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ABSTRACT

Machine learning systems often encounter Out-of-Distribution (OoD) errors when
dealing with testing data coming from a different distribution from the one used
for training. With their growing use in critical applications, it becomes important
to develop systems that are able to accurately quantify its predictive uncertainty
and screen out these anomalous inputs. However, unlike standard learning tasks,
there is currently no well established guiding principle for designing architectures
that can accurately quantify uncertainty. Moreover, commonly used OoD detec-
tion approaches are prone to errors and even sometimes assign higher likelihoods
to OoD samples. To address these problems, we first seek to identify guiding prin-
ciples for designing uncertainty-aware architectures, by proposing Neural Archi-
tecture Distribution Search (NADS). Unlike standard neural architecture search
methods which seek for a single best performing architecture, NADS searches for
a distribution of architectures that perform well on a given task, allowing us to
identify building blocks common among all uncertainty aware architectures. With
this formulation, we are able to optimize a stochastic outlier detection objective
and construct an ensemble of models to perform OoD detection. We perform mul-
tiple OoD detection experiments and observe that our NADS performs favorably
compared to state-of-the-art OoD detection methods.

1 INTRODUCTION

Detecting anomalous data is crucial for safely applying machine learning in autonomous systems
for critical applications and for AI safety (Amodei et al., 2016). Such anomalous data can come
in settings such as in autonomous driving (Kendall & Gal, 2017; NHTSA, 2017), disease monitor-
ing (Hendrycks & Gimpel, 2016), and fault detection (Hendrycks et al., 2019b). In these situations,
it is important for these systems to reliably detect abnormal inputs so that their occurrence can be
overseen by a human, or the system can proceed using a more conservative policy.

The widespread use of deep learning models within these autonomous systems have aggravated this
issue. Despite having high performance in many predictive tasks, deep networks tend to give high
confidence predictions on Out-of-Distribution (OoD) data (Goodfellow et al., 2015; Nguyen et al.,
2015). Moreover, commonly used OoD detection approaches are prone to errors and even assign
higher likelihoods to samples from other datasets (Lee et al., 2018; Hendrycks & Gimpel, 2016).

Unlike common machine learning tasks such as image classification, segmentation, and speech
recognition, there are currently no well established guidelines for designing architectures that can
accurately screen out OoD data and quantify its uncertainty. Such a gap in our knowledge makes
Neural Architecture Search (NAS) a promising option to explore the better design of uncertainty-
aware models (Elsken et al., 2018). NAS algorithms attempt to find an optimal neural network
architecture for a specific task. Existing efforts have primarily focused on searching for architec-
tures that perform well on image classification or segmentation. However, it is unclear whether
architecture components that are beneficial for image classification and segmentation models would
also lead to better uncertainty quantification and thereafter be effective for OoD detection. More-
over, previous work on deep uncertainty quantification shows that ensembles can help calibrate OoD
classifier based methods, as well as improve OoD detection performance of likelihood estimation
models (Lakshminarayanan et al., 2017; Choi & Jang, 2018). Because of this, instead of a single
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best performing architecture for uncertainty awareness, one might consider a distribution of well-
performing architectures.

Along this direction, designing an optimization objective which leads to uncertainty-aware mod-
els is also not straightforward. With no access to labels, unsupervised/self-supervised generative
models which maximize the likelihood of in-distribution data become the primary tools for uncer-
tainty quantification (Hendrycks et al., 2019a). However, these models counter-intuitively assign
high likelihoods to OoD data (Nalisnick et al., 2019a; Choi & Jang, 2018; Hendrycks et al., 2019a;
Shafaei et al.). Because of this, maximizing the log-likelihood is inadequate for OoD detection. On
the other hand, Choi & Jang (2018) proposed using the Widely Applicable Information Criterion
(WAIC) (Watanabe, 2013), a penalized log-likelihood score, as the OoD detection criterion. How-
ever, the score was approximated using an ensemble of models that was trained on maximizing the
likelihood and did not directly optimize the WAIC score.

To this end, we propose a novel Neural Architecture Distribution Search (NADS) framework to
identify common building blocks that naturally incorporate model uncertainty quantification and
compose good OoD detection models. NADS is an architecture search method designed to search for
a distribution of well-performing architectures, instead of a single best architecture by formulating
the architecture search problem as a stochastic optimization problem. Using NADS, we optimize
the WAIC score of the architecture distribution, a score that was shown to be robust towards model
uncertainty. Such an optimization problem with a stochastic objective over a probability distribution
of architectures is unamenable to traditional NAS optimization strategies. We make this optimization
problem tractable by taking advantage of weight sharing between different architectures, as well as
through a parameterization of the architecture distribution, which allows for a continuous relaxation
of the discrete search problem. Using the learned posterior architecture distribution, we construct a
Bayesian ensemble of deep models to perform OoD detection. Finally, we perform multiple OoD
detection experiments to show the efficacy of our proposed method.

2 BACKGROUND

2.1 NEURAL ARCHITECTURE SEARCH

Neural Architecture Search (NAS) algorithms aim to automatically discover an optimal neural net-
work architecture instead of using a hand-crafted one for a specific task. Previous work on NAS
has achieved successes in image classification (Pham et al., 2018), image segmentation (Liu et al.,
2019), object detection (Ghiasi et al., 2019), structured prediction (Chen et al., 2018), and generative
adversarial networks (Gong et al., 2019). However, there has been no NAS algorithm developed for
uncertainty quantificaton and OoD detection.

NAS consists of three components: the proxy task, the search space, and the optimization algo-
rithm. Prior work in specifying the search space either searches for an entire architecture directly, or
searches for small cells and arrange them in a pre-defined way. Optimization algorithms that have
been used for NAS include reinforcement learning (Baker et al., 2017; Zoph et al., 2018; Zhong
et al., 2018; Zoph & Le, 2016), Bayesian optimization (Jin et al., 2018), random search (Chen
et al., 2018), Monte Carlo tree search (Negrinho & Gordon, 2017), and gradient-based optimization
methods (Liu et al., 2018b; Ahmed & Torresani, 2018). To efficiently evaluate the performance
of discovered architectures and guide the search, the design of the proxy task is critical. Existing
proxy tasks include leveraging shared parameters (Pham et al., 2018), predicting performance using
a surrogate model (Liu et al., 2018a), and early stopping (Zoph et al., 2018; Chen et al., 2018).

To our best knowledge, all existing NAS algorithms seek a single best performing architecture. In
comparison, searching for a distribution of architectures allows us to analyze the common building
blocks that all of the candidate architectures have. Moreover, this technique can also complement
ensemble methods by creating a more diverse set of models for the ensemble decision, an important
ingredient for deep uncertainty quantification (Lakshminarayanan et al., 2017).

2.2 UNCERTAINTY QUANTIFICATION AND OUT-OF-DISTRIBUTION DETECTION

Prior work on uncertainty quantification and OoD detection for deep models can be divided into
model-dependent (Lakshminarayanan et al., 2017; Gal & Ghahramani, 2016; Liang et al., 2017),
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and model-independent techniques (Dinh et al., 2016; Germain et al., 2015; Oord et al., 2016).
Model-dependent techniques aim to yield confidence measures p(y|x) for a model’s prediction y
when given input data x. However, a limitation of model-dependent OoD detection is that they
may discard information regarding the data distribution p(x) when learning the task specific model
p(y|x). This could happen when certain features of the data are irrelevant for the predictive task,
causing information loss regarding the data distribution p(x). Moreover, existing methods to cal-
ibrate model uncertainty estimates assume access to OoD data during training (Lee et al., 2018;
Hendrycks et al., 2019b). Although the OoD data may not come from the testing distribution, this
assumes that the structure of OoD data is known ahead of time, which can be incorrect in settings
such as active/online learning where new training distributions are regularly encountered.

On the other hand, model-independent techniques seek to estimate the likelihood of the data distribu-
tion p(x). These techniques include Variational Autoencoders (VAEs) (Kingma & Welling, 2013),
generative adversarial networks (GANs) (Goodfellow et al., 2014), autoregressive models (Germain
et al., 2015; Oord et al., 2016), and invertible flow-based models (Dinh et al., 2016; Kingma &
Dhariwal, 2018). Among these techniques, invertible models offer exact computation of the data
likelihood, making them attractive for likelihood estimation. Moreover, they do not require OoD
samples during training, making them applicable to any OoD detection scenario. Thus in this paper,
we focus on searching for invertible flow-based architectures, though the presented techniques are
also applicable to other likelihood estimation models.

Along this direction, recent work has discovered that likelihood-based models can assign higher
likelihoods to OoD data compared to in-distribution data (Nalisnick et al., 2019a; Choi & Jang,
2018) (see Figure 13 for an example). One hypothesis for such a phenomenon is that most data
points lie within the typical set of a distribution, instead of the region of high likelihood (Nalisnick
et al., 2019b). Thus, Nalisnick et al. (2019b) recommend to estimate the entropy using multiple data
samples to screen out OoD data instead of using the likelihood. Other uncertainty quantification
formulations can also be related to entropy estimation (Choi & Jang, 2018; Lakshminarayanan et al.,
2017). However, it is not always realistic to test multiple data points in practical data streams, as
testing data often come one sample at a time and are never well-organized into in-distribution or
out-of-distribution groups.

With this in mind, model ensembling becomes a natural consideration to formulate entropy estima-
tion. Instead of averaging the entropy over multiple data points, model ensembles produce multiple
estimates of the data likelihood, thus “augmenting” one data point into as many data points as
needed to reliably estimate the entropy. However, care must be taken to ensure that the model en-
semble produces likelihood estimates that agree with one another on in-distribution data, while also
being diverse enough to discriminate OoD data likelihoods. In what follows, we propose NADS as
a method that can identify distributions of architectures for uncertainty quantification. Using a loss
function that accounts for the diversity of architectures within the distribution, NADS allows us to
construct an ensemble of models that can reliably detect OoD data.

3 NEURAL ARCHITECTURE DISTRIBUTION SEARCH (NADS)

Putting Neural Architecture Distribution Search (NADS) under a common NAS framework (Elsken
et al., 2018), we break down our search formulation into three main components: the proxy task, the
search space, and the optimization method. Specifying these components for NADS with the ulti-
mate goal of uncertainty quantification for OoD detection is not immediately obvious. For example,
naively using data likelihood maximization as a proxy task would run into the issue pointed out by
Nalisnick et al. (2019a), with models assigning higher likelihoods to OoD data. On the other hand,
the search space needs to be large enough to include a diverse range of architectures, yet still allow-
ing a search algorithm to traverse it efficiently. In the following sections, we motivate our decision
on these three choices and describe these components for NADS in detail.

3.1 PROXY TASK

The first component of NADS is the training objective that guides the neural architecture search.
Different from existing NAS methods, our aim is to derive an ensemble of deep models to im-
prove model uncertainty quantification and OoD detection. To this end, instead of searching for
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Figure 1: Search space of a single block in the architecture

architectures which maximize the likelihood of in-distribution data, which may cause our model to
incorrectly assign high likelihoods to OoD data, we instead seek architectures that can perform en-
tropy estimation by maximizing the Widely Applicable Information Criteria (WAIC) of the training
data. The WAIC score is a Bayesian adjusted metric to calculate the marginal likelihood (Watanabe,
2013). This metric has been shown by Choi & Jang (2018) to be robust towards the pitfall causing
likelihood estimation models to assign high likelihoods to OoD data. The score is defined as follows:

WAIC(x) = Eα∼p(α)[log pα(x)]− Vα∼p(α)[log pα(x)]. (1)

Here, E[·] and V[·] denote expectation and variance respectively, which are taken over all architec-
tures α sampled from the posterior architecture distribution p(α). Such a strategy captures model
uncertainty in a Bayesian fashion, improving OoD detection. Intuitively, minimizing the variance of
training data likelihoods allows its likelihood distribution to remain tight which, by proxy, minimizes
the overlap of in-distribution and out-of-distribution likelihoods, thus making them separable.

Under this objective function, we search for an optimal distribution of network architectures p(α) by
deriving the corresponding parameters that characterize p(α). Because the score requires aggregat-
ing the results from multiple architectures α, optimizing such a score using existing search methods
can be intractable, as they typically only consider a single architecture at a time. Later, we will show
how to circumvent this problem in our optimization formulation.

3.2 SEARCH SPACE

NADS constructs a layer-wise search space with a pre-defined macro-architecture, where each layer
can have a different architecture component. Such a search space has been studied by (Zoph & Le,
2016; Liu et al., 2018b; Real et al., 2019), where it shows to be both expressive and scalable/efficient.

The macro-architecture closely follows the Glow architecture presented in Kingma & Dhariwal
(2018). Here, each layer consists of an actnorm, an invertible 1 × 1 convolution, and an affine
coupling layer. Instead of pre-defining the affine coupling layer, we allow it to be optimized by our
architecture search. The search space can be viewed in Figure 1. Here, each operational block of
the affine coupling layer is selected from a list of candidate operations that include 3 × 3 average
pooling, 3 × 3 max pooling, skip-connections, 3 × 3 and 5 × 5 separable convolutions, 3 × 3 and
5× 5 dilated convolutions, identity, and zero. We choose this search space to answer the following
questions towards better architectures for OoD detection:
• What topology of connections between layers is best for uncertainty quantification? Traditional

likelihood estimation architectures focus only on feedforward connections without adding any
skip-connection structures. However, adding skip-connections may improve optimization speed
and stability.

• Are more features/filters better for OoD detection? More feature outputs of each layer should
lead to a more expressive model. However, if many of those features are redundant, it may slow
down learning, overfitting nuisances and resulting in sub-optimal models.

• Which operations are best for OoD detection? Intuitively, operations such as max/average pool-
ing should not be preferred, as they discard information of the original data point “too aggres-
sively”. However, this intuition remains to be confirmed.
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3.3 OPTIMIZATION

Having specified our proxy task and search space, we now describe our optimization method for
NADS. Several difficulties arise when attempting to optimize this setup. First, optimizing p(α), a
distribution over high-dimensional discrete random variables α, jointly with the network parameters
is intractable as, at worst, each network’s optimal parameters would need to be individually identi-
fied. Second, even if we relax the discrete search space, the objective function involves computing
an expectation and variance over all possible discrete architectures. To alleviate these problems, we
first introduce a continuous relaxation for the discrete search space, allowing us to approximately
optimize the discrete architectures through backpropagation and weight sharing between common
architecture blocks. We then approximate the stochastic objective by using Monte Carlo samples to
estimate the expectation and variance.

Specifically, let A denote our discrete architecture search space and α ∈ A be an architecture in
this space. Let lθ∗(α) be the loss function of architecture α with its parameters set to θ∗ such that it
satisfies θ∗ = argminθ l(θ|α) for some loss function l(·). We are interested in finding a distribution
pφ(α) parameterized by φ that minimizes the expected loss of an architecture α sampled from it.
We denote this loss function as L(φ) = Eα∼pφ(α)[lθ∗(α)]. For our NADS, this loss function is the
negative WAIC score of in-distribution data L(φ) = −

∑N
i=1 WAIC(xi).

Solving L(φ) for arbitrary parameterizations of pφ(α) can be intractable, as the inner loss function
lθ∗(α) involves searching for the optimal parameters θ∗ of a neural network architecture α. More-
over, the outer expectation causes backpropagation to be inapplicable due to the discrete random
architecture variable α. We adopt a tractable optimization paradigm to circumvent this problem
through a specific reparameterization of the architecture distribution pφ(α), allowing us to back-
propagate through the outer expectation and jointly optimize φ and θ.

For clarity of exposition, we first focus on sampling an architecture with a single hidden layer. In
this setting, we intend to find a probability vector φ = [φ1, . . . , φK ] with which we randomly pick
a single operation from a list of K different operations [o1, . . . , oK ]. Let b = [b1, . . . , bK ] denote
the random categorical indicator vector sampled from φ, where bi is 1 if the ith operation is chosen,
and zero otherwise. Note that b is equivalent to the discrete architecture variable α in this setting.
With this, we can write the random output y of the hidden layer given input x as

y =

K∑
i=1

bi · oi(x). (2)

To make optimization tractable, we relax the discrete mask b to be a continuous random variable b̃
using the Gumbel-Softmax reparameterization (Gumbel, 1954; Maddison et al., 2014) as follows:

b̃i =
exp((log(φi) + gi)/τ)∑k
j=1 exp((log(φi) + gi)/τ)

for i = 1, . . . ,K. (3)

Here, g1 . . . gk ∼ − log(− log(u)) where u ∼ Unif(0, 1), and τ is a temperature parameter. For low
values of τ , b̃ approaches a sample of a categorical random variable, recovering the original discrete
problem. While for high values, b̃will equally weigh theK operations (Jang et al., 2016). Using this,
we can compute backpropagation by approximating the gradient of the discrete architecture α with
the gradient of the continuously relaxed categorical random variable b̃, as∇θ,φα = ∇θ,φb ≈ ∇θ,φb̃.
With this backpropagation gradient defined, generalizing the above setting to architectures with
multiple layers simply involves recursively applying the above gradient relaxation to each layer.

With this formulation, we can gradually remove the continuous relaxation and sample discrete archi-
tectures by annealing the temperature parameter τ . With this, we are able to optimize the architecture
distribution pφ(α) and sample candidate architectures for further retraining, finetuning, or evalua-
tion. By samplingM architectures from the distribution, we are able to approximate the WAIC score
expectation and variance terms as:

−L(φ) =
N∑
i=1

WAIC(xi) ≈
N∑
i=1

[
M∑
j=1

log pαj (xi)−
( M∑
j=1

(log pαj (xi))
2−
( M∑
j=1

log pαj (xi)
)2)]

.

(4)
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Figure 2: Summary of our architecture search findings: the most likely architecture structure for
each block K found by NADS.

3.4 SEARCH RESULTS

We applied our architecture search on five datasets: CelebA (Liu et al.), CIFAR-10, CIFAR-100,
(Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and MNIST (LeCun). In all experiments,
we used the Adam optimizer with a fixed learning rate of 1 × 10−5 with a batch size of 4 for
10000 iterations. We approximate the WAIC score using M = 4 architecture samples, and set the
temperature parameter τ = 1.5 . The number of layers and latent dimensions is the same as in
the original Glow architecture (Kingma & Dhariwal, 2018), with 4 blocks and 32 flows per block.
Images were resized to 64× 64 as inputs to the model. With this setup, we found that we are able to
identify neural architectures in less than 1 GPU day.

Our findings are summarized in Figure 2, while more samples from our architecture search can be
seen in Appendix C. Observing the most likely architecture components found on all of the datasets,
a number of notable observations can be made:
• The first few layers have a simple feedforward structure, with either only a few convolutional

operations or average pooling operations. On the other hand, more complicated structures with
skip connections are preferred in the deeper layers of the network. We hypothesize that in the
first few layers, simple feature extractors are sufficient to represent the data well. Indeed, recent
work on analyzing neural networks for image data have shown that the first few layers have
filters that are very similar to SIFT features or wavelet bases (Zeiler & Fergus, 2014; Lowe,
1999).

• The max pooling operation is almost never selected by the architecture search. This confirms
our hypothesis that operations that discard information about the data is unsuitable for OoD
detection. However, to our surprise, average pooling is preferred in the first layers of the network.
We hypothesize that average pooling has a less severe effect in discarding information, as it can
be thought of as a convolutional filter with uniform weights.

• The deeper layers prefer a more complicated structure, with some components recovering the
skip connection structure of ResNets (He et al., 2016). We hypothesize that deeper layers may
require more skip connections in order to feed a strong signal for the first few layers. This
increases the speed and stability of training. Moreover, a larger number of features can be
extracted using the more complicated architecture.

Interestingly enough, we found that the architectures that we sample from our NADS perform well
in image generation without further retraining, as shown in Appendix D.

4 BAYESIAN MODEL ENSEMBLE OF NEURAL ARCHITECTURES

4.1 MODEL ENSEMBLE FORMULATION

Using the architectures sampled from our search, we create a Bayesian ensemble of models to es-
timate the WAIC score. Each model of our ensemble is weighted according to its probability, as
in Hoeting et al. (1999). The log-likelihood estimate as well as the variance of this model ensemble
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Figure 3: Effect of ensemble size to the distribution of WAIC scores estimated by model ensembles
trained on different datasets. Larger ensemble sizes causes the WAIC score likelihood estimate of
OoD data to be lower. Additional histograms for different ensemble sizes in Appendix F are with
higher resolution.
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(a) CIFAR100-CIFAR10
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Figure 4: ROC and PR curve comparison of the most challenging evaluation setups for our NADS
ensemble. Here, ‘Baseline’ denotes the method proposed by Hendrycks & Gimpel (2016). Subcap-
tions denote training-testing set pairs. Additional figures are provided in Appendix G.
is given as follows:

Eα∼pφ(α)[log p(x)] =
∑
α∈A

pφ(α) log pα(x) ≈
M∑
i=1

pφ(αi)∑M
j=1 pφ(αj)

log pαi(x) (5)

Vα∼pφ(α)[log p(x)] ≈
M∑
i=1

pφ(αi)∑M
j=1 pφ(αj)

(
V[log pαi(x)] + (log pαi(x))

2
)
− Eα∼pφ(α)[log p(x)]

2

(6)
Intuitively, we are weighing each member of the ensemble by their posterior architecture distribution
pφ(α), a measure of how likely each architecture is in optimizing the WAIC score. We note that for
our setup, V[log pαi(x)] is zero for each model in our ensemble; however, for models which do have
variance estimates, such as models that incorporate variational dropout (Gal et al., 2017; Kingma
et al., 2015; Gal & Ghahramani, 2016), this term may be nonzero. Using these estimates, we are
able to approximate the WAIC score in equation (1).

4.2 ENSEMBLE RESULTS

We trained our proposed method on 4 datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
SVHN (Netzer et al., 2011), and MNIST (LeCun). In all experiments, we randomly sampled an
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Table 1: OoD detection results on various training and testing experiments. We compared our
method with MSP (Hendrycks & Gimpel, 2016), and Outlier Exposure (OE) (Hendrycks et al.,
2019b).

Din Dout
FPR% at TPR 95% AUROC% AUPR%

Base OE Ours Base OE Ours Base OE Ours
M

N
IS

T not-MNIST 10.3 0.25 0.00 97.2 99.86 100 97.4 99.86 100
F-MNIST 61.1 0.99 0.00 88.8 99.83 100 90.8 99.83 100
K-MNIST 29.6 0.03 0.76 93.6 97.60 99.80 94.3 97.05 99.84

SV
H

N

Texture 33.9 1.04 0.07 89.3 99.75 99.26 86.8 99.09 97.75
Places365 22.2 0.02 0.00 92.8 99.99 99.99 99.7 99.99 99.99

LSUN 26.8 0.05 0.02 88.2 99.98 99.99 90.4 99.95 99.99
CIFAR10 23.2 3.11 0.37 91.1 99.26 99.92 91.9 97.88 99.83

C
IF

A
R

10

SVHN 30.5 8.41 17.05 89.5 98.20 97.65 94.9 97.97 99.07
Texture 39.8 14.9 0.25 87.7 96.7 99.81 79.8 94.39 99.86

Places365 36.0 19.07 0.00 88.1 95.41 100 99.5 95.32 100
LSUN 14.6 15.20 0.44 95.4 96.43 99.83 96.1 96.01 99.89

CIFAR100 33.1 26.59 36.36 88.7 92.93 91.23 87.7 92.13 91.60
Gaussian 6.3 0.7 0.00 97.7 99.6 100 93.6 94.3 100

Rademacher 6.9 0.5 0.00 96.9 99.8 100 89.7 97.4 100

C
IF

A
R

10
0

SVHN 46.2 42.9 45.92 82.7 86.9 94.35 91.3 80.21 96.01
Texture 74.3 55.97 0.42 72.6 84.23 99.76 60.1 75.76 99.81

Places365 63.2 57.77 0.012 76.2 82.65 99.99 98.9 81.47 99.99
LSUN 69.4 57.5 38.85 83.7 83.4 90.65 70.1 77.85 90.61

CIFAR10 62.5 59.96 34.41 75.8 77.53 92.83 74.0 72.82 91.93
Gaussian 29.3 12.1 0.00 86.5 95.7 100 66.1 71.1 100

Rademacher 59.4 17.1 0.00 51.7 93.0 100 32.7 56.9 100

ensemble of M = 5 models from the posterior architecture distribution pφ∗(α) found by NADS.
Although these models can sufficiently perform image synthesis without retraining as shown in
Appendix D, we observed that further retraining these architectures led to a significant improvement
in OoD detection. Because of this, we retrained each architecture on data likelihood maximization
for 150000 iterations using Adam with a learning rate of 1× 10−5.

We first show the effects of increasing the ensemble size in Figure 3 and Appendix F. Here, we can
see that increasing the ensemble size causes the OoD WAIC scores to decrease as their corresponding
histograms shift away from the training data WAIC scores, thus improving OoD detection perfor-
mance. Next, we compare our ensemble search method against a traditional ensembling method that
uses a single Glow architecture trained with multiple random initializations. As shown in Table 2,
we find that our method is superior compared to the traditional ensembling method when compared
on OoD detection using CIFAR-10 as the training distribution.

We then compared our NADS ensemble OoD detection method for screening out samples from
datasets that the original model was not trained on. For SVHN, we used the Texture, Places,
LSUN, and CIFAR-10 as the OoD dataset. For CIFAR-10 and CIFAR-100, we used the SVHN,
Texture, Places, LSUN, CIFAR-100 (CIFAR-10 for CIFAR-100) datasets, as well as the Gaussian
and Rademacher distributions as the OoD dataset. Finally, for MNIST, we used the not-MNIST,
F-MNIST, and K-MNIST datasets. We compared our method against a baseline method that uses
maximum softmax probability (MSP) (Hendrycks & Gimpel, 2016), as well as two popular OoD
detection methods: ODIN (Liang et al., 2017) and Outlier Exposure (OE) (Hendrycks et al., 2019b).
ODIN attempts to calibrate the uncertainty estimates of an existing model by reweighing its output
softmax score using a temperature parameter and through random perturbations of the input data.
For this, we use DenseNet as the base model as described in (Liang et al., 2017). On the other hand,
OE models are trained to minimize a loss regularized by an outlier exposure loss term, a loss term
that requires access to OoD samples.

As shown in Table 1 and Table 3, our method outperforms the baseline MSP and ODIN significantly
while performing better or comparably with OE, which requires OoD data during training, albeit not
from the testing distribution. We plot Receiver Operating Characteristic (ROC) and Precision-Recall
(PR) curves in Figure 4 and Appendix G for more comprehensive comparison. In particular, our
method consistently achieves high area under PR curve (AUPR%), showing that we are especially
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capable of screening out OoD data in settings where their occurrence is rare. Such a feature is
important in situations where anomalies are sparse, yet have disastrous consequences. Notably,
ODIN underperforms in screening out many OoD datasets, despite being able to reach the original
reported performance when testing on LSUN using a CIFAR10 trained model. This suggests that
ODIN may not be stable for use on different anomalous distributions.

5 CONCLUSION

Unlike NAS for common learning tasks, specifying a model and an objective to optimize for un-
certainty estimation and outlier detection is not straightforward. Moreover, using a single model
may not be sufficient to accurately quantify uncertainty and successfully screen out OoD data. We
developed a novel neural architecture distribution search (NADS) formulation to identify a random
ensemble of architectures that perform well on a given task. Instead of seeking to maximize the
likelihood of in-distribution data which may cause OoD samples to be mistakenly given a higher
likelihood, we developed a search algorithm to optimize the WAIC score, a Bayesian adjusted es-
timation of the data entropy. Using this formulation, we have identified several key features that
make up good uncertainty quantification architectures, namely a simple structure in the shallower
layers, use of information preserving operations, and a larger, more expressive structure with skip
connections for deeper layers to ensure optimization stability. Using the architecture distribution
learned by NADS, we then constructed an ensemble of models to estimate the data entropy using
the WAIC score. We demonstrated the superiority of our method to existing OoD detection methods
and showed that our method has highly competitive performance without requiring access to OoD
samples. Overall, NADS as a new uncertainty-aware architecture search strategy enables model un-
certainty quantification that is critical for more robust and generalizable deep learning, a crucial step
in safely applying deep learning to healthcare, autonomous driving, and disaster response.
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A FIXED MODEL ABLATION STUDY

Table 2: OoD detection results on various training and testing experiments comparing our method
with a baseline ensembling method that uses a fixed architecture trained multiple times with different
random initializations.

Din Dout
FPR% at TPR 95% AUROC% AUPR%

Base Ensemble Ours Base Ensemble Ours Base Ensemble Ours

C
IF

A
R

10

SVHN 50.07 17.05 93.48 97.65 95.98 99.07
Texture 6.22 0.25 97.68 99.81 97.44 99.86

Places365 1.03 0.00 99.59 100 99.97 100
LSUN 34.35 0.44 91.55 99.83 92.15 99.89

CIFAR100 65.13 36.36 78.44 91.23 79.44 91.60
Gaussian 0.00 0.00 100 100 100 100

Rademacher 0.00 0.00 100 100 100 100

B OOD DETECTION PERFORMANCE COMPARISON WITH ODIN

Table 3: OoD detection results on various training and testing experiments comparing our method
with ODIN (Liang et al., 2017).

Din Dout
FPR% at TPR 95% AUROC% AUPR%
ODIN Ours ODIN Ours ODIN Ours

M
N

IS
T not-MNIST 8.7 0.00 98.2 100 98.0 100

F-MNIST 65 0.00 88.6 100 90.5 100
K-MNIST 36.5 0.76 94.0 99.80 94.6 99.84

SV
H

N

Texture 33.9 0.07 92.4 99.26 88.2 97.75
Places365 22.2 0.00 94.9 99.99 99.8 99.99

LSUN 26.8 0.02 93.5 99.99 93.1 99.99
CIFAR10 21.6 0.37 94.8 99.92 94.4 99.83

C
IF

A
R

10

SVHN 36.5 17.05 89.7 97.65 95.6 99.07
Texture 76.2 0.25 81.4 99.81 76.7 99.86

Places365 44.0 0.00 89.0 100 99.6 100
LSUN 3.9 0.44 99.2 99.83 99.2 99.89

CIFAR100 45.4 36.36 88.3 91.23 88.5 91.60
Gaussian 0.1 0.00 100 100 99.9 100

Rademacher 0.3 0.00 99.9 100 99.8 100

C
IF

A
R

10
0

SVHN 32.8 45.92 90.3 94.35 95.3 96.01
Texture 78.9 0.42 75.7 99.76 64.5 99.81

Places365 63.3 0.012 79.0 99.99 99.1 99.99
LSUN 17.6 38.85 96.8 90.65 96.5 90.61

CIFAR10 78.2 34.41 70.6 92.83 69.7 91.93
Gaussian 1.3 0.00 99.5 100 97.8 100

Rademacher 13.8 0.00 92.7 100 75.0 100
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C ADDITIONAL SAMPLE ARCHITECTURES
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Figure 5: Maximum likelihood architectures inferred by our search algorithm on CelebA. Shown
are two samples taken from each block.
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Figure 6: Maximum likelihood architectures inferred by our search algorithm on MNIST. Shown
are two samples taken from each block.
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Figure 7: Maximum likelihood architectures inferred by our search algorithm on SVHN. Shown are
two samples taken from each block.
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Figure 8: Maximum likelihood architectures inferred by our search algorithm on CIFAR-10. Shown
are two samples taken from each block.
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D IMAGE GENERATION SAMPLES

Figure 9: Samples taken from randomly sampled NADS architectures searched on CelebA. Images
were not cherry-picked and the architectures were sampled without further retraining.

Figure 10: Samples taken from randomly sampled NADS architectures searched on MNIST. Images
were not cherry-picked and the architectures were sampled without further retraining.

Figure 11: Samples taken from randomly sampled NADS architectures searched on SVHN. Images
were not cherry-picked and the architectures were sampled without further retraining.
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Figure 12: Samples taken from randomly sampled NADS architectures searched on CIFAR-10.
Images were not cherry-picked and the architectures were sampled without further retraining.

E LIKELIHOOD ESTIMATION MODELS ASSIGN HIGHER LIKELIHOOD TO
OOD DATA
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Figure 13: Likelihood distributions of different datasets evaluated on a Glow model trained on
CelebA. The model assigns higher likelihood to OoD samples from CIFAR-10 and SVHN.
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F EFFECT OF ENSEMBLE SIZE

M=1 M=2

M=3 M=4

M=5

Figure 14: Effect of ensemble size to the distribution of WAIC scores estimated by model ensembles
trained on MNIST.
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M=1 M=2

M=3 M=4

M=5

Figure 15: Effect of ensemble size to the distribution of WAIC scores estimated by model ensembles
trained on SVHN.
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M=1 M=2

M=3 M=4

M=5

Figure 16: Effect of ensemble size to the distribution of WAIC scores estimated by model ensembles
trained on CIFAR-10.
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G ADDITIONAL ROC AND PRECISION-RECALL CURVES
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Figure 17: ROC and PR curve comparison of methods trained on CIFAR-10
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Figure 18: ROC and PR curve comparison of methods trained on SVHN
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Figure 19: ROC and PR curve comparison of methods trained on CIFAR-100
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Figure 20: ROC and PR curve comparison of methods trained on MNIST
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