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Abstract

Dreams and our ability to recall them are among the most puzzling questions1

in sleep research. Specifically, putative differences in brain network dynamics2

between individuals with high versus low dream recall rates, are still poorly under-3

stood. In this study, we addressed this question as a classification problem where4

we applied deep convolutional networks (CNN) to sleep EEG recordings to predict5

whether subjects belonged to the high or low dream recall group (HDR and LDR6

resp.). Our model achieves significant accuracy levels across all the sleep stages,7

thereby indicating subtle signatures of dream recall in the sleep microstructure. We8

also visualized the feature space to inspect the subject-specificity of the learned fea-9

tures, thus ensuring that the network captured population level differences. Beyond10

being the first study to apply deep learning to sleep EEG in order to classify HDR11

and LDR, guided backpropagation allowed us to visualize the most discriminant12

features in each sleep stage. The significance of these findings and future directions13

are discussed.14

1 Introduction15

Dreams are arguably one of the most intriguing phenomena in cognitive science. Previous studies have16

explored the differences in brain EEG patterns between HDR and LDR using different approaches17

such as sleep spindles [1] and Event-Related Potentials [2] to identify the neural bases of dreaming.18

Although these findings have advanced the field in understanding the neural bases of dreaming, neural19

correlates of dream recall are still not completely understood.20

In recent years, deep learning (DL) has proven to be one of the most successful techniques for21

classification problems, with specific applications in computer vision, natural language understanding22

as well as EEG signal decoding [3]. DL methods allow the identification of optimal discriminative23

patterns in a given minimally pre-processed dataset, thus reducing the reliance on a priori selection24

of features. However, the interpretability of such deep models has been a major roadblock in the25

context of neuroimaging applications.26

In this work, we used a convolutional neural network (CNN) for classification of sleep EEG recordings27

into two groups (HDR vs LDR). Subsequently, we explored various techniques to visualize the28

features learned by the network.29

2 Materials and Methods30

2.1 Data Collection31

The sleep study consisted of 36 participants (18 male, mean age 23 ± 3 yrs). Brief interview was32

conducted to determine which dream recall group the subject belonged. Those who reported more33
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that three dream recalls per week were classified as HDR and those who reported less than twice a34

month were categorized as LDR. Participants were made to sleep in an acoustically dampened and35

electrically shielded room.36

Twenty-one AG/AgCl scalp electrodes were manually positioned according to the extended Interna-37

tional 10-20 System (Fz,Cz,Pz,FP1,F3,FC1,C3,T3,CP1,P3,M1,O1). The electrophysiological data38

(EEG, EOG, and EMG) were continuously recorded via a BrainAmp system (Brain Products GmbH,39

Germany) with an amplification gain of 12,500, a high-pass filter of 0.1 Hz and a sampling rate of40

1000 Hz with an anti-aliasing low-pass filter.41

2.2 Sleep stage scoring and Data Preprocessing42

Table 1: Available Data

Sleep stage Data points

S2 61860
SWS 52548
REM 35322
S1 15120
AWA 14568

Sleep stages were scored visually by two sleep experts using43

Rechtschaffen and Kales guidelines. The data was then split into44

5s segments, each labeled as one of the 5 different vigilance state45

(wake, rapid eyes movements sleep – REM sleep, sleep stage 1 – S1,46

sleep stage 2 – S2 and slow wave sleep – SWS).47

For our analysis, the data was downsampled to 200Hz. It was48

also passed through a low pass filter to exclude frequencies greater49

than 40Hz. Each data point was considered as an array of50

19(eegchannels) × 1000(timepoints) [5 second segment with51

200Hz]. The number of data points available for each sleep segment52

is mentioned in Table 1.53

2.3 Model Architecture and training54

We developed a CNN architecture for classifying each data point into one of the two dream recall55

groups. The model architecture is shown in Figure 1. The network contains two parts – a feature56

extractor and a classifier.

EXTRACTOR

CLASSIFIER

2 OUTPUTS: HIGH/LOWDREAMRECALL

CONV4
+POOL

POOL CONV3
+POOL

FLATTEN

CONV2

CONV1

19

C
H
A
N
N
E
L
S

[19*1*1000]
[19*20*961]

[1*80*961]

[1*80*192] [1*100*36] [1*160*5]

[800]

[100]

[2]

FC-1

FC-2

LOG-
SOFTMAX

[Height*Width*Depth]

Figure 1: Model architecture

57

The preprocessed data (Section 2.2) is passed through the extractor (architecture described in 2). The58

first convolutional layer has a filter size of 1× 40, which enables the network to capture temporal59

patterns of dream recall in each electrode. The second convolutional layer has a filter size of 19× 1,60

which enables the network to capture spatial patterns across the recording electrodes. The output of61

the extractor is a 1-D feature vector of size 800, which is subsequently input to the classifier module62

(Figure 1). The classifier output represents log probabilities of the data sample to belong to the HDR63

or LDR classes.64

The model was implemented using PyTorch 1.1 in Python. The negative log likelihood cost function65

was used to train the network and was then backpropogated through the classifier and extractor model.66

Adam optimizer was used for training and the learning rate was decreased using Step Scheduler.67

Early stopping was employed to prevent overfitting and the best model was stored for validation. The68

model hyperparameters used for training were Batch size: 100, Epochs: 150, Learning rate: 0.00005,69

Rate decay step size: 25 and Rate decay gamma: 0.7.70
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Table 2: Extractor network architecture
Layer Type Filter Size Output Size

0 Input - [1,19,1000]
1 Conv+BatchNorm [1,40] [20,19,961]
2 Conv+BatchNorm+Relu [19,1] [80,1,961]
3 MaxPool [1,5] [80,1,192]
4 Conv+BatchNorm+Relu [1,5] [100,1,184]
5 MaxPool+Dropout [1,5] [100,1,36]
6 Conv+BatchNorm+Relu [1,10] [160,1,27]
7 MaxPool [1,5] [160,1,5]
8 Flatten - [800]

3 Results and Discussion71

3.1 Decoding Accuracy72

To test the model’s cross subject accuracy, we used a leave 2-subjects-out strategy, wherein the model73

was trained on 34 subjects and tested on 2 held-out subjects (1 each from both dream recall groups).74

18-Fold cross validation was done, and in each case 2 different subjects were a part of the testing set.75

Figure 2 summarizes the decoding accuracy across the 5 sleep stages. We see that our deep model76

significantly outperforms the logistic regression model on all the sleep stages except S1 (might be77

attributed to the fact that less data was available for this stage). The model achieves decoding accuracy78

of around 70 to 75% on the other 4 sleep stages.79

Figure 2: 18-fold cross validation accuracy compared across five sleep stages

3.2 tSNE Visualization to check subject overfitting80

To assess the subject specificity of the features extracted by the network, we visualized a low-81

dimensional representation of the feature space using t-Distributed Stochastic Neighbor Embedding82

(t-SNE) [4]. To this end, we generated the tSNE plots for the output of the extractor part of the83

network, as shown in Fig. 3.84

The left image corresponds to the feature space learned by our trained model. There were no visible85

clusters specific to a subject (each subject being represented by a color). We compared this plot to the86

feature space learned by a network trained to identify subjects from the EEG recordings (the right87

image). The formation of subject-specific clusters corresponds to the extracted features containing88

subject-specific information. This analysis confirmed that our proposed network did not learn features89

based on subject-specific information. Therefore, the learned feature space corresponds to population90

level differences between the two groups.91
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(a) Feature space learned by pro-
posed CNN model

(b) Feature space learned by a model
trained to identify subjects

Figure 3: tSNE embeddings calculated using outputs of feature extractor. Colours correspond to the
subject label of that datapoint.

3.3 Electrode analysis using Guided Backpropogation92

We used Guided backpropagation (GB) [5] technique to visualize the topological distribution of93

discriminative neural signatures of dream recall. Positive saliency map obtained using GB was used94

to infer the electrode importance. It was found that the electrode importance was similar across95

different validation sets for each sleep stage. The results obtained for various sleep stages are plotted96

in Figure 4.97

Figure 4: Electrode importance for dream recall classification as obtained from Guided-
backpropagation. High intensity values correspond to higher importance given to that electrode.

4 Conclusions98

This study illustrates how deep learning can be used to data-mine the neural activities of HDR and99

LDR. Specifically, we trained a deep CNN to classify between LDR and HDR and achieved significant100

decoding accuracies. Furthermore, we used tSNE to check for subject overfitting and GB to identify101

the brain regions carrying group-specific differences, thus illustrating the use of visualisation tools102

for deep models trained on neural data. Future work will involve explorations of other dimensions,103

including the frequency components of the data that contribute most to the classification.104
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