
Under review as a conference paper at ICLR 2020

GROSS DECOMPOSITION: GROUP-SIZE SERIES DE-
COMPOSITION FOR WHOLE SEARCH-SPACE TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Group-size Series (GroSS) decomposition, a mathematical formula-
tion of tensor factorisation into a series of approximations of increasing rank
terms. GroSS allows for dynamic and differentiable selection of factorisation
rank, which is analogous to a grouped convolution. Therefore, to the best of our
knowledge, GroSS is the first method to simultaneously train differing numbers of
groups within a single layer, as well as all possible combinations between layers.
In doing so, GroSS trains an entire grouped convolution architecture search-space
concurrently. We demonstrate this with a proof-of-concept exhaustive architecure
search with a performance objective. GroSS represents a significant step towards
liberating network architecture search from the burden of training and finetuning.

1 INTRODUCTION

In recent years, there has been a flurry of Deep neural networks (DNNs) producing remarkable
results on a broad variety of tasks. Generally, these methods have required careful network design,
often relying on domain knowledge to design a structure which can encapsulate the task at hand.
Neural Architecture Search (NAS) has provided an alternative to hand designed networks, allowing
for the search and even direct optimisation of the network’s structure.

The search space for architectures is often vast, with potentially limitless design choices. Further-
more, each configuration must undergo some training or finetuning for its efficacy to be determined.
This has lead to the development of methods which lump multiple design parameters together, to
reduce the search space in a principled manner (Tan & Le, 2019). As well as creating the need for
sophisticated search algorithms (Liu et al., 2018; Wu et al., 2019), which can more quickly con-
verge to an improved design. Both techniques reduce the number of search iterations and ultimately
reduce the number of required training/finetuning stages.

Architecture search has so far, to the best of our knowledge, avoided exploring grouped convolution
design. However, grouped convolution network design presents itself as an ideal candidate for archi-
tecture search. It has been been widely used particularly in some prevalent networks. ResNeXt (Xie
et al., 2017) used grouped convolution for improved accuracy over the analogous ResNets (He et al.,
2016). On the other hand, MobileNet (Howard et al., 2017) and various others (Zhang et al., 2018;
Sandler et al., 2018) have utilised grouped convolutions in the depthwise case in a ResNet-style for
extremely low-cost inference. With these architectures, grouped convolution has proven to be a valu-
able design tool for high-performance and low-cost design alike. Applying it for these contrasting
performance profiles requires an intuition, which so far has remained relatively unexplored.

However, grouped convolution design implications have remained relatively unexplored. Decompo-
sition of networks is time consuming. Also, there isn’t necessarily a heuristic or intuition for how
combinations of grouped convolutions with varying numbers of groups interact in a network. We
tackle this in this work with the introduction of a Group-size Series (GroSS) decomposition. GroSS
allows us to train the entire search space of architectures simultaneously. In doing so, we shift the
expense of architecture search with respect to group-size away from decomposition and training, and
towards cheaper test-time sampling. This allows for the exploration of possible configurations, while
significantly reducing the need for imparting bias on the group design hyperparameter selection.

The contributions of this paper can be summarised as follows:

1



Under review as a conference paper at ICLR 2020

1. We present GroSS Decomposition – a novel formulation of tensor decomposition as a series
of rank approximations. This provides a mathematical basis for grouped convolution as a
series of increasing rank terms.

2. GroSS provides the apparatus for differentiably switching between grouped convolution
ranks. Therefore, to the best of our knowledge, it is the first simultaneous training of
differing numbers of groups within a single layer, as well as the all possible configurations
between layers. Effectively training an entire architecture search space at once.

3. We explore this concurrently trained architecture space with a proof-of-concept exhaustive
search. Illustrating the efficacy of the GroSS, as well as taking a step towards removing the
train burden from architecture search.

2 RELATED WORK

Grouped convolution has had a wide impact on neural network architectures, particularly due to
its efficiency. It was first introduced in AlexNet (Krizhevsky et al., 2012) as an aid for the single
network to be trained over multiple GPUs. Since then, it has had a wide impact on DNN architec-
ture design. ResNeXt (Xie et al., 2017) used grouped convolutions synonymously with concept of
cardinality, ultimately exploiting the efficiency of grouped convolutions for high-accuracy network
design. The reduced complexity of grouped convolution allowed for ResNeXt to incorporate deeper
layers within the ResNet-analogous residual blocks (He et al., 2016). In all, this allowed higher
accuracy with a similar inference cost as an equivalent ResNet. The efficiency of grouped convolu-
tion has also lead to several low-cost network designs. MobileNet (Howard et al., 2017) utilised a
ResNet-like bottleneck design with depthwise convolutions–a special case of grouped convolutions
where the number of groups is set to equal the number of in channels–for an extremely efficient
network with mobile applications in mind. ShuffleNet (Zhang et al., 2018) was also based on a
depthwise bottleneck, however, pointwise layers were also made grouped convolutions.

Previous works (Jaderberg et al., 2014; Denton et al., 2014; Lebedev et al., 2014; Vanhoucke et al.,
2011) have applied low-rank approximation of convolution for network compression and accelera-
tion. Block Term Decomposition (BTD) (De Lathauwer, 2008) has recently been applied to the task
of network factorisation (Chen et al., 2018), where it was shown that the BTD factorisation of a con-
volutional weight was equivalent to a grouped convolution within a bottleneck architecture. Wang
et al. (2018) applied this equivalency for network acceleration. Since decomposition is costly, these
methods have relied on heuristics and intuition to set hyperparameters such as the rank of successive
layers within the decomposition. In this paper, we present a method for decomposition which allows
for exploration of the decomposition hyperparameters and all the combinations.

Existing architecture search methods have overwhelmingly favoured reinforcement learning. Exam-
ples of this include, but are not limited to, NASNet (Zoph et al., 2018), MNasNet (Tan et al., 2019),
ReLeq-Net (Elthakeb et al., 2018). In broad terms, these methods all set a baseline structure, which
is manipulated by a separate controller. The controller optimises the structure through and objective
based on network performance. There has also been work in differentiable architecture search (Wu
et al., 2019; Liu et al., 2018) which makes the network architecture manipulations themselves dif-
ferentiable. In addition, work such as (Tan & Le, 2019) aims to limit the network scaling within a
performance envelope to a single parameter.

These methods all have a commonality: the cost of re-training or finetuning at each stage motivates
the recovery of the optimal architecture in as few training steps as possible, whether this is achieved
through a trained controller, direct optimisation or significantly reducing the search space. In this
work, however, we produce a method where the entire space is trained at once and therefore shift
the burden of architecture search away from training.

3 METHOD

In this section, we will first introduce Block Term Decomposition (BTD) and detail how its factori-
sation can be applied to a convolutional layer. After that, we will introduce GroSS decomposition,
where we formulate a unification of a series of ranked decompositions so that they can dynami-
cally and differentially be combined. We detail the training strategy for training the whole series at

2



Under review as a conference paper at ICLR 2020

once. We describe our response reconstruction formulation to improve the approximation provided
by factorisation.

3.1 GENERAL BLOCK TERM DECOMPOSITION

Block Term Decomposition (BTD) (De Lathauwer, 2008) aims to factorise a tensor into the sum of
multiple low rank-Tuckers (Tucker, 1966). That is, given an N th order tensor X ∈ Rd1×d2×...×dN ,
BTD factorises X into the sum of rank (d′1, d

′
2, ..., d

′
N ) terms:

X =

R∑
r=1

Gr ×1 A(1)
r ×2 A(2)

r ×3 ...×N A(N)
r

where

{
G ∈ Rd′1×d

′
2×...×d

′
N

A(n)
r ∈ Rdn×d′n , n ∈ {1, ..., N}

(1)

In the above, G is known as the core and we will refer to A as factors. We use ×n to represent the
mode-n product (De Lathauwer, 2008).

3.2 SINGLE CONVOLUTION TO BOTTLENECK WITH BTD

The weights of a convolution can be formulated as a 4th order tensor X ∈ Rd1×d2×d3×d4 , where d1
and d2 represent the number of input and output channels, and with d3 and d4 being the spatial size
of the filter kernel.

For convenience and clarity, we will simplify notation from the most general BTD to the 4D case as
follows: X ∈ Rt×u×v×w, with B = A(1) and C = A(2). Typically the spatial extent of each filter is
small and thus we only factorise along t and u, so that BTD for convolutional weights is expressed
as follows:

X =

R∑
r=1

Gr ×1 Br ×2 Cr

where


G ∈ Rt′×u′×v×w

B ∈ Rt×t′

C ∈ Ru×u′

(2)

It can be shown that this factorisation of the convolutional weights forms a three-layer, bottleneck-
style structure (Yunpeng et al., 2017): a pointwise (1×1) convolution P ∈ Rt×t′×1×1, formed from
factor C; followed by a grouped convolution R ∈ Ru′×t′×v×w, formed from core G; and finally
another pointwise convolution Q ∈ Ru′×u×1×1, formed from factor B. With careful selection of the
BTD parameters, the bottleneck approximation can be applied to any standard convolutional layer.

R = Number of groups in the grouped convolution
t = Number of input channels
u = Number of output channels

ot′, u′ =
t

R
= Group-size

(3)

In Table 1, we detail how the dimensions of the bottleneck architecture compared to its correspond-
ing convolutional layer. We also include how properties such as stride, padding and bias are applied
within the bottleneck for equivalency with the original layer. It is worth noting that we often refer to
the quantities t′ and u′ as the group-size. This quantity determines the number of channels present
in each group and is equivalent to the rank of the decomposition.

3.3 GROUP-SIZE SERIES DECOMPOSITION

Group-size Series (GroSS) decomposition unifies multiple ranks of BTD factorisations. This is
achieved by defining each successive factorisation relative to the lower order ranks. Thus we en-
sure that higher rank decompositions only contain information that was missed by the lower order

3



Under review as a conference paper at ICLR 2020

Filter Size Cin Cout Groups Bias Stride Padding
Original d3 × d4 d1 d2 1 B S P

1× 1 d1 d1 1 - S P
Decomposed d3 × d4 d1 d1 R - 1 0

1× 1 d1 d2 1 B 1 0

Table 1: Convolution to grouped bottleneck. We detail how the convolutional parameters can be
applied to the bottleneck when factorising using BTD for equivalency.

approximations. Therefore the ith approximation of X is given as follows:

X =

Ri∑
r=1

[(gr)i + (G′r)i−1]×1 [(br)i + (B′r)i−1]×2 [(cr)i + (C′r)i−1]

where


g, G′(i−1) ∈ Rt′i×u

′
i×v×w

b, B′(i−1) ∈ Rt×t′i

c, C′(i−1) ∈ Ru×u′i

(4)

where g, b and c are the additional information from increased rank of approximation. G′, B′ and
C′ to represent total approximation from lower rank approximations in the form of cores and factors.
However, the core or factor must be recomputed so that the dimensions match the ranks requiredRi,
which is not a trivial manipulation.

Weights for a grouped convolution can be “expanded”: the expanded weight from a convolution
with group-size g can be used in a convolution with group-size h, where h > g, giving identical
outputs:

Wg ∗g X ≡ Ψg→h(Wg) ∗h X (5)

where Ψg→h() is the expansion function, Wg is the weight for a grouped convolution, ∗g refers to
convolution with group-size g, and X is the feature map on which the convolution is applied. This
expansion allows us to conveniently reformulate the GroSS decomposition in terms of the successive
convolutional weights obtained from BTD, rather than within the cores and factors directly. More
specifically, we define the bottleneck weights for the Nth order GroSS decomposition with group-
sizes, S = {s1, ..., sN}, as follows:

RN = Ψs1→sN (R1) +

N∑
i=2

Ψsi→sN (ri)

PN = P1 +

N∑
i=2

pi, QN = Q1 +

N∑
i=2

qi

(6)

R1, P1 and Q1 represent the weights obtained from the lowest rank decomposition present in the
series. ri, pi and qi represent the additional information that the ith rank decomposition contribute
to the bottleneck approximation:

pi = Pi − P(i−1), ri = Ri −Ψs(i−1)→si(R(i−1)), qi = Qi −Q(i−1). (7)

This formulation involving only manipulation of the convolutional weights is exactly equivalent to
forming the bottleneck components ri, pi and qi from gi, bi and ci, as in the general BTD to
bottleneck case.

Further, grouped convolution weight expansion, Ψ(), enables us to dynamically, and differentiably,
change group-size of a convolution. In itself, this is not particularly useful; a convolution with
a larger group-size is requires more operations and more memory, while yielding identical out-
puts. However, it allows for direct interaction between different ranked network decomposition and,
therefore, the representation of one rank by the combination of lower ranks. Thus, GroSS treats the
decomposition of the original convolution as the sum of successive order approximations, with each
order contributing additional representation power.

4



Under review as a conference paper at ICLR 2020

3.3.1 TRAINING GROSS SIMULTANEOUSLY

The expression of a group-size si decomposition as the combination of lower rank decompositions
is useful because it enables the group-size to be dynamically changed during training. The expan-
sion and summation of convolutional weights is differentiable and so training at a high rank, also
optimises the lower rank approximations simultaneously. To the best of our knowledge GroSS is the
first method that allows for the simultaneous training of varying group-size convolutions.

We leverage the series form of the factorisation during training, by randomly sampling a group-size
for each decomposed layer at each iteration. We sample a group-size si for each decomposed layer
from the probability distribution:

p(si) =
exp(−αi)∑N
i=1 exp(−αi)

(8)

where si refers to the ith smallest decomposed group-size,N denotes the number of available group-
size and α is the sampling temperature. When α = 0, p(si) is a uniform distribution. By increasing
the sampling temperature α, we update the weights of lower group-sizes more aggressively, and
implicitly enforce the lower order approximation to carries more of the signal of the approximation.
We set the default sampling temperature to α = 4 and provide experimental evaluation to justify
this as an appropriate choice.

3.3.2 RESPONSE RECONSTRUCTION

The aim of factorising a convolutional layer is to ultimately mimic its performance on a particular
task. However, the objective of the factorisation itself is to minimise the error between the origi-
nal tensor and the approximation with respect to the Frobenius norm. While this goes some way
to meeting the overall goal of similar performance, small errors in approximation can lead to dras-
tic decreases in performance. Therefore, we encourage the decomposed layer to reconstruct the
response of the original layer.

We follow the proposal of Jaderberg et al. (2014) were minimising the response approximation error
is minimised through backpropagation. This is done by freezing all the standard (not decomposed)
layers, and penalising the difference between the activation A′ of decomposed layers and activation
A of the original layer using the loss:

LRR =
‖A′ −A‖2
‖A‖2

(9)

Loss for response reconstruction is the Frobenius Norm of differences between activation of decom-
posed layer and the target activation, normalised by the Frobenius Norm of the target activation.

4 EXPERIMENTAL SETUP

In this section, we list the setup for our experimental evaluation. We first detail the dataset on
which evaluation is conducted. Next, we describe the network architecture on which perform GroSS
decomposition. Finally, we list the procedure for the decomposition, response reconstruction and
finetuning.

4.1 DATASET

We perform our experimental evalutation on CIFAR-10 (Krizhevsky et al., 2014). It is a dataset
consisting of 10 classes. The size of each image is 32× 32. In total there are 60,000 images, which
are split into 50,000 train images and 10,000 testing images. We further divide the training set into
a training and validation splits with 40,000 and 10,000 images, respectively.

4.2 MODEL

We test on a 4-layer network with four convolutional layers, with channel dimensions of 32, 32, 64
and 64, followed by two fully-connected layers of size 256 and 10. The convolution layers all have

5



Under review as a conference paper at ICLR 2020

kernel dimensions 3×3, a bias term, stride of 1 and padding of 1. Each convolution is followed by a
ReLU layer and 2×2 max-pooling. The first fully-connected layer has a ReLU applied to its output.
Further, we use a dropout layer with dropout probability of 0.5 between the two fully-connected
layers.

Convolutional weights in the network are initialised with the He initialisation (He et al., 2015) in the
“fan out” mode with a ReLU non-linearity. The weights of the fully-connected layers are initialised
with a zero-mean, 0.01-variance normal distribution. All bias terms in the network are initialised to
0.

The network is trained from scratch on CIFAR-10 training split for 100 epochs using stochastic
gradient descent (SGD). We adopt a initial learning rate of 0.1 and momentum of 0.9. The learning
rate is decayed by a factor of 0.1 after 50 and 75 epochs. We apply the following data normalisation
and augmentation strategy to the training images: images are padded with 2 pixels and a random 32×
32 crop is taken from the padded image; there is probability of 0.5 that the image will be horizontally
flipped; all images are normalised to a mean of (0.5, 0.5, 0.5) with variance (0.225, 0.225, 0.225).
We train the network 5 times and list the results of training in Table 2.

We select the full network with median accuracy and decompose all convolutional layers but the
first. Group-sizes are set to all powers of 2 which do not exceed the number of in channels for
that respective layer. Our formulation of GroSS decomposition as a series of convolutional weight
differences (expanded weights in the case of the grouped convolution) means that we are able to use
an off-the-shelf BTD framework (Kossaifi et al., 2019). For each group-size, we set the stopping
criteria for BTD identically: when the decrease in approximation error between steps is below 1e−6,
or 5e5 steps have elapsed. We define approximation error as the Frobenius norm between the original
tensor and the product of the BTD cores and factors divided by the Frobenius Norm of the original
tensor. Again, we perform this decomposition 5 times.

4.3 RESPONSE RECONSTRUCTION

Once decomposed, we perform response reconstruction on the decomposed layers simultaneously.
The response reconstruction training lasts 30 epochs, which we found to be sufficient for conver-
gence. Again, the response reconstruction stage is optimised through SGD with an initial learning
rate was set to 0.0001, and momentum of 0.9. We decay the learning rate by a factor of 0.1 after 20
epochs. Inputs come from the CIFAR-10 train split. Target responses are generated by the full net-
work. All parameters in the network aside from the decomposed pointwise layers and the grouped
layers are frozen. The biases for the decomposed layers are also frozen.

4.4 FINETUNING

After we have performed response reconstruction on the factorised network, we then fine tune on
the classification task. We tune for 150 epochs with an initial learning rate of 0.0001 and momentum
0.9. We decay the learning rate by a factor of 0.1 after both 80 and 120 epochs. Data augmentation
remains the same as with training the full network. Once more, all network parameters are frozen
aside from the GroSS decomposition weights.

4.5 BASELINE: FIXED CONFIGURATIONS

In addition to GroSS, we decompose the original network into 4 fixed configurations. These con-
figurations simple with a single group-size selected for each decomposed layer: 1, 4, 16, and 32.
They represent a baseline as a standard BTD network compression method, where these would be
reasonable group-sizes with which to decompose the network. Importantly, they span almost the
entirety of the possible performance envelopes available to our network: from the smallest depth-
wise compression, to nearly the largest. The accuracy and cost of these configurations is detailed in
Table 2

We perform response reconstruction, followed by finetuning on each of these fixed configurations
almost identically to the method outlined for our GroSS decomposition. However, the initial learning
rates for response reconstruction and finetuning is set to 0.01 and 0.001, respectively. Also, the
finetuning for these fixed configurations lasts 100 epochs, with the learning rate scaled by a factor

6



Under review as a conference paper at ICLR 2020

Network Median Mean (std) MACs (million)
Full 83.88 83.99 (0.53) 4.42

Fixed - 32 83.70 83.69 (0.14) 4.28
Fixed - 16 82.84 82.83 (0.10) 2.66
Fixed - 4 82.09 82.06 (0.07) 1.44
Fixed - 1 81.76 81.74 (0.07) 1.14

Table 2: Full network and fixed configuration accuracy and inference cost.

Configuration MACs (million) Fixed GroSS After Train ∆ wrt Fixed
16 16 16 2.66 82.83 (0.10) 81.14 - -
2 32 64 2.36 - 81.72 83.84 (0.12) ↑ 1.00
8 16 64 2.51 - 81.60 83.83 (0.13) ↑ 0.99
4 4 4 1.44 82.06 (0.07) 80.37 - -
2 4 8 1.33 - 80.90 82.76 (0.11) ↑ 0.70
2 8 8 1.41 - 80.89 82.92 (0.09) ↑ 0.86

Table 3: Exhaustive search. Here we evaluate the top 2 configurations returned from the exhaustive
with the fixed configuration (bold) setting the upper bound for inference cost. We list the mean
accuracy and standard deviation from 5 runs of the fixed configuration when trained separately,
as well as the median accuracy of all configurations in the GroSS decomposition. After the new
configurations have been trained separately, we detail whether they are still more accurate than the
fixed configuration. The numbers in the configuration column correspond to the group-size of each
decomposed layer within the network.

0.1 after 80 epochs. The schedule was reduced because the fixed configurations converged more
quickly.

5 RESULTS

5.1 GROUP-SIZE SEARCH

Since we have trained the entirety of the group-size configurations of the decomposed networks
simultaneously, we have effectively removed the train burden from architecture search. Therefore, to
determine a candidate configuration, we evaluate all possible configurations. Specifically, we assign
an the evaluation task of finding architectures which have higher accuracy, but lower inference cost
than their respective baseline configuration. We choose the 4 and 16 fixed configurations. To do so,
we simply filter any configuration with multiply accumulates (MACs) above the respective target
configuration. After filtering, we can select the highest accuracy remaining.

Once a configuration has been selected, we decompose, response reconstruct and finetune exactly
as described for the fixed configurations. This provides a fair comparison to the target configuration
accuracy. The results of this search are shown in Table 3. The decomposition and tune is performed
5 times for each configuration and the mean and standard deviation are reported.

As can be seen in the results, the most accurate configurations for a particular performance bracket
within the GroSS decompostion, remain more accurate when decomposed and finetuned individu-
ally. In all cases tested, a significant increase in accuracy was found in a configuration with cheaper
inference. Another interesting note is that ascending group sizes along layers seems to be prefer-
able. This is not necessarily intuitive and further emphasises the need for search among grouped
architectures.

5.2 TRAINING SAMPLING STRATEGY

In this section, we evaluate the effect of the sampling distribution temperature on the performance
profile of the model’s search space. The aim is to create a profile which most accurately recreates that
produced by separate decomposition and finetuning of the many possible group-size configurations.
To evaluate this, In Figure 1, we show the performance profiles produced by differing values of

7



Under review as a conference paper at ICLR 2020

Figure 1: Sampling temperature’s effect on accuracy profiles. Left: Here we evaluate how the
sampling temperature impacts the accuracy of the GroSS decompostion at four configurations, which
span the configuration space. We see that the accuracy deficit at α = 4 remains relatively constant
across the configurations, therefore providing the most balanced search space of temperatures tested.
Right: We display the accuracy across all possible configurations. We see that α = 0 performs well
at the upper end of the performance envelope, whereas α = 8 performs well with the smallest
configurations. Temperature set at α = 4 again provides the most balanced performance across all
the configurations.

temperature α within our sampling distribution. We train each sampling temperature 5 times and
plot the mean accuracy at a particular configuration. The percentage change in accuracy visualised
is computed as the difference between the fixed configuration accuracy and the accuracy obtained
from GroSS when running at the same group-size configuration.

As would follow intuition, higher temperatures are able to better recover accuracy for small group-
size configurations, but lose significant accuracy at larger configurations. Conversely, low temper-
atures favour large group-sizes, but suffer with the smaller. Sampling with a temperature of α = 4
provides the most balanced search space, as can be seen from its flat profile. We therefore use a this
temperature setting as the default temperature in our finetuning stage.

6 CONCLUSIONS

In this paper, we have presented GroSS, a series BTD factorisation which allows for the dynamic
assignment and simultaneous training of differing numbers of groups within a layer. We have
demonstrated how GroSS-decomposed layers can be combined to train an entire grouped convo-
lution search space at once. We demonstrate the value of these configurations through an exhaustive
search, which is made possible through the simultaneous training. In doing this, we take a step
towards shifting the burden of architecture search away from decomposition and training.

REFERENCES

Yunpeng Chen, Xiaojie Jin, Bingyi Kang, Jiashi Feng, and Shuicheng Yan. Sharing residual units
through collective tensor factorization to improve deep neural networks. In IJCAI, pp. 635–641,
2018.

Lieven De Lathauwer. Decompositions of a higher-order tensor in block termspart ii: Definitions
and uniqueness. SIAM Journal on Matrix Analysis and Applications, 30(3):1033–1066, 2008.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Advances in neural informa-
tion processing systems, pp. 1269–1277, 2014.

8



Under review as a conference paper at ICLR 2020

Ahmed T Elthakeb, Prannoy Pilligundla, Amir Yazdanbakhsh, Sean Kinzer, and Hadi Esmaeilzadeh.
Releq: A reinforcement learning approach for deep quantization of neural networks. arXiv
preprint arXiv:1811.01704, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor learning
in python. The Journal of Machine Learning Research, 20(1):925–930, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html, 55, 2014.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):
279–311, 1966.

Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of neural networks on
cpus. 2011.

Peisong Wang, Qinghao Hu, Zhiwei Fang, Chaoyang Zhao, and Jian Cheng. Deepsearch: A fast
image search framework for mobile devices. ACM Transactions on Multimedia Computing, Com-
munications, and Applications (TOMM), 14(1):6, 2018.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10734–10742, 2019.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

9



Under review as a conference paper at ICLR 2020

Chen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, and Yan Shuicheng. Sharing residual units
through collective tensor factorization in deep neural networks. arXiv preprint arXiv:1703.02180,
2017.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6848–6856, 2018.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

10


	Introduction
	Related Work
	Method
	General Block Term Decomposition
	Single Convolution to Bottleneck with BTD
	Group-size Series Decomposition
	Training GroSS Simultaneously
	Response Reconstruction


	Experimental Setup
	Dataset
	Model
	Response Reconstruction
	Finetuning
	Baseline: Fixed Configurations

	Results
	Group-size Search
	Training Sampling Strategy

	Conclusions

