ramsauer Johannes Brandstetter Bernhard Schäfl

Sepp Hochreiter

LIT AI Lab
Institute for Machine Learning

Johannes Kepler University Linz, Austria
{gillhofer, ramsauer, brandstetter, schaefl, hochreit}@ml.jku.at

Abstract

We propose a GAN based approach to solve inverse problems which have non-
differentiable or even black-box forward relations. The idea is to find solutions
via an adversarial game where the generator has to propose new samples and
the discriminator has to assess the quality of the samples with respect to the
forward relation f . However, instead of attempting to approximate f directly,
the discriminator only has to solve a binary classification task in local regions
populated by the generated samples. We demonstrate the efficacy of our approach
by applying it to an artificially generated topology optimization problem. We show
that our method leads to similar results like more traditional topology optimization
methods.

1 Introduction

Inverse problems is a long established field of research with applications in science and engineering
[11]. Their essence is calculating the causal factors x that produce a set of observations via a forward
relation f . Inverse problems frequently appear in the fields of physics [2] or medicine [3]. However,
they are typically ill-posed in the sense that the solution does not depend continuously on the data.
Problems get even more severe when a non-differentiable or even non-continuous forward relation is
involved.

We propose a novel method to solve inverse problems by applying core principles of Generative
Adversarial Networks (GANs) [5]. Related work comprises the MetricGAN [4], which aims at
generating data with improved metric scores, and Generative Adversarial Self-Imitation Learning [6],
which encourages the agent in reinforcement learning tasks to imitate past good trajectories via
generative adversarial imitation learning framework. In our work, the discriminator D is used as a
continuous proxy of f . The two main aspects are that (i) instead of trying to approximate f directly,
we reformulate the task such that D is a binary classifier, and (ii) the generator G is used to produce
samples in a local region of the input domain X of the forward relation. The generator can be seen
as a spotlight which illuminates parts of X and thereby enables the discriminator to locally learn
a continuous approximate of f . The usage of a generator allows to encode prior knowledge of
the problem and thus helps to restrict the search space in X and avoids non-plausible or infeasible
solutions.

One major advantage of our proposed method is, that we find meaningful update directions in the
sample space X without having access to a derivative of f . Our method is therefore capable of
performing derivative-free optimization [1] as well as black-box optimization [9]. Furthermore, it

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

does not directly depend on the response of f and thus is less prone to rapid changes or discontinuities
of f which makes the method especially suited for the ill-posedness of inverse problems.

2 Problem characterization

In the following, we define the class of inverse problems our method intends to solve. We consider an
arbitrarily complicated (black-box) forward relation f : X → R. The only two restrictions we need
to impose on f are the following: i) given some x ∈ X it is computationally feasible to retrieve the
value f(x), and ii) a ranking on the input domain X is imposed by f . More precisely, we demand a
weak ordering of the input domain w.r.t f . The inverse problem at hand is the task to find a non-empty
subset of samples S ⊆ X that lead to a specific response c ∈ R: s ∈ S =⇒ f(s) = c, where
for the rest of the paper we make the arbitrary assumption that a lower c is better. In practice, it is
often sufficient to find a solution which meets a certain quality threshold. We can exploit this line of
thought and relax the problem by not specifying an exact response value c, but rather an upper bound
u. This way, we end up with the following problem formulation: given an upper bound u ∈ R and a
forward relation f : X → R that suffices restrictions i) and ii), we want to find a non-empty set

S ⊆ {x ∈ X | f(x) ≤ u} (1)

of samples that lead to a response equal to or lower than u. We call any set of the above form a
solution to our inverse problem. Note that we do not explicitly state constraints that our solutions
must admit to, but rather assume that all samples from X already fulfill this constraints.

3 How GANs solve complex non-linear inverse problems

To solve the inverse problem, the GAN approach needs to be modified. In the original GAN setting
the target distribution Pr is fixed and can be accessed through the training data set. However, this is
not the case for the inverse problem. We do not know any sample from the set {x ∈ X | f(x) ≤ u}
and we do not require to learn the whole distribution of samples with a score lower than u. In
principle, one solution is sufficient, and therefore our generator is not required to produce a diverse
set of samples.

The initially generated samples are unlikely to overlap with the set of possible solutions. Therefore, it
has to be ensured that during training the generator is pushed into regions of X with lower response.
We note that for an update only local information can be used, i.e. we can only use the current
subspace that is populated by the generated samples. Further we make the assumption that even if
only local information is used, generalization beyond the current co-domain of the generator might be
achieved through an inductive bias on Gθ and Dw, where θ and w are the weights of the generator
and the discriminator, respectively.

Our approach is to train Dw to classify the generator’s co-domain G into a region G0 with higher
responses and a region G1 with lower responses. By imposing a weak ordering on G via f and
choosing p ∈ (0, 1), we split the co-domain into two sets, where G1 contains the best ((1−p) ·100)%
of samples with lowest response and G0 contains the rest. The task of the generator is to produce
more samples with lower response. We can track the progress of the generator by following the
responses of the best samples G1. More precisely, we track the value of the highest (i.e. worst)
response τ of our best samples:

τ = sup
x∈G1

f(x), (2)

f(x̃) ≥ τ ≥ f(x) , ∀x̃ ∈ G0 , ∀x ∈ G1 , (3)

where ((1− p) · 100)% of the highest scoring samples lie in G1. A set of solutions is found if this
value has arrived at the upper bound: τ ≤ u.

The task for Dw is to discriminate between samples of the two sets. This is a classification task
where the samples x ∈ G are tagged with labels:

y(x) = I[x ∈ G1] , (4)

2

where I[·] is the indicator function. We minimize the discriminator loss

Lw = −Ex∼Pθ [y(x) log(Dw(x)) + (1− y(x)) log(1−Dw(x))] (5)

where Pθ is the output distribution of the generator. Now let’s assume that for a fixed update step the
discriminator is able to perfectly classify the co-domain of the generator. As discussed before, we
assume that even though the discriminator was trained only locally, it has learned features that reflect
the structure of the problem. Its decision boundary therefore should, to some extent, be meaningful
even in regions outside of G, i.e. we assume that samples from one side of the decision boundary are
prone to have higher responses than samples from the other side. The task of the generator is to move
its mass into the direction of samples with lower response. For that we can leverage the discriminator,
which has learned the decision boundary between samples with higher and lower response than τ .
Only for generated samples with a response higher than the threshold, the weights of the generator θ
need to be adjusted. We minimize the generator loss:

Lθ̂ = −Ez∼pz [(1− y(Gθ(z))) log(1−Dw(Gθ̂(z)))] , (6)

where we ignore the labeling function when taking the derivative

∂Lθ̂
∂θ̂

∣∣∣
θ̂=θ

= − ∂

∂ θ̂

∣∣∣
θ̂=θ

Ez∼pz [(1− y(Gθ(z))) log(1−Dw(Gθ̂(z)))] (7)

= −Ez∼pz [(1− y(Gθ(z)))
∂

∂ θ̂

∣∣∣
θ̂=θ

log(1−Dw(Gθ̂(z)))] . (8)

If we update the generator accordingly, its output distribution Pθ will move into a region of samples
with lower score and thus will also lead to a decrease of τ .

In practice, initially we draw samples Ĝ = {Gθ(zi)}ni=1 from the generator’s co-domain. We
split Ĝ according to the percentile p with respect to the responses {f(Gθ(zi))}ni=1 into the sets
Ĝ0 and Ĝ1, we set our threshold to τ̂ = maxx∈Ĝ1 f(x), and we label the samples according to
yi = I[τ̂ ≥ f(Gθ(zi))]. However, instead of drawing a completely new set from the generator after
every update, we use Ĝ as a buffer, where we only replace samples if they have a score lower than
one of the samples in the buffer. While this decouples the set Ĝ to some extent from Pθ, the hope is
to gain a stronger pull towards smaller responses.

4 Application: Topology optimization

In the field of Computer Aided Design (CAD), the goal often is to find the stiffness or its inverse, the
compliance c ∈ R, of a given design x. This design is exposed to external forces F and is fixed at
one or more anchor points where the load-dependent displacement is fixed to zero. Here, our forward
relation is the mapping

fFEM : [0, 1]dim(x) → R (9)

x 7→ fFEM(x) , (10)

where c = fFEM(x) is the compliance of sample x. Such class of problems is often solved by the
Finite Elements Method (FEM) [12]. In topology optimization, one usually wants to find a design x
whose quality in terms of compliance is minimized [10].

We use a CNN-based [8] generator consisting of 5 convolutional layers to propose designs x. The
forward relation fFEM(x) = UTKU assigns a value c to generated designs x and thus introduces a
weak ordering to the set of proposed designs. The global displacement vector U is found by solving
the finite element equation system KU = F, where the sparse global stiffness matrix K is a function
of x, and F describes the external forces acting on the system. Anchor points are treated as additional
constraints on U. To enable local exploration we added random noise on the boundaries of the
generated designs. This is achieved by masking the noise with edge-detector convolutions applied to
the design x.

3

a b c d e

Figure 1: Topology optimization: The two rows represent two different problem settings. Each pixel
corresponds to a node in the FEM. The darkness of a node corresponds to the used material. Possible
anchor points are drawn in green and distributed loads are drawn in blue. The thickness of the bar
corresponds to the acting force on the corresponding node. In columns a to d different stages of
the GAN based optimization are shown progressing from earlier to later stages in the optimization.
Column e shows the result of an established topology optimization method [7].

5 Results

We evaluate our topology optimization method on artificially designed problems on a 128 × 128
FEM grid and compare it to standard topology optimization software [7] on the same problem with
identical model hyper-parameters. The problem setup consisted of (i) ranges where the designed
part can be anchored and (ii) areas with distributed loads. The task is to design a structure which
minimizes the compliance while using only 25% of the available design-space. This constraint is
enforced by rescaling the output of the generator. While standard software performs smoothing of
solutions we omitted this step. Training our GAN based solver on the topology optimization task
took about 5 hours on a single GPU. Two results of the design process are shown in Fig. 1.

Although our GAN based optimization approach does not have access to a derivative or any other
information of the model fFEM, it delivers similar structured parts than a standard optimization
software [7]. The structured parts have on par to slightly worse quality scores depending on the
problem. Our system is capable of coming up with a variety of solutions which are local minima of
the artificially designed problems by changing the initial parameters of generator and discriminator.
One could change the initial solution for traditional methods too. However, in practice they often
converge to a single minimum solution regardless of initialization.

6 Discussion

We propose a GAN based method to solve non-differentiable or even black-box inverse problems. The
optimization process is reformulated as a game between a generator which proposes samples, and a
discriminator which groups the proposed samples into two classes, namely samples with low response
and samples with high response. Our GAN based approach solves inverse problems without relying
on the derivative of the forward relation and is insensitive to rapid changes or discontinuities of the
forward relation. We show the efficacy of our approach by applying it to a topology optimization
problem. We observe a generator which’s designs gradually become better.

Our goal is to further leverage the GAN setting and produce a distribution of solutions which yield
similar quality scores. Besides the variety in solutions future work comprises a profound mathematical
treatment of convergence criteria as well as stability analyses. Further we want to apply the method on
several problems where we expect it to perform well in high dimensions since GANs are particularly
good at approximating high-dimensional distributions.

4

References

[1] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to derivative-free
optimization. Vol. 8. Siam, 2009.

[2] Ian JD Craig and John C Brown. “Inverse problems in astronomy: a guide to inversion strategies
for remotely sensed data”. In: Research supported by SERC. Bristol, England and Boston, MA,
Adam Hilger, Ltd., 1986, 159 p. (1986).

[3] Jeffrey A Fessler. “Model-based image reconstruction for MRI”. In: IEEE Signal Processing
Magazine 27.4 (2010), pp. 81–89.

[4] Szu-Wei Fu et al. “MetricGAN: Generative Adversarial Networks based Black-box Metric
Scores Optimization for Speech Enhancement”. In: CoRR abs/1905.04874 (2019). arXiv:
1905.04874. URL: http://arxiv.org/abs/1905.04874.

[5] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information
processing systems. 2014, pp. 2672–2680.

[6] Yijie Guo et al. “Generative Adversarial Self-Imitation Learning”. In: CoRR abs/1812.00950
(2018). arXiv: 1812.00950. URL: http://arxiv.org/abs/1812.00950.

[7] A.J.J. Lagerweij. topopt. https://github.com/AJJLagerweij/topopt. 2019.
[8] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech, and time

series”. In: The handbook of brain theory and neural networks 3361.10 (1995), p. 1995.
[9] Songqing Shan and G Gary Wang. “Survey of modeling and optimization strategies to solve

high-dimensional design problems with computationally-expensive black-box functions”. In:
Structural and Multidisciplinary Optimization 41.2 (2010), pp. 219–241.

[10] O. Sigmund. “A 99 line topology optimization code written in Matlab”. en. In: Structural
and Multidisciplinary Optimization 21.2 (Apr. 2001), pp. 120–127. ISSN: 1615-1488. DOI:
10.1007/s001580050176. URL: https://doi.org/10.1007/s001580050176 (visited
on 08/21/2019).

[11] Albert Tarantola. Inverse problem theory and methods for model parameter estimation. Vol. 89.
siam, 2005.

[12] Olgierd Cecil Zienkiewicz et al. The finite element method. Vol. 3. McGraw-hill London, 1977.

5

http://arxiv.org/abs/1905.04874
http://arxiv.org/abs/1905.04874
http://arxiv.org/abs/1812.00950
http://arxiv.org/abs/1812.00950
https://github.com/AJJLagerweij/topopt
https://doi.org/10.1007/s001580050176
https://doi.org/10.1007/s001580050176

	Introduction
	Problem characterization
	How GANs solve complex non-linear inverse problems
	Application: Topology optimization
	Results
	Discussion

