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ABSTRACT

Information need of humans is essentially multimodal in nature, enabling maxi-
mum exploitation of situated context. We introduce a dataset for sequential pro-
cedural (how-to) text generation from images in cooking domain. The dataset
consists of 16,441 cooking recipes with 160,479 photos associated with different
steps. We setup a baseline motivated by the best performing model in terms of
human evaluation for the Visual Story Telling (ViST) task. In addition, we intro-
duce two models to incorporate high level structure learnt by a Finite State Ma-
chine (FSM) in neural sequential generation process by: (1) Scaffolding Structure
in Decoder (SSiD) (2) Scaffolding Structure in Loss (SSiL). These models show
an improvement in empirical as well as human evaluation. Our best performing
model (SSiL) achieves a METEOR score of 0.31, which is an improvement of 0.6
over the baseline model. We also conducted human evaluation of the generated
grounded recipes, which reveal that 61% found that our proposed (SSiL) model is
better than the baseline model in terms of overall recipes, and 72.5% preferred our
model in terms of coherence and structure. We also discuss analysis of the output
highlighting key important NLP issues for prospective directions.

1 INTRODUCTION

Interpretation is heavily conditioned on context. Real world interactions provide this context in
multiple modalities. In this paper, the context is derived from vision and language. The description
of a picture changes drastically when seen in a sequential narrative context. Formally, this task is
defined as: given a sequence of images I = {I1, I2, ..., In} and pairwise associated textual descrip-
tions, T = {T1, T2, ..., Tn}; for a new sequence I

′
, our task is to generate the corresponding T

′
.

Figure 1 depicts an example for making vegetable lasagna, where the input is the first row and the
output is the second row. We call this a ‘storyboard’, since it unravels the most important steps of
a procedure associated with corresponding natural language text. The sequential context differenti-
ates this task from image captioning in isolation. The narration of procedural content draws slight
differentiation of this task from visual story telling. The dataset is similar to that presented by ViST
Huang et al. (2016) with an apparent difference between stories and instructional in-domain text
which is the clear transition in phases of the narrative. This task supplements the task of ViST with
richer context of goal oriented procedure (how-to). This paper attempts at capturing this high level
structure present in procedural text and imposing this structure while generating sequential text from
corresponding sequences of images.

Numerous online blogs and videos depict various categories of how-to guides for games, do-it-
yourself (DIY) crafts, technology, gardening etc. This task lays initial foundations for full fledged
storyboarding of a given video, by selecting the right junctions/clips to ground significant events
and generate sequential textual descriptions. However, the main focus of this work is generating
text from a given set of images. We are going to focus on the domain of cooking recipes in the rest
of this paper, leaving the exploration of other domains to future. The two important dimensions to
address in text generation are content and structure. In this paper, we discuss our approach in gener-
ating more structural/coherent cooking recipes by explicitly modeling the state transitions between
different stages of cooking (phases). We address the question of generating textual interpretation of
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Lasagna 
ingredients: tomato 
sauce or canned 
tomatoes for making 
sauce - at least 4-6 
cups, one box no 
boil lasagna 
noodles, one 
zucchini, one 
yellow squash, one 
jalapeno (or bell 
pepper!), 1/2 an 
onion, pinch of 
oregano, pinch of 
basil.

To make the sauce, 
cook diced onion in 
olive oil, and then add 
the ground beef, garlic 
and tomato paste. Stir 
until fragrant and then 
meat starts to brown 
and break up, and then 
add the crushed 
tomatoes. Pour some 
water into tomato can 
and swish it around and 
then pour that into the 
pot. Stir well and let 
simmer while the veg 
continue to lose 
moisture. 

Spoon your ricotta 
into a bowl and 
add a good pinch 
of Italian 
seasoning and 
crushed red 
pepper. I like to 
add a little black 
pepper too. Mix 
around until well 
combined. Shred 
your mozzarella or 
cut into small 
slices.

This is the way I 
layered: spoonful 
of sauce on the 
bottom of the pan,  
lasagna noodles, 
1/2 the ricotta 
cheese, 1/2 the 
sauteed vegetables,  
mozzarella cheese, 
sauce to cover. Do 
that twice and then 
sprinkle parmesan 
cheese on the top.

Bake in a 400 F 
oven for 30-40 
minutes or until 
you can easily 
pierce through the 
noodles with a 
knife and the top is 
lightly browned. 
Try not to eat it all 
at once. The boy 
and I have eaten 
1/2 of it, and it's 
only been a day 
since I made it. :D

Figure 1: Storyboard for the recipe of vegetable lasagna

the procedure depicted as a sequence of pictures (snapped at different instances of time as the pro-
cedure progresses). We introduce a framework to apply traditional FSMs to enhance incorporation
of structure in neural text generation. We plan to explore backpropable variants in place of FSMs in
future to design structure aware generation models.

The two main contributions of this paper are:

1. A dataset of 16k recipes targeted for sequential multimodal procedural text generation.
2. Two models (SSiD: Structural Scaffolding in Decoder ,and SSiL: Structural Scaffolding in

Loss) for incorporating high level structure learnt by an FSM into a neural text generation
model to improve structure/coherence.

The rest of the paper is organized as follows. Section 2 describes the related work performed along
the lines of planning while generating, understanding food and visual story telling. Section 3 de-
scribes the data we gathered for this task and related statistics. In Section 4, we describe our models:
a baseline model (Glocal), SSiD and SSiL in detail. Section 5 presents the results attained by each
of these models both empirically and qualitatively. Section 6 concludes this work and presents some
future directions.

2 RELATED WORK

Why domain constraint? Martin et al. (2017) and Khalifa et al. (2017) demonstrated that the
predictive ability of a seq2seq model improves as the language corpus is reduced to a specialized
domain with specific actions. Our choice of restricting domain to recipes is inspired from this,
where the set of events are specialized (such as ‘cut’, ‘mix’, ‘add’) although we are not using event
representations explicitly. These specialized set of events are correlated to phases of procedural text
as described in the following sections.

Planning while writing content: A major challenge faced by neural text generation Lu et al. (2018)
while generating long sequences is the inability to maintain structure, contravening the coherence
of the overall generated text. This aspect was also observed in various tasks like summarization
Liu et al. (2018), story generation Fan et al. (2019). Pre-selecting content and planning to generate
accordingly was explored by Puduppully et al. (2018) and Lukin et al. (2015) in contrast to generate
as you proceed paradigm. Fan et al. (2018) adapt a hierarchical approach to generate a premise
and then stories to improve coherence and fluency. Yao et al. (2018) experimented with static and
dynamic schema to realize the entire storyline before generating. However, in this work we propose
a hierarchical multi task approach to perform structure aware generation.

Comprehending Food: Recent times have seen large scale datasets in food, such as Recipe1M
Marin et al. (2018), Food-101 Bossard et al. (2014) and bench-marking challenges like iFood chal-
lenge 1. Food recognition Arora et al. (2019) addresses understanding food from a vision perspec-
tive. Salvador et al. (2018) worked on generating cooking instructions by inferring ingredients from
an image. Zhou et al. (2018) proposed a method to generate procedure segments for YouCook2 data.
In NLP domain, this is studied as generating procedural text by including ingredients as checklists

1https://www.kaggle.com/c/ifood2018
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Kiddon et al. (2016) or treating the recipe as a flow graph Mori et al. (2014). Our work is at the
intersection of two modalities (language and vision) by generating procedural text for recipes from
a sequence of images. Bosselut et al. (2017) worked on reasoning non-mentioned causal effects
thereby improving the understanding and generation of procedural text for cooking recipes. This is
done by dynamically tracking entities by modeling actions using state transformers.

Visual Story Telling: Research at the intersection of language and vision is accelerating with tasks
like image captioning Hossain et al. (2019), visual question answering Wu et al. (2017), visual di-
alog Das et al. (2017) , Mostafazadeh et al. (2017), de Vries et al. (2017), de Vries et al. (2018)).
ViST Huang et al. (2016) is a sequential vision to language task demonstrating differences between
descriptions in isolation and stories in sequences. Along similar lines, Gella et al. (2018) created
VideoStory dataset with videos posted on social media with the task of generating a multi-sentence
story captions for them. Smilevski et al. (2018) proposed a late fusion based model for ViST chal-
lenge. Kim et al. (2018) attained the highest scores on human readability in this task by attending
to both global and local contexts. We use this as our baseline model and propose two techniques on
top of this baseline to impose structure needed for procedural text.

3 DATASET DESCRIPTION

Food is one of the most photographed subject on the instagram network which led to coining the term
foodstagram. We identified two how-to blogs: instructables2 and snapguide.com3, comprising step-
wise instructions (images and text) of various how-to activities like games, crafts etc,. We gathered
16,441 samples with 160,479 photos 4 for food, dessert and recipe topics. We used 80% for training,
10% for validation and 10% for testing our models. In some cases, there are multiple images for
the same step and we randomly select an image from the set of images. We indicate that there is a
potential space for research here, in selecting most distinguishing/representative/meaningful image.
Details of the datasets are presented in Table 1. The distribution of the topics is visualized here5. A
trivial extension could be done on other domains like gardening, origani crafts, fixing guitar strings
etc, which is left for future work.

Data Sources # Recipes # Avg Steps
instructables 9,101 7.14
snapguide 7,340 13.01

Table 1: Details of dataset for storyboarding recipes

4 MODEL DESCRIPTION

We first describe a baseline model for the task of storyboarding cooking recipes in this section. We
then propose two models with incremental improvements to incorporate the structure of procedural
text in the generated recipes : SSiD (Scaffolding Structure in Decoder) and SSiL (Scaffolding Struc-
ture in Loss). The architecture of scaffolding structure is presented in Figure 2, of which different
aspects are described in the following subsections.

4.1 BASELINE MODEL (GLOCAL):

We have a sequence of images at different phases of cooking as our input and the task is to generate
step wise textual descriptions of the recipe.

The baseline model is inspired from the best performing system in ViST challenge with respect to
human evaluation Kim et al. (2018). The images are first resized into 224 X 224. Image features for
each step are extracted from the penultimate layer of pre-trained ResNet-152 He et al. (2016). These
features are then passed through an affinity layer to obtain an image feature of dimension 1024.

2https://www.instructables.com/
3https://snapguide.com/
4** data will be released**
5https://storyboarding.github.io/story-boarding/
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Figure 2: Architecture for incorporating high level structure in neural recipe generation

To maintain the context of the entire recipe (global context), the sequence of these image features
are passed through a two layered Bi-LSTM with a hidden size of 1024. To maintain specificity
of the current image (local context), the image features for the current step are concatenated using
a skip connection to the output of the Bi-LSTM to obtain glocal representation. Dropout of 0.5
is applied systematically at the affinity layer to obtain the image feature representation and after
the Bi-LSTM layer. Batch normalization is applied with a momentum 0.01. This completes the
encoder part of the sequence to sequence architecture. These glocal vectors are used for decoding
each step. These features are passed through a fully connected layer to obtain a representation
of 1024 dimension followed by a non-linear transformation using ReLU. These features are then
passed through a decoder LSTM for each step in the recipe which are trained by teacher forcing.
The overall coherence in generation is addressed by feeding the decoder state of the previous step to
the next one. This is a seq2seq model translating one modality into another. The model is optimized
using Adam with a learning rate of 0.001 and weight decay of 1e-5.

The model described above does not explicitly cater to the structure of the narration of recipes in
the generation process. However, we know that procedural text has a high level structure that carries
a skeleton of the narrative. In the subsequent subsections, we present two models that impose this
high level narrative structure as a scaffold. While this scaffold lies external to the baseline model, it
functions on imposing the structure in decoder (SSiD) and in the loss term (SSiL).

4.2 SCAFFOLDING STRUCTURE IN DECODER (SSID):

There is a high level latent structure involved in a cooking recipe that adheres to transitions between
steps, that we define as phases. Note that the steps and phases are different here. To be specific,
according to our definition, one or more steps map to a phase (this work does not deal with multiple
phases being a part of a single step). Phases may be ‘listing ingredients’, ‘baking’, ‘garnishing’ etc.,
The key idea of the SSiD model is to incorporate the sequence of phases in the decoder to impose
structure during text generation 6.

There are two sources of supervision to drive the model: (1) multimodal dataset M = {I,T} from
Section 3, (2) unimodal textual recipes7 U to learn phase sequences. Finer phases are learnt using
clustering followed by an FSM.

6To validate the hypothesis of operating FSM with phases over the neural baseline model we have in place,
we first performed proof of concept experiments with the step-wise titles present in our instructables dataset.
Here, the content words after removal of the stop words for words with high tf-idf values are defined as phases.
However, for the actual model, these phases are latent states learnt through an FSM.

7www.ffts.com/recipes.htm
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Clustering: K-Means clustering is performed on the sentence embeddings with compositional n-
gram features Pagliardini et al. (2018) on each step of the recipe in U. Aligning with our intuition,
when k is 3, it is observed that these clusters roughly indicate categories of desserts, drinks and main
course foods (pizza, quesadilla etc,). However, we need to find out finer categories of the phases
corresponding to the phases in the recipes. We use k-means clustering to obtain the categories of
these phases. We experimented with different number of phases P as shown in Table 2. For example,
let an example recipe comprise of 4 steps i.e, a sequence of 4 images. At this point, each recipe can
be represented as a hard sequence of phases r = 〈 p1, p2, p3, p4 〉.
FSM: The phases learnt through clustering are not ground truth phases. We explore the usage of an
FSM to individually model hard and a softer representation of the phase sequences by leveraging
the states in an FSM. We first describe how the hard representation is modeled. The algorithm was
originally developed for building language models for limited token sets in grapheme to phoneme
prediction. The iterative algorithm starts with an ergodic state for all phase types and uses entropy
to find the best state split that would maximize the prediction. This is presented in Algorithm 1.
As opposed to phase sequences, each recipe is now represented as a state sequence (decoded from
FSM) i.e, r = 〈s1, s2, s3, s4〉 (hard states). This is a hard representation of the sequence of states.

We next describe how a soft representation of these states is modeled. Since the phases are learnt
in an unsupervised fashion and the ground truth of the phases is not available, we explored a softer
representation of the states. We hypothesize that a soft representation of the states might smooth
the irregularities of phases learnt. From the output of the FSM, we obtain the state transition prob-
abilities from each state to every other state. Each state si can be represented as 〈qij ∀ j ∈ S〉 (soft
states), where qij is the state transition probability from si to sj and S is the total number of states.
This is the soft representation of state sequences.

The structure in the recipe is learnt as a sequence of phases and/or states (hard or soft). This is the
structural scaffold that we would like to incorporate in the baseline model. In SSiD model, for each
step in the recipe, we identify which phase it is in using the clustering model and use the phase
sequence to decode state transitions from the FSM. The state sequences are concatenated to the
decoder in the hard version and the state transition probabilities are concatenated in the decoder in
the soft version at every time step.

At this point, we have 2 dimensions, one is the complexity of the phases (P) and the other is the
complexity of the states in FSM (S). Comprehensive results of searching this space is presented in
Table 2. We plan to explore the usage of hidden markov model in place of FSM in future.

Algorithm 1 State Splitting in Weighted FSM (WFSM)
Result: FSM along with probabilistic state transitions
initialization while Until end criteria do

Apply FSM to dataset;
Record which phases in each recipe go through which states in the WFSM;
For each state find entropy and reverse sort;
for Each state in order do

if if found an entropy reducing split then
for Each each type coming into the state do

calculate the entropy at each state if the existing one is split;
The score is the each entropy times the number of examples going through that state ;

end
else

end
Once the best split is found, split moving all incoming arcs of that type to the new state (subtracting them from old one).

end

4.3 SCAFFOLDING STRUCTURE IN LOSS (SSIL):

In addition to imposing structure via SSiD, we explored measuring the deviation of the structure
learnt through phase/state sequences from the original structure. This leads to our next model where
the deviation of the structure in the generated output from that of the original structure is reflected in
the loss. The decoded steps are passed through the clustering model to get phase sequences and then
state transition probabilities are decoded from FSM for the generated output. We go a step further
to investigate the divergence between the phases of generated and original steps. This can also be
viewed as hierarchical multi-task learning Sanh et al. (2018). The first task is to decode each step in
the recipe (which uses a cross entropy criterion, L1). The second task uses KL divergence between
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phase sequences of decoded and original steps to penalize the model (say, L2).When there are τ
steps in a recipe, we obtain o(sτ1) and g(sτ1) as the distributions of phases comprising of soft states
for the original and generated recipes respectively. We measure the KL divergence(DKL) between
these distributions:

DKL(o(s
τ
1)||g(sτ1)) =

τ∑
i=1

S∑
j=1

o(si[j])log
o(si[j])

g(si[j])

Each task optimizes different functions and we minimize the combination of the two losses.

∑
I,T∈I,T L1(I, T ) + α

∑
U∈U L2(U)

This combined loss is used to penalize the model. Here, α is obtained from KL annealing Bowman
et al. (2015) function that gradually increases the weight of KL term from 0 to 1 during train time.

5 RESULTS AND DISCUSSION

The two dimensions explored in clustering and FSM are the number of phases that are learnt in
unsupervised manner (P) and the number of states attained through state splitting algorithm in FSM
(S). The results of searching this space for the best configuration are presented in Table 2.

FST Complexity 1 20 40 60 80 100 120
20 Phases 11.27 11.60 12.31 13.71 12.32 12.51 12.36
40 Phases 12.03 12.44 11.48 12.58 12.50 13.91 11.82
60 Phases 11.13 11.18 12.74 12.26 12.47 12.98 11.47

Table 2: BLEU Scores for different number of phases (P) and states(S)

The BLEU score Papineni et al. (2002) is the highest when P is 40 and S is 100. Fixing these values,
we compare the models proposed in Table 3. The models with hard phases and hard states are not as
stable as the one with soft phases since backpropagation affects the impact of the scaffolded phases.
Upon manual inspection, a key observation is that for SSiD model, most of the recipes followed a
similar structure. It seemed to be conditioned on a global structure learnt from all recipes rather
than the current input. However, SSiL model seems to generate recipes that are conditioned on the
structure of each particular example.

Models BLEU METEOR ROUGE-L
Glocal 10.74 0.25 0.31
SSiD (hard phases) 11.49 0.24 0.31
SSiD (hard states) 11.93 0.25 0.31
SSiD (soft states) 13.91 0.29 0.32
SSiL (soft states) 16.38 0.31 0.34

Table 3: Evaluation of storyboarding recipes

Human Evaluation: We have also performed human evaluation by conducting user preference
study to compare the baseline with our best performing SSiL model. We randomly sampled gen-
erated outputs of 20 recipes and asked 10 users to answer two preference questions: (1) preference
for overall recipe based on images, (2) preference for structurally coherent recipe. For the second
question, we gave examples of what structure and phases mean in a recipe. Our SSiL model was
preferred 61% and 72.5% for overall and structural preferences respectively. This shows that while
there is a viable space to build models that improve structure, generating an edible recipe needs to
be explored to improve the overall preference.
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Models Phenomena

Glocal Model
This is a simple recipe for making 
a delicious chicken salad.

You will need: a butter knife a 
plate of bread flour a little bit of 
salt a dash of pepper flakes a 
couple of tablespoons of olive oil 
a pinch of sugar. 

Add butter evenly on the pan. Put the chicken on the grill and 
set aside.

- Ingredients phase wrongly 
identified.

- Wrong ingredients.
- Improper conclusion.

SSiD Model
This is a simple recipe for making 
a delicious and easy dish. 

Ingredients: 4 pounds chicken 2 
tsp salt, ½ tsp sugar, marinara 
sauce, mozzarella cheese ( i 
used provolone ). Tools:  a knife, 
an oven for the chicken, tongs. 
Mix all ingredients in a bag.

Add butter evenly on the pan. Serve the baked chicken wings 
and enjoy the evening!

- Learnt majority structure (step 1)
+ Got ‘tongs’ right because of 

separate tools mention.
- The action of baking is not 

explicitly mentioned (before 
‘baked’ wings).

SSiL Model
You will need: 5 pounds of 
chicken wings, ½ cup all purpose 
flour, ½ tsp salt, 2 tsp of paprika, 
melted butter, silicon mat, baking 
pan.

Preheat oven to 450 F. Mix dry 
ingredients in the dry ziplock bag.

Place a mat on the baking pan 
and spread butter evenly on it.

Spread the chicken pieces on 
butter on the baking pan. Bake 
until crispy for 30 minutes. Serve 
and enjoy!

+ Global context of baking 
maintained in preheating.

+ Non-repetitive ingredients phase.
+ Referring expressions (baking 

pan -> it).
- Not mentioned tools (tongs).

Figure 3: Comparison of generated storyboards for Easy Oven Baked Crispy Chicken Wings

5.1 QUALITATIVE ANALYSIS:

Figure 3 presents the generated text from the three models with an analysis described below.

Coherence of Referring Expressions: Introducing referring expressions is a key aspect of coher-
ence Dale (2006), as seen in the case of ‘baking pan’ being referred as ‘it’ in the SSiL model.

Context Maintenance: Maintaining the overall context explicitly has an effect in the generation of
each step. This is reflected in SSiL model where ‘preheating’ is discussed in second step although
the image does not show an oven. This structure is learnt from baking step that appears later.

Schema for Procedural Text: Explicitly modeling structure for procedural text has enabled the
model to conclude the recipe in SSiD and SSiL models by generating words like ‘serve’ and ‘enjoy’.
Lacking this structure, Glocal model talks about setting aside at the end of the recipe.

Precision of Entities and Actions: SSiD model introduces ‘sugar’ in ingredients after generating
‘salt’. A brief manual examination revealed that this co-occurrence is a common phenomenon.
Similarly sauce and cheese are wrongly generated. SSiL model misses ‘tongs’ in the first step.

Parallels to Summarization: There is an inherent trade-off between detailing and presenting a
concise overview. For instance, one might not need detailing on how onions are cut in comparison
to how layering of cheese is executed. Although, we are not explicitly addressing the issue of
identifying complicated and trivial steps, a storyboard format implicitly takes care of this by briefing
in pictorial representation and detailing in text. This draws parallels with multimodal summarization.

6 CONCLUSIONS

Our main focus in this paper is instilling structure learnt from FSMs in neural models for sequential
procedural text generation with multimodal data. Recipes are being presented in the form of graphic
novels reflecting the cultural change in expectations of presenting instructions. With this change, a
storyboard is a comprehensive representation of the important events. In this direction, we gather a
dataset of 16k recipes where each step has text and associated images. The main difference between
the dataset of ViST and our dataset is that our dataset is targeted at procedural how-to kind of text
(specifically presenting cooking recipes in this work). We setup a baseline inspired from the best
performing model in ViST in the category of human evaluation. We learn a high level structure of the
recipe as a sequence of phases and a sequence of hard and soft representations of states learnt from
a finite state machine. We propose two techniques for incorporating structure learnt from this as a
scaffold. The first model imposes structure on the decoder (SSiD) and the second model imposes
structure on the loss function (SSiL) by modeling it as a hierarchical multi-task learning problem.
We show that our proposed approach (SSiL) improves upon the baseline and achieves a METEOR
score of 0.31, which is an improvement of 0.6 over the baseline model.

7
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We plan on exploring backpropable variants as a scaffold for structure in future. We also plan to
extend these models to other domains present in these sources of data. There is no standard way to
explicitly evaluate the high level strcuture learnt in this task and we would like to explore evaluation
strategies for the same.
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