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ABSTRACT

Identifying acoustic events from a continuously streaming audio source is of inter-
est for many applications including environmental monitoring for basic research.
In this scenario neither different event classes are known nor what distinguishes
one class from another. Therefore, an unsupervised feature learning method for
exploration of audio data is presented in this paper. It incorporates the two follow-
ing novel contributions: First, an audio frame predictor based on a Convolutional
LSTM autoencoder is demonstrated, which is used for unsupervised feature ex-
traction. Second, a training method for autoencoders is presented, which leads
to distinct features by amplifying event similarities. In comparison to standard
approaches, the features extracted from the audio frame predictor trained with the
novel approach show 13 % better results when used with a classifier and 36 %
better results when used for clustering.

1 INTRODUCTION

The advance of low-power mobile sensors leads to new applications for real-time environmental
monitoring, which include acoustic event detection (AED) systems using wireless sensor networks,
e.g. for vehicle classification (Duarte & Hu (2004)). Acoustic events can be effectively classified
by convolutional neural networks (CNN) as shown by Espi et al. (2015), if a large labeled training
dataset is available (Hershey et al. (2016)). However, for some application scenarios, e.g. in micro-
seismic acoustic emission monitoring (Girard et al. (2012)), the advantages of mentioned CNNs are
diminished due to the lack of ground truth. In this scenario distinguishing between relevant events in
an audio stream and non-relevant events is non-trivial, since the domain-specific categories of these
acoustic events are not known a priori. Unsupervised feature learning provides a mean to gather
useful information from such unexplored datasets, which has been shown for video (Srivastava et al.
(2015)) and audio (Honglak Lee (2009)) analysis. Recently, convolutional long short-term memory
(ConvLSTM) layers have proven to be effective as feature extractors for time series data (Xingjian
et al. (2015)) and for unsupervised video analysis (Finn et al. (2016)). Except for speech recogni-
tion (Zhang et al. (2016)), ConvLSTM layers have not been used for audio analysis, despite their
advantages for time series data.

As a consequence, in this paper a novel audio frame predictor (AFP) using ConvLSTM layers is
presented, which is used to learn representative features of acoustic events. Second a novel approach
to train the AFP in regard to generating and extracting distinct features is presented which diversifies
the features based on inter-sample similarities.

2 APPROACH

An autoencoder encodes an arbitrary input signal into a compressed intermediate representation
(code) from which it tries to recreate the original signal (Hinton & Salakhutdinov (2006)). In this
section it is assumed that an autoencoder using convolutional layers, as depicted in Figure 1, can be
trained such that each channel of the code contains information about a specific feature of acoustic
events. Then, also the mean of this channel would define an acoustic feature and per-channel average
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Figure 1: Model of the audio frame predictor, which is trained to predict the next frame of the mel-
spectrogram input. Multiple ConvLSTM layers are used which differ by number of channels (e.g.
32 c) and down-/upsampling (e.g. 2 ↓ ). Per-channel average pooling reduces the code to a lower
dimensional feature vector on which a pairwise loss is applied. For evaluation a simple classifier,
consisting of a fully connected (FC) layer, classifies events based on the extracted features.

pooling can be used to reduce the K-channel code to a K-dimensional vector (feature vector). A
softmax function transforms this vector into a categorical distribution (from here on called feature
distribution)

In this work, similarities between two audio samples are characterized by the statistical distance
between their feature distributions, a concept similar to Hsu & Kira (2015). Since training of a
neural network is typically done in batches of size N , a pairwise loss function L(n,m) for the
features output can be defined as:

L(n,m) =

{
KL(B(n) || B(m)), if fn,m < threshold
max(0,margin −KL(B(n) || B(m))), else

(1)

fn,m =
KL(B(n) || B(m))

1
N2

∑N−1
o=0

∑N−1
p=0 KL(B(o) || B(p))

(2)

where B(n) defines the feature distribution of the n-th element of the batch. KL is the Kullback-
Leibler divergence and the two parameters threshold and margin can be adjusted based on the ac-
tual data. fn,m is a measure for the similarity of two elements of the batch. Therefore threshold-
ing fn,m means that the loss L(n,m) penalizes events based on similarity, for similar events the
feature distribution gets more confined while dissimilar events are shifted away from each other.
Thus, no (weak) labels are required in contrast to Hsu & Kira (2015). The overall loss per batch is∑N−1

n=0

∑N−1
m=0 L(n,m), which can be backpropagated through the network and affects the weights

of the encoder. The total loss for the encoder weights is the sum of the autoencoder loss and the
pairwise loss. The autoencoder enforces a meaningful representation while L(n,m) amplifies simi-
larities and dissimilarities. Thus, this method optimizes for inter-sample similarities in comparison
to the method from Xie et al. (2016), which optimizes for fixed cluster centers.

For the actual implementation an autoencoder is used as an AFP, which is illustrated in Figure 1.
Data frames of length Tf = 2.56 s are extracted from the audio waveform with a hopsize of Tf/4
and transformed into a mel-spectrogram. The AFP considers three consecutive frames and predicts
the following frame. Each ConvLSTM layer uses a 3x3 filter kernel and is followed by a ReLu
activation and batch normalization. The last convolutional layer (3D convolution) applies a 3x3x1
kernel with a linear activation function. Keras (Chollet (2015)) and Tensorflow (Martn Abadi et al.
(2015)) are used for the implementation.

The training with batchsize N = 16 is done in two steps. First, only the AFP is trained by minimiz-
ing the mean squared error (MSE) between the frames output of the AFP and the true next frame,
initializing the weights of the whole system. After training the AFP for 6 epochs the system is
trained for another 3 epochs by minimizing the above mentioned pairwise loss at the features output
and the MSE at the frames output, simultaneously. In the next section a system trained with this
two-step procedure (PairLoss) will be compared against a system trained only by minimizing the
MSE at the frames output for 9 epochs (w/o PairLoss).
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3 EVALUATION

An acoustic event dataset (AED) from Takahashi et al. (2016) was used for evaluation. In Figure 2
eight categories are listed which were chosen to have an approximate uniformly distributed number
of samples. The dataset has been partitioned into training (75%) and test set (25%). The number of
code channels has been set to K = 128 to maintain an accurate prediction and to provide enough
features to explain the data.

Figure 2: t-SNE embedding (Maaten & Hinton (2008)) of the feature distributions for a system
trained without PairLoss (a) and with PairLoss (b). Accumulated feature distributions for all training
samples of the category guitar and helicopter for a system trained without PairLoss (c) and with
PairLoss (d). Interactive version at: http://people.ee.ethz.ch/matthmey/

Table 1: Test accuracies for classifier and clustering algorithm. Note: The reference classifier uses
supervised training for all weights, the others only for the fully connected layer

Classifier Clustering
Reference w/o PairLoss w/ PairLoss w/o PairLoss w/ PairLoss
(90.85 %) 69.59 % 78.94 % 38.32 % 52.23 %

First, it is shown that the feature vectors contain useful information by learning a mapping from the
128-dimensonal feature vectors to the 8 categories. A simple classifier, consisting of only one fully
connected layer, as depicted in Figure 1, is trained by minimizing the cross-entropy loss between the
classifier’s output and the ground-truth labels. The weights of the encoder are fixed. The PairLoss
system outperforms the one without PairLoss on the test set, which can be attributed to the different
feature distributions, as illustrated in Figure 2 (c) and (d). The plot displays the accumulated feature
distributions for two event categories. In contrast to standard training, it becomes apparent that for
PairLoss training two different event categories show distinct patterns for their feature distributions,
which means that only a few channels contain event information. It is also shown that using a system
trained with PairLoss shows better clustering accuracies than a system trained without, as presented
in Table 1. Although the system can potentially be expanded to perform clustering itself, for this
evaluation only k-means clustering (8 clusters) is applied to the t-SNE embedding of the feature
distributions. The best cluster assignment is chosen using the Hungarian algorithm (Kuhn (1955)).

In this work a novel approach to train autoencoders has been used in a novel unsupervised feature
extraction system for audio data. It has been shown experimentally that training with the new method
generates distinct features which increases classification accuracy by 13 % and clustering accuracy
by 36 %.
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