
Learning to Search Efficient DenseNet with
Layer-wise Pruning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep neural networks have achieved outstanding performance in many real-world1

applications with the expense of huge computational resources. The DenseNet, one2

of the recently proposed neural network architecture, has achieved the state-of-the-3

art performance in many visual tasks. However, it has great redundancy due to the4

dense connections of the internal structure, which leads to high computational costs5

in training such dense networks. To address this issue, we design a reinforcement6

learning framework to search for efficient DenseNet architectures with layer-wise7

pruning (LWP) for different tasks, while retaining the original advantages of8

DenseNet, such as feature reuse, short paths, etc. In this framework, an agent9

evaluates the importance of each connection between any two block layers, and10

prunes the redundant connections. In addition, a novel reward-shaping trick is11

introduced to make DenseNet reach a better trade-off between accuracy and float12

point operations (FLOPs). Our experiments show that DenseNet with LWP is more13

compact and efficient than existing alternatives.14

1 Introduction15

Deep neural networks are increasingly used on mobile devices, where computational resources are16

quite limited(Chollet, 2017; Sandler et al., 2018; Zhang et al., 2017; Ma et al., 2018). Thus, the deep17

learning community has paid much attention to compressing and accelerating different types of deep18

neural networks(Gray et al., 2017).19

Among recently proposed neural network architectures, DenseNet (Huang et al., 2017b) is one of20

the most dazzling structures which introduces direct connections between any two layers with the21

same feature-map size. However, recent extensions of Densenet with careful expert design, such as22

Multi-scale DenseNet(Huang et al., 2017a) and CondenseNet(Huang et al., 2018), have shown that23

there exists high redundancy in DenseNet. Neural architecture search (NAS) has been successfully24

applied to design model architectures for image classification and language models (Liu et al., 2018;25

Zoph & Le, 2016; Pham et al., 2018; Liu et al., 2017a; Brock et al., 2017). However, none of these26

NAS methods are efficient for DenseNet due to the dense connectivity between layers. It is thus27

interesting and important to develop an adaptive strategy for searching an on-demand neural network28

structure for DenseNet such that it can satisfy both computational budget and inference accuracy29

requirement.30

To this end, we propose a layer-wise pruning method for DenseNet based on reinforcement learning.31

Our scheme is that an agent learns to prune as many as possible weights and connections while32

maintaining good accuracy on validation dataset. Our agent learns to output a sequence of actions33

and receives reward according to the generated network structure on validation datasets. Additionally,34

our agent automatically generates a curriculum of exploration, enabling effective pruning of neural35

networks.36

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.

2 Method37

Suppose the DenseNet has L layers, the controller needs to make K (equal to the number of layers in38

dense blocks) decisions. For layer i, we specify the number of previous layers to be connected in the39

range between 0 and ni (ni = i). All possible connections among the DenseNet constitute the action40

space of the agent. However, the time complexity of traversing the action space is O(
∏K
i=1 2

ni),41

which is NP-hard and unacceptable for DenseNet(Huang et al., 2017b). Fortunately, reinforcement42

learning is good at solving sequential decision optimization problems and we model the network43

pruning as a Markov Decision Process(MDP). Since these hierarchical connections have time-series44

dependencies, it is natural to train LSTM as the controller to simply solve the above-mentioned issue.45

46

Figure 1: Illustration of our proposed framework. In each iteration, the output of the i-th time step makes
keeping or dropping decisions for the i-th layer. All outputs of the LSTM controller generate a child network by
sampling from K ×K-dimensional Bernoulli distribution. Then, the child network forwards propagation with
mini-batch samples and the reward function can be evaluated with the predictions and FLOPs. The controller is
optimized with policy gradient.

At the first time step, the LSTM controller receives an empty embedding vector as the input that is47

regarded as the fixed state s of the agent, and the output of the previous time step is the input for48

the next time step. Each output neuron in the LSTM is equipped with δ(x) = 1
1+e−x , so that the49

output oi defines a policy pi,ai
of keeping or dropping connections between the current layer and its50

previous layers as an ni-dimensional Bernoulli distribution:51

oi = f(s; θc), pi,ai
=
∏ni

j=1
o
aij
ij (1− oij)(1−aij), (1)

where f denotes the controller parameterized with θc. The j-th entry of the output vector oi, denoted52

by oij ∈ [0, 1], represents the likelihood probability of the corresponding connection between the53

i-th layer and the j-th layer being kept. The action ai ∈ {0, 1}ni is sampled from Bernoulli(oi).54

aij = 1 means keeping the connection, otherwise dropping it. Finally, the probability distribution of55

the whole neural network architecture is formed as:56

π(a1:K |s; θc) =
∏K

i=1
pi,ai (2)

The reward function is designed for each sample and not only considers the prediction correct or not,57

but also encourages less computation:58

R(a) =

{
1− ηα if predict correctly
−γ otherwise.

(3)

where η = SUBFLOPs
FLOPs measures the percentage of float operations utilized. SUBFLOPs, FLOPs59

represent the float point operations of the child network and vanilla DenseNet, respectively. After60

obtaining the feedback from the child network, we define the following expected reward:61

J(θc) = Ea∼πθc [r(s, a)] (4)

To maximize Eq (4) and accelerate policy gradient training over θc, we utilize the advantage actor-62

critic(A2C) with an estimation of state value function V (s; θv) to derive the gradients of J(θc) as:63

64

∇θcJ(θc) =
∑
a

(r(s, a)− V (s; θv))π(a|s, θc)∇θc log π(a|s, θc) (5)

2

The Eq (5) can be approximated by using the Monte Carlo sampling method:65

∇θcJ(θc) =
1

n

n∑
t=1

(
r(t)(s, a)− V (s; θv)

)
∇θc log π(a|s, θc) (6)

The entire training procedure is divided into three stages: curriculum learning, joint training and66

training from scratch and they are well defined in Appendix 4.1. Algorithm 1 shows the complete67

recipe for layer-wise pruning.68

3 Experiment and conclusion69

The results on CIFAR are reported in Table 1. For CIFAR-10 dataset and the vanilla DenseNet-40-12,70

our method has reduced the amounts of FLOPs, parameters by nearly 81.4%, 78.2%, respectively71

and the test error only increase 1.58%. The exponential power α and penalty γ can be tuned to72

improve the performance. In this experiment, we just modify hyperparameter α from 2 to 3 so that the73

model complexity(105M vs 173M FLOPs) is increased while test error rate is reduced to 6.00%.The74

same law can be observed on the DenseNet-100-12 with LWP. Our algorithm also has advantages on75

Condensenet (Huang et al., 2018) which needs more expert knowledge and NAS (Zoph & Le, 2016)76

which takes much search time complexity and needs more parameters but gets higher test error.77

We can also observe the results on CIFAR-100 from the Table 1 that the amounts of FLOPs in78

DenseNet with LWP are just nearly 46.5%, 66.3% of the DenseNet-40-12 and DenseNet-100-12.79

The compression rates are worse than that for CIFAR-10. This may be caused by the complexity80

of the CIFAR-100 classification task. The more hard task, the more computation is needed. For
Model FLOPs Params CIFAR-10 CIFAR-100
DenseNet-40-12 (Huang et al., 2017b)(our impl.) 566M 1.10M 5.24 25.09
DenseNet-100-12 (Huang et al., 2017b)(our impl.) 3.63G 7.19M 4.34 20.88
VGG-16-Pruned (Li et al., 2016) 206M 5.40M 6.60 25.28
VGG-19-pruned (Liu et al., 2017b) 195M 2.30M 6.20 -
VGG-19-pruned (Liu et al., 2017b) 250M 5.00M - 26.52
ResNet-110-pruned (Li et al., 2016) 213M 1.68M 6.45 -
DenseNet-40-pruned (Liu et al., 2017b) 190M 0.66M 5.19 25.28
CondenseNetlight-94 (Huang et al., 2018) 122M 0.33M 5.00 24.08
CondenseNet-86 (Huang et al., 2018) 65M 0.52M 5.00 23.64
NAS v2 predicting strides (Zoph & Le, 2016) - 2.5M 6.01 -
DenseNet-40-12-LWP (α = 2, γ = −0.5) 105M 0.24M 6.82 -
DenseNet-40-12-LWP (α = 2, γ = −0.5) 263M 0.66M - 26.99
DenseNet-40-12-LWP (α = 3, γ = −0.5) 173M 0.40M 6.00 -
DenseNet-100-12-LWP (α = 2, γ = −0.5) 716M 1.43M 5.12 -
DenseNet-100-12-LWP (α = 2, γ = −0.5) 2.42G 5.15M - 21.14

Table 1: Results on CIFAR. DenseNet-40-12 and DenseNet-100-12 are selected as the backbone CNN on
CIFAR dataset and our algorithm is applied to the two models. The FLOPs, parameters and test error of the
DenseNet with LWP are compered with the vanilla DenseNet and the neural network architecture with other
pruned methods.

81
ImageNet, although the bottleneck layer and compression ratio are introduced in DenseNet-121-32,82

the result shows that there is still much redundancy. As observed from Table 2, we can still reduce83

54.7% FLOPs and 35.2% parameters of the vanilla DenseNet-121-32 with 1.84% top-1 and 1.28%84

top-5 test error increasing.
Model FLOPs Params Top-1 Top-5
DenseNet-121-32-BC (Huang et al., 2017b) 5.67G 7.98M 25.35 7.83
DenseNet-121-32-BC-LWP 2.57G 5.17M 27.19 9.11

Table 2: Results on ImageNet. DenseNet-121-32 is selected as the backbone CNN on ImageNet. It can be
further compressed even if its parameters are already quite efficient.

85 In conclusion, we propose an algorithm strategy to search efficient child network of DenseNet86

with reinforcement learning agent. The LSTM is used as the controller to layer-wise prune the87

redundancy connections. The whole process is divided into three stages: curriculum learning, joint88

training and training from scratch. The extensive experiments based on CIFAR and ImageNet show89

the effectiveness of our method. Analyzing the child network and the filter parameters in every90

convolution layer prove that our proposed method can learn to search compact and efficient neural91

network architecture.92

3

References93

Yoshua Bengio. Deep learning of representations: Looking forward. In International Conference on94

Statistical Language and Speech Processing, pp. 1–37. Springer, 2013.95

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model96

architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.97

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint,98

pp. 1610–02357, 2017.99

Scott Gray, Alec Radford, and Diederik P Kingma. Gpu kernels for block-sparse weights. Technical100

report, Technical report, OpenAI, 2017.101

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q Wein-102

berger. Multi-scale dense networks for resource efficient image classification. arXiv preprint103

arXiv:1703.09844, 2017a.104

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected105

convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern106

recognition, 2017b.107

Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger. Condensenet: An108

efficient densenet using learned group convolutions. group, 3(12):11, 2018.109

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for110

efficient convnets. arXiv preprint arXiv:1608.08710, 2016.111

Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,112

Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. arXiv preprint113

arXiv:1712.00559, 2017a.114

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv115

preprint arXiv:1806.09055, 2018.116

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning117

efficient convolutional networks through network slimming. In Computer Vision (ICCV), 2017118

IEEE International Conference on, pp. 2755–2763. IEEE, 2017b.119

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for120

efficient cnn architecture design. arXiv preprint arXiv:1807.11164, 2018.121

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture122

search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.123

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Inverted124

residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation.125

arXiv preprint arXiv:1801.04381, 2018.126

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen Grauman,127

and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. 2018.128

X Zhang, X Zhou, M Lin, and J Sun. Shufflenet: An extremely efficient convolutional neural network129

for mobile devices. arxiv 2017. arXiv preprint arXiv:1707.01083, 2017.130

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint131

arXiv:1611.01578, 2016.132

4

4 Appendix133

4.1 Algorithm for layer-wise pruning134

Curriculum learning. It is easy to note that the search space scales exponentially with the block135

layers of DenseNet and there are total
∏K
i=1 2

ni keeping/dropping configurations. We use curriculum136

learning(Bengio, 2013) like BlockDrop(Wu et al., 2018) to solve the problem that policy gradient is137

sensitive to initialization. For epoch t (1 ≤ t < K), the LSTM controller only learns the policy of the138

last t layers and keeps the policy of the remaining K − t layers consistent with the vanilla DenseNet.139

As t ≥ K, all block layers are involved in the decision making process.140

Joint training. The previous stage just updates parameters θc and θv. The controller learns to141

identify connections between two block layers to be kept or dropped. However, it prevents the agent142

from learning the optimal architecture. Jointly training the DenseNet and controller can be employed143

as the next stage so that the controller guides the gradients of θv to the direction of dropping more144

connections.145

Training from scratch. After joint training, several child networks can be sampled from the policy146

distribution π(a|s, θc) and we select the child network with the highest reward to train from scratch,147

and thus better experimental results have been produced.148

We summarize the entire process in Algorithm 1.

Algorithm 1 The pseudo-code for layer-wise pruning.
Input: Training dataset Dt; Validation dataset Dv; Pretrained DenseNet.

Initialize the parameters θc of the LSTM controller and θv of the value network randomly.
Set epochs for curriculum learning, joint training and training from scratch to Mcl, M jt and Mfs respec-
tively and sample Z child networks.

Output: The optimal child network
1: //Curriculum learning
2: for t = 1 to Mcl do
3: o = f(s; θc)
4: if t < K − t then
5: for i = 1 to K − t do
6: o[i, 0 : i] = 1
7: o[i, i :] = 0
8: end for
9: end if

10: Sample a from Bernoulli(o)
11: DenseNet with policy makes predictions on the training dataset Dt

12: Calculate feedback R(a) with Eq (3)
13: Update parameters θc and θv
14: end for
15: //Joint training
16: for t = 1 to M jt do
17: Simultaneously train DenseNet and the controller
18: end for
19: for t = 1 to Z do
20: Sample a child network from π(a|s, θc)
21: Execute the child network on the validation dataset Dv

22: Obtain feedback R(t)(a) with Eq (3)
23: end for
24: Select the child networkN with highest reward
25: //Training from scratch
26: for t = 1 to Mfs do
27: Train the child networkN from scratch
28: end for
29: return The optimal child networkN

149

5

N
um

be
ro

fi
np

ut
ch

an
ne

l

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

450

D40-12-LWP
D40-12

So
ur

ce
la

ye
r(

s)

1 3 5 7 9 11 13 15 17 19 21 23 25

0
2
4
6
8

10
12
14
16
18
20
22
24

0.0

0.2

0.4

0.6

0.8

1.0

Layer index Target layer(t)

Figure 2: Quantitative results on DenseNet-40-12 wth LWP. Left: the number of input channel in vanilla
DenseNet-40-12 and the learned child network. Right: the connection dependency between any two layers is
represented as the average absolute wights of convolution layer.

4.2 Quantitative Results150

In this section, we argue that our proposed methods can learn more compact neural network architec-151

ture by analyzing the number of input channel in DenseNet layer and the connection dependency152

between a convolution layer with its preceding layers.153

In Figure 2 left, the red bar represent the number of input channel in DenseNet-40-12-LWP (D40-12-154

LWP) and the blue bar represent the number of input channel in vanilla DenseNet. We can observe155

that the number of input channels grows linearly with the layer index because of the concatenation156

operation and D40-12-LWP has layer-wise input channels identified by the controller automatically.157

The input channel is 0 means this layer is dropped so that the block layers is reduced from 36 to158

26. The number of connections between a layer with its preceding layers can be obtained from the159

right panel of Figure 2. In Figure 2 right, the x, y axis define the target layer t and source layer s.160

The small square at position (s, t) represents the connection dependency of target layer t on source161

layer s. The pixel value of position (s, t) is evaluated with the average absolute filter weights of162

convolution layers in D40-12-LWP. One small square means one connection and the number of small163

squares in the vertical direction indicates the number of connections to target layer t.164

As reported by the paper DenseNet(Huang et al., 2017b), there are redundant connections because of165

the low kernel weights on average between some layers. The right panel of Figure 2 obviously shows166

that the values of these small square connecting the same target layer t are almost equal which means167

the layer t almost has the same dependency on different preceding layers. Naturally, we can prove168

that the child network learned from vanilla DenseNet is quite compact and efficient.169

6

	Introduction
	Method
	Experiment and conclusion
	Appendix
	Algorithm for layer-wise pruning
	Quantitative Results

