
Under review as a conference paper at ICLR 2020

HIERARCHICAL GRAPH-TO-GRAPH TRANSLATION
FOR MOLECULES

Anonymous authors
Paper under double-blind review

ABSTRACT

The problem of accelerating drug discovery relies heavily on automatic tools to
optimize precursor molecules to afford them with better biochemical properties.
Our work in this paper substantially extends prior state-of-the-art on graph-to-graph
translation methods for molecular optimization. In particular, we realize coherent
multi-resolution representations by interweaving the encoding of substructure com-
ponents with the atom-level encoding of the original molecular graph. Moreover,
our graph decoder is fully autoregressive, and interleaves each step of adding a new
substructure with the process of resolving its attachment to the emerging molecule.
We evaluate our model on multiple molecular optimization tasks and show that our
model significantly outperforms previous state-of-the-art baselines.

1 INTRODUCTION

Molecular optimization seeks to modify compounds in order to improve their biochemical properties.
This task can be formulated as a graph-to-graph translation problem analogous to machine translation.
Given a corpus of molecular pairs {(X,Y)}, where Y is a paraphrase of X with better chemical
properties, the model is trained to translate an input molecular graph into its better form. The task
is difficult since the space of potential candidates is vast, and molecular properties can be complex
functions of structural features. Moreover, graph generation is computationally challenging due to
complex dependencies involved in the joint distribution over nodes and edges. Similar to machine
translation, success in this task is predicated on the inductive biases built into the encoder-decoder
architecture, in particular the process of generating molecular graphs.

Prior work (Jin et al., 2019) proposed a junction tree encoder-decoder that utilized valid chemical
substructures (e.g., aromatic rings) as building blocks to generate graphs. Each molecule was
represented as a junction tree over chemical substructures in addition to the original atom-level
graph. While successful, the approach remains limited in several ways. The tree and graph encoding
were carried out separately, and decoding proceeded in strictly successive steps: first generating the
junction tree for the new molecule, and then attaching its substructures together. This means the
predicted attachments do not impact the subsequent substructure choices (see Figure 1a). Moreover,
the attachment prediction process is non-autoregressive, thus it can predict inconsistent substructure
attachments across different nodes in the junction tree (see Figure 1b).

We propose a multi-resolution, hierarchically coupled encoder-decoder for graph generation. Our
auto-regressive decoder interleaves the prediction of substructure components with their attachments
to the molecule being generated. In particular, a target graph is unraveled as a sequence of triplet
predictions (where to expand the graph, new substructure type, its attachment). This enables us to
model strong dependencies between successive attachments and substructure choices. The encoder
is designed to represent molecules at different resolutions in order to match the proposed decoding
process. Specifically, the encoding of each molecule proceeds across three levels, with each layer
capturing essential information for its corresponding decoding step. The graph convolution of atoms
at the lowest level supports the prediction of attachments and the convolution over substructures at
the highest level supports the prediction of successive substructures. Compared to prior work, our
decoding process is much more efficient because it decomposes each generation step into a hierarchy
of smaller steps in order to avoid combinatorial explosion. We also extend the method to handle
conditional translation where desired criteria are fed as input to the translation process. This enables
our method to handle different combinations of criteria at test time.

1

Under review as a conference paper at ICLR 2020

Figure 1: Key limitations of Jin et al. (2019)’s approach: a) Since their tree and graph decoders are
isolated, the model can generate invalid junction trees which cannot be assembled into any molecule.
This problem can be solved when we interleave the tree and graph decoding steps, allowing the
predicted attachments to guide the substructure prediction; b) Their non-autoregressive graph decoder
often predicts inconsistent local substructure attachments during training. To this end, we propose an
autoregressive decoder that interleaves the prediction of substructures with their attachments.

We evaluate our new model on multiple molecular optimization tasks. Our baselines include previous
state-of-the-art graph generation methods (You et al., 2018a; Liu et al., 2018; Jin et al., 2019) and an
atom-based translation model we implemented for a more comprehensive comparison. Our model
significantly outperforms these methods in discovering molecules with desired properties, yielding
3.3% and 8.1% improvement on QED and DRD2 optimization tasks. During decoding, our model
runs 6.3 times faster than previous substructure-based generation methods. We further conduct
ablation studies to validate the advantage of our hierarchical decoding and multi-resolution encoding.
Finally, we show that conditional translation can succeed (generalize) even when trained on molecular
pairs with only 1.6% of them having desired target property combination.

2 RELATED WORK

Molecular Graph Generation Previous work have adopted various approaches for generating
molecular graphs. Methods (Gómez-Bombarelli et al., 2018; Segler et al., 2017; Kusner et al.,
2017; Dai et al., 2018; Guimaraes et al., 2017; Olivecrona et al., 2017; Popova et al., 2018; Kang
& Cho, 2018) generate molecules based on their SMILES strings (Weininger, 1988). Simonovsky
& Komodakis (2018); De Cao & Kipf (2018); Ma et al. (2018) developed generative models which
output the adjacency matrices and node labels of the graphs at once. You et al. (2018b); Li et al.
(2018); Samanta et al. (2018); Liu et al. (2018) proposed generative models decoding molecules
sequentially node by node. You et al. (2018a); Zhou et al. (2018) adopted similar node-by-node
approaches in the context of reinforcement learning. Kajino (2018) developed a hypergraph grammar
based method for molecule generation.

Our work is most closely related to Jin et al. (2018; 2019) that generate molecules based on substruc-
tures. They adopted a two-stage procedure for realizing graphs. The first step generates a junction tree
with substructures as nodes, capturing their coarse relative arrangements. The second step resolves
the full graph by specifying how the substructures should be attached to each other. Their major
drawbacks are 1) The second step introduced local independence assumptions and therefore the
decoder is not autoregressive. 2) These two steps are applied stage-wise during decoding – first
realizing the junction tree and then reconciling attachments without feedback. In contrast, our method
jointly predicts the substructures and their attachments with an autoregressive decoder.

Graph Encoders Graph neural networks have been extensively studied for graph encoding (Scarselli
et al., 2009; Bruna et al., 2013; Li et al., 2015; Niepert et al., 2016; Kipf & Welling, 2017; Hamilton
et al., 2017; Lei et al., 2017; Velickovic et al., 2017; Xu et al., 2018). Our method is related to
graph encoders for molecules (Duvenaud et al., 2015; Kearnes et al., 2016; Dai et al., 2016; Gilmer
et al., 2017; Schütt et al., 2017). Different to these approaches, our method represents molecules as
hierarchical graphs spanning from atom-level graphs to substructure-level trees.

Our work is most closely related to (Defferrard et al., 2016; Ying et al., 2018; Gao & Ji, 2019) that
learn to represent graphs in a hierarchical manner. In particular, Defferrard et al. (2016) utilized
graph coarsening algorithms to construct multiple layers of graph hierarchy and Ying et al. (2018);

2

Under review as a conference paper at ICLR 2020

Figure 2: Overview of our approach. Each substructure Si is a subgraph of a molecule (e.g., rings).
In each step, our decoder adds a new substructure and predicts its attachment to current graph. Our
encoder represents each molecule across three levels (atom layer, attachment layer and substructure
layer), with each layer capturing relevant information for the corresponding decoding step.

Gao & Ji (2019) proposed to learn the graph hierarchy jointly with the encoding process. Despite
some differences, all of these methods seek to represent graphs as a single vector for regression or
classification tasks. In contrast, our focus is graph generation and a molecule is encoded into multiple
sets of vectors, each representing the input at different resolutions. Those vectors are dynamically
aggregated by decoder attention modules in each graph generation step.

3 HIERARCHICAL GENERATION OF MOLECULAR GRAPHS

The graph translation task seeks to learn a function F that maps a molecule X into another molecule
G with better chemical properties. F is parameterized as an encoder-decoder with neural attention.
Both our encoder and decoder are illustrated in Figure 2. In each generation step, our decoder adds a
new substructure (substructure prediction) and decides how it should be attached to the current graph.
The attachment prediction proceeds in two steps: predicting attaching points in the new substructure
and their corresponding attaching points in the current graph (attachment prediction 1-2).

To support the above hierarchical generation, we need to design a matching encoder representing
molecules at multiple resolutions in order to provide necessary information for each decoding step.
Therefore, we propose to represent a molecule X by a hierarchical graphHX with three components:
1) substructure layer representing how substructures are coarsely connected; 2) attachment layer
showing the attachment configuration of each substructure; 3) atom layer showing how atoms are
connected in the graph. Our model encodes nodes inHX into substructure vectors cSX , attachment
vectors cAX and atom vectors cGX , which are fed to the decoder for corresponding prediction steps. As
our encoder is tailored for the decoder, we first describe our decoder to clarify relevant concepts.

3.1 HIERARCHICAL GRAPH DECODER

Notations We denote the sigmoid function as σ(·). MLP(a, b) represents a multi-layer neural
network whose input is the concatenation of a and b. attentionθ(h∗, cX) stands for a bilinear
attention over vectors cX with query vector h∗.

Substructures We define a substructure Si = (Vi, Ei) as subgraph of molecule G induced by atoms
in Vi and bonds in Ei. Given a molecule, we extract its substructures S1, · · · ,Sn such that their union
covers the entire molecular graph: V =

⋃
i Vi and E =

⋃
i Ei. In this paper, we consider two types of

substructures: rings and bonds. We denote the vocabulary of substructures as S , which is constructed
from the training set. In our experiments, |S| < 500 and it has over 99.5% coverage on test sets.

Substructure Tree To characterize how substructures are connected in the molecule G, we construct
its corresponding substructure tree T , whose nodes are substructures S1, · · · ,Sn. Specifically, we
construct the tree by first drawing edges between Si and Sj if they share common atoms, and then
applying tree decomposition over T to ensure it is tree-structured.

Generation Our graph decoder generates a molecule G by incrementally expanding its substructure
tree in its depth-first order. Suppose the model is currently visiting substructure node Sk. It makes
the following predictions conditioned on encoding of input X (see Figure 3):

3

Under review as a conference paper at ICLR 2020

Figure 3: Illustration of hierarchical graph decoding. Suppose the decoder is visiting the substructure
Sk. 1) It decides to add a new substructure (topological prediction). 2) It predicts that new substructure
St should be a ring (substructure prediction) 3) It predicts how this new ring should be attached to
the graph (attachment prediction). Finally, the decoder moves to St and repeats the process.

1. Topological Prediction: It first predicts whether there will be a new substructure attached to Sk.
If not, the model backtracks to its parent node Sdk in the tree. Let hSk be the hidden representation
of Sk learned by decoder (which will be elaborated in §3.2). This probability is predicted by a
MLP with attention over substructure vectors cSX of X:

pk = σ(MLP(hSk ,α
d
k)) αdk = attentiond

(
hSk , c

S
X

)
(1)

2. Substructure Prediction: If pk > 0.5, the model decides to create a new substructure St from
Sk and sets its parent dt = k. It then predicts the substructure type of St using another MLP that
outputs a distribution over the vocabulary S:

pSt = softmax(MLP(hSk ,α
s
k)) αsk = attentions

(
hSk , c

S
X

)
(2)

3. Attachment Prediction: Now the model needs to decide how St should be attached to Sk. The
attachment between St and Sk is defined as atom pairsMt = {(uj , vj)|uj ∈ St, vj ∈ Sk} where
atom uj and vj are attached together. We predict those atom pairs in two steps:

1) We first predict the atoms {vj} ⊂ St that will be attached to Sk. Since the graph St is always
fixed and the number of attaching atoms between two substructures is usually small, we can
enumerate all possible configurations {vj} to form a vocabulary A(St) for each substructure
St. This allows us to formulate the prediction of {vj} as a classification task – predicting the
correct configuration At = (St, {vj}) from the vocabulary A(St):

pAt
= softmax(MLP(hSk ,α

a
k)) αak = attentiona

(
hSk , c

A
X

)
(3)

2) Given the predicted attaching points {vj}, we need to find the corresponding atoms {uj}
in the substructure Sk. As the attaching points are always consecutive, there exist at most
2|Sk| different attachments M = {(uj , vj)}. The probability of a candidate attachment M is
computed based on the atom representations huj

and hvj learned by the decoder:

pM = softmax
(
hM · attentionm(hM , c

G
X)
)

hM =
∑

j
MLP(huj

,hvj) (4)

The above three predictions together give an autoregressive factorization of the distribution over the
next substructure and its attachment. Each of the three decoding steps depends on the outcome of
previous step, and predicted attachments will in turn affect the prediction of subsequent substructures.
During training, we apply teacher forcing to the above generation process, where the generation
order is determined by a depth-first traversal over the ground truth substructure tree. The attachment
enumeration is tractable because most of the substructures are small. In our experiments, the average
size of attachment vocabulary |A(St)| < 5 and the number of candidate attachments is less than 20.

3.2 HIERARCHICAL GRAPH ENCODER

Our encoder represents a molecule X by a hierarchical graph HX in order to support the above
decoding process. The hierarchical graph has three components (see Figure 4):

1. Atom layer: The atom layer is the molecular graph ofX representing how its atoms are connected.
Each atom node v is associated with a label av indicating its atom type and charge. Each edge
(u, v) in the atom layer is labeled with buv indicating its bond type.

2. Attachment layer: This layer is derived from the substructure tree of molecule X . Each node Ai
in this layer represents a particular attachment configuration of substructure Si in the vocabulary
A(Si). Specifically, Ai = (Si, {vj}) where {vj} are the attaching atoms between Si and its
parent Sdi in the tree. This layer provides necessary information for the attachment prediction
(step 1). Figure 4 illustrates how Ai and the vocabulary A(Si) look like.

4

Under review as a conference paper at ICLR 2020

Figure 4: Left: Hierarchical graph encoder. Solid arrows illustrate message passing in each layer.
Dashed arrows connect each atom to the substructures it belongs. In the attachment layer, each node
Ai is a particular attachment configuration of substructure Si. Right: Attachment vocabulary for a
ring. The attaching points in each configuration (highlighted in red) must be consecutive.

3. Substructure layer: This layer is the same as the substructure tree. This layer provides essential
information for the substructure prediction in the decoding process.

We further introduce edges that connect the atoms and substructures between different layers in order
to propagate information in between. In particular, we draw a directed edge from atom v in the atom
layer to node Ai in the attachment layer if v ∈ Si. We also draw edges from node Ai to node Si
in the substructure layer. This gives us the hierarchical graph HX for molecule X , which will be
encoded by a hierarchical message passing network (MPN) (see Figure 4). The encoder contains
three MPNs that encode each of the three layer. We use the MPN architecture from Jin et al. (2019).1
For simplicity, we denote the MPN encoding process as MPNψ(·) with parameter ψ.

Atom Layer MPN We first encode the atom layer ofHX (denoted asHgX). The inputs to this MPN
are the embedding vectors {e(au)}, {e(buv)} of all the atoms and bonds in X . During encoding, the
network propagates the message vectors between different atoms for T iterations and then outputs
the atom representation hv for each atom v:

cGX = {hv} = MPNψ1 (H
g
X , {e(au)}, {e(buv)}) (5)

Attachment Layer MPN The input feature of each node Ai in the attachment layer HaX is an
concatenation of the embedding e(Ai) and the sum of its atom vectors {hv | v ∈ Si}:

fAi = MLP
(
e(Ai),

∑
v∈Si

hv

)
(6)

The input feature for each edge (Ai,Aj) in this layer is an embedding vector e(dij), where dij
describes the relative ordering between nodeAi andAj during decoding. Specifically, we set dij = k
if node Ai is the k-th child of node Aj and dij = 0 if Ai is the parent. We then run T iterations of
message passing overHaX to compute the substructure representations:

cAX = {hAi
} = MPNψ2

(HaX , {fAi
}, {e(dij)}) (7)

Substructure Layer MPN Similarly, the input feature of node Si in this layer is computed as the
concatenation of embedding e(Si) and the node vector hAi from the previous layer. Finally, we run
message passing over the substructure layerHsX to obtain the substructure representations:

fSi = MLP (e(Si),hAi) cSX = {hSi} = MPNψ3 (HsX , {fSi}, {e(dij)}) (8)

In summary, the output of our hierarchical encoder is a set of vectors cX = cSX ∪ cAX ∪ c
G
X that

represent a molecule X at multiple resolutions. These vectors are input to the decoder attention.

Decoder MPN During decoding, we use the same hierarchical MPN architecture to encode the
hierarchical graph HG at each step t. This gives us the substructure vectors hSk and atom vectors
hvj in §3.1. All future nodes and edges are masked to ensure the prediction of current substructure
and attachment only depends on previously generated outputs.

3.3 TRAINING

Our training set contains molecular pairs (X,Y) where each compound X can be associated with
multiple outputs Y since there are many ways to modify X to improve its properties. In order to

1We slightly modified their architecture by using LSTM instead of GRU for message propagation due to its
better empirical performance. The details are shown in the appendix.

5

Under review as a conference paper at ICLR 2020

Algorithm 1 Variational Translation (uncon-
ditional setting, without target criteria g)

1: for (X,Y) in the training set do
2: Encode molecule X,Y into vectors cX , cY
3: Compute µX,Y ,σX,Y from δX,Y
4: Sample latent code z ∼ Q(z|X,Y)
5: Generate molecule Y given cX and z
6: end for Figure 5: Conditional translation.

generate diverse outputs, we follow Jin et al. (2019) and extend our method to a variational translation
model F : (X, z)→ Y with an additional input z. The latent vector z indicates the intended mode
of translation which is sampled from a Gaussian prior P (z) during testing.

We train our model using variational inference (Kingma & Welling, 2013). Given a training example
(X,Y), we sample z from the posterior Q(z|X,Y) = N (µX,Y ,σX,Y). To compute Q(z|X,Y),
we first encode X and Y into their representations cX and cY and then compute vector δX,Y that
summarizes the structural changes from molecule X to Y at both atom and substructure level:

δSX,Y =
∑

cSY −
∑

cSX δGX,Y =
∑

cGY −
∑

cGX (9)

Finally, we compute [µX,Y ,σX,Y] = MLP(δSX,Y , δ
G
X,Y) and sample z using reparameterization

trick. The latent code z is passed to the decoder along with the input representation cX to reconstruct
output Y . The overall training objective follows a standard conditional VAE:

L(X,Y) = −Ez∼Q[logP (Y |z, X)] + λKLDKL[Q(z|X,Y)||P (z)] (10)

Conditional Translation In the above formulation, the model does not know what properties are
being optimized during translation. During testing, users cannot change the behavior of a trained
model (i.e., what properties should be changed). This may become a limitation of our method
in a multi-property optimization setting. Therefore, we extend our method to handle conditional
translation where the desired criteria are also fed as input to the translation process. In particular,
let gX,Y be a translation criteria indicating what properties should be changed. During variational
inference, we compute µX,Y and σX,Y with an additional input gX,Y :

[µX,Y ,σX,Y] = MLP(δSX,Y , δ
G
X,Y , gX,Y) (11)

We then augment the latent code as [z, gX,Y] and pass it to the decoder. During testing, the user can
specify their criteria in gX,Y to control the outcome (e.g., Y should be drug-like and bioactive).

4 EXPERIMENTS

We follow the experimental design by Jin et al. (2019) and evaluate our translation model on their
single-property optimization tasks. As molecular optimization in the real-world often involves
different property criteria, we further construct a novel conditional optimization task where the
desired criteria is fed as input to the translation process. To prevent the model from ignoring input X
and translating it into arbitrary compound, we require the molecular similarity between X and output
Y to be above certain threshold sim(X,Y) ≥ δ at test time. The molecular similarity is defined as
the Tanimoto similarity over Morgan fingerprints (Rogers & Hahn, 2010) of two molecules.

Single-property Optimization This dataset consists of four different tasks. For each task, we train
and evaluate our model on their provided training and test sets. For these tasks, our model is trained
under an unconditional setting (without gX,Y as input).

• LogP Optimization: The penalized logP score (Kusner et al., 2017) measures the solubility and
synthetic accessibility of a compound. In this task, the model needs to translate input X into output
Y such that logP(Y) > logP(X). We experiment with two similarity thresholds δ = {0.4, 0.6}.

• QED Optimization: The QED score (Bickerton et al., 2012) quantifies a compound’s drug-
likeness. In this task, the model is required to translate molecules with QED scores from the lower
range [0.7, 0.8] into the higher range [0.9, 1.0]. The similarity constraint is sim(X,Y) ≥ 0.4.

6

Under review as a conference paper at ICLR 2020

Table 1: Results on single-property translation tasks. “Div.” stands for diversity. “Succ.” stands for
success rate. “Improve.” stands for average property improvement.

Method logP (sim ≥ 0.6) logP (sim ≥ 0.4) QED DRD2
Improve. Div. Improve. Div. Succ. Div. Succ. Div.

JT-VAE 0.28± 0.79 - 1.03± 1.39 - 8.8% - 3.4% -
CG-VAE 0.25± 0.74 - 0.61± 1.09 - 4.8% - 2.3% -
GCPN 0.79± 0.63 - 2.49± 1.30 - 9.4% 0.216 4.4% 0.152
MMPA 1.65± 1.44 0.329 3.29± 1.12 0.496 32.9% 0.236 46.4% 0.275
Seq2Seq 2.33± 1.17 0.331 3.37± 1.75 0.471 58.5% 0.331 75.9% 0.176
JTNN 2.33± 1.24 0.333 3.55± 1.67 0.480 59.9% 0.373 77.8% 0.156
AtomG2G 2.41± 1.19 0.379 3.98 ± 1.54 0.563 73.6% 0.421 75.8% 0.128
HierG2G 2.49 ± 1.09 0.381 3.98 ± 1.46 0.564 76.9% 0.477 85.9% 0.192

• DRD2 Optimization: This task involves the optimization of a compound’s biological activity
against dopamine type 2 receptor (DRD2). The model needs to translate inactive compounds
(p < 0.05) into active compounds (p ≥ 0.5), where the bioactivity is assessed by a property
prediction model from Olivecrona et al. (2017). The similarity constraint is sim(X,Y) ≥ 0.4.

Conditional Optimization This new task requires the model to translate input X into output Y to
satisfy different combination of constraints over its QED and DRD2 scores. We define a molecule Y
as drug-like if QED(Y) ≥ 0.9 and as DRD2-active if its predicted bioactivity DRD2(Y) ≥ 0.5. At
test time, our model needs to handle the following two criteria over output molecule Y :

1. Y is both drug-like and DRD2-active. Here both properties need to be improved after translation.
2. Y is drug-like but DRD2-inactive. In this case, DRD2 is an off-target that may cause side effects.

Therefore only the drug-likeness should be improved after translation.

As different users may be interested in different settings, we encode the desired criteria as vector g
and train our model under the conditional translation setup in §3.3. Like single-property tasks, we
impose a similarity constraint sim(X,Y) ≥ 0.4 for both settings.

Our training set contains 120K molecular pairs and the test set has 780 compounds. For each pair
(X,Y), we set gX,Y = (I[Y is drug-like], I[Y is DRD2-active]). During testing, we translate each
compound with g = [1, 1], [1, 0] for each setting. We note that the first criteria (g = [1, 1]) is the
most challenging because there are only 1.6% of the training pairs with target Y being both drug-like
and DRD2-active. To achieve good performance, the model must learn to transfer the knowledge
from other pairs with gX,Y = [1, 0], [0, 1]) that partially satisfy the criteria.

Evaluation Metrics Our evaluation metrics include translation accuracy and diversity. Each test
moleculeXi is translatedK = 20 times with different latent codes sampled from the prior distribution.
On the logP optimization, we select compound Yi as the final translation of Xi that gives the
highest property improvement and satisfies sim(Xi, Yi) ≥ δ. We then report the average property
improvement 1

D
∑
i logP(Yi)− logP(Xi) over test set D. For other tasks, we report the translation

success rate. A compound is successfully translated if one of its K translation candidates satisfies all
the similarity and property constraints of the task. To measure the diversity, for each molecule we
compute the average pairwise Tanimoto distance between all its successfully translated compounds.
Here the Tanimoto distance is defined as dist(X,Y) = 1− sim(X,Y).

Baselines We compare our method (HierG2G) against the baselines including GCPN (You et al.,
2018a), MMPA (Dalke et al., 2018) and translation based methods Seq2Seq and JTNN (Jin et al.,
2019). Seq2Seq is a sequence-to-sequence model that generates molecules by their SMILES strings.
JTNN is a graph-to-graph architecture that generates molecules structure by structure, but its decoder
is not fully autoregressive. We also compare with CG-VAE (Liu et al., 2018), a generative model that
decodes molecules atom by atom and optimizes properties in the latent space using gradient ascent.

To make a direct comparison possible between our method and atom-based generation, we further
developed an atom-based translation model (AtomG2G) as baseline. It makes three predictions in
each generation step. First, it predicts whether the decoding process has completed (no more new

7

Under review as a conference paper at ICLR 2020

Table 2: Results on conditional optimization tasks and ablation studies over architecture choices.

(a) Conditional optimization results: g = [1, ∗] means the
output Y needs to be drug-like and g = [∗, 1] means it
needs to be DRD2-active.

Method g = [1, 1] g = [1, 0]

Succ. Div. Succ. Div.
Seq2Seq 5.0% 0.078 67.8% 0.380
JTNN 11.1% 0.064 71.4% 0.405
AtomG2G 12.5% 0.031 74.5% 0.443
HierG2G 13.0% 0.094 78.5% 0.480

(b) Ablation study: the importance of hierarchi-
cal graph encoding, LSTM MPN architecture and
structure-based decoding.

Method QED DRD2
HierG2G 76.9% 85.9%
· atom-based decoder 76.1% 75.0%
· two-layer encoder 75.8% 83.5%
· one-layer encoder 67.8% 74.1%
· GRU MPN 72.6% 83.7%

atoms). If not, it creates a new atom at and predicts its atom type. Lastly, it predicts the bond type
between at and other atoms autoregressively to fully capture edge dependencies (You et al., 2018b).
The encoder of AtomG2G encodes only the atom-layer graph and the decoder attention only sees the
atom vectors cGX . All translation models are trained under the same variational objective (§3.3).

Single-property Optimization Results As shown in Table 1, our model achieves the new state-of-
the-art on the four translation tasks. In particular, our model significantly outperforms JTNN in both
translation accuracy (e.g., 76.9% versus 59.9% on the QED task) and output diversity (e.g., 0.564
versus 0.480 on the logP task). While both methods generate molecules by structures, our decoder is
autoregressive which can learn more expressive mappings. More importantly, our model runs 6.3
times faster than JTNN during decoding. Our model also outperforms AtomG2G on three datasets,
with over 10% improvement on the DRD2 task. This shows the advantage of our hierarchical model.

Conditional Optimization Results For this task, we compare our method with other translation
methods: Seq2Seq, JTNN and AtomG2G. All these models are trained under the conditional trans-
lation setup where we feed the desired criteria gX,Y as input. As shown in Table 2a, our model
outperforms other models in both translation accuracy and output diversity. Notably, all models
achieved very low success rate on c = [1, 1] because it has the strongest constraints and only 1.6K of
the training pairs satisfy this criteria. In fact, training our model on the 1.6K examples only gives
4.2% success rate as compared to 13.0% when trained with other pairs. This shows our conditional
translation setup can transfer the knowledge from other pairs with gX,Y = [1, 0], [0, 1].

Ablation Study To understand the importance of different architecture choices, we report ablation
studies over the QED and DRD2 tasks in Table 2b. We first replace our hierarchical decoder with
atom-based decoder of AtomG2G to see how much the structure-based decoding benefits us. We keep
the same hierarchical encoder but modified the input of the decoder attention to include both atom
and substructure vectors. Using this setup, the model performance decreases by 0.8% and 10.9%
on the two tasks. We suspect the DRD2 task benefits more from structure-based decoding because
biological target binding often depends on the presence of specific functional groups.

Our second experiment reduces the number of hierarchies in our encoder and decoder MPN, while
keeping the same hierarchical decoding process. When the top substructure layer is removed, the
translation accuracy drops slightly by 0.8% and 2.4%. When we further remove the attachment
layer, the performance degrades significantly on both datasets. This is because all the substructure
information is lost and the model needs to infer what substructures are and how substructure layers are
constructed for each molecule. Implementation details of those ablations are shown in the appendix.
Lastly, we replaced our LSTM MPN with the original GRU MPN used in JTNN. While the translation
performance decreased by 4% and 2.2%, our method still outperforms JTNN by a wide margin.
Therefore we use the LSTM MPN architecture for both HierG2G and AtomG2G baseline.

5 CONCLUSION

In this paper, we developed a hierarchical graph-to-graph translation model that generates molecular
graphs using chemical substructures as building blocks. In contrast to previous work, our model is
fully autoregressive and learns coherent multi-resolution representations. The experimental results
show that our method outperforms previous models under various settings.

8

Under review as a conference paper at ICLR 2020

REFERENCES

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90, 2012.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for structured
data. In International Conference on Machine Learning, pp. 2702–2711, 2016.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational
autoencoder for structured data. arXiv preprint arXiv:1802.08786, 2018.

Andrew Dalke, Jerome Hert, and Christian Kramer. mmpdb: An open-source matched molecular pair
platform for large multiproperty data sets. Journal of chemical information and modeling, 2018.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems,
pp. 3844–3852, 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Hongyang Gao and Shuiwang Ji. Graph u-net. International Conference on Machine Learning, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS Central Science, 2018. doi: 10.1021/acscentsci.7b00572.

Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Pedro Luis Cunha Farias, and Alán Aspuru-
Guzik. Objective-reinforced generative adversarial networks (organ) for sequence generation
models. arXiv preprint arXiv:1705.10843, 2017.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
arXiv preprint arXiv:1706.02216, 2017.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. International Conference on Machine Learning, 2018.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecular optimization. International Conference on Learning Representa-
tions, 2019.

Hiroshi Kajino. Molecular hypergraph grammar with its application to molecular optimization. arXiv
preprint arXiv:1809.02745, 2018.

Seokho Kang and Kyunghyun Cho. Conditional molecular design with deep generative models.
Journal of chemical information and modeling, 59(1):43–52, 2018.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8):
595–608, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

9

Under review as a conference paper at ICLR 2020

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations, 2017.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.
arXiv preprint arXiv:1703.01925, 2017.

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Deriving neural architectures from
sequence and graph kernels. International Conference on Machine Learning, 2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L Gaunt. Constrained graph
variational autoencoders for molecule design. Neural Information Processing Systems, 2018.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via
regularizing variational autoencoders. In Advances in Neural Information Processing Systems, pp.
7113–7124, 2018.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In International Conference on Machine Learning, pp. 2014–2023, 2016.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9(1):48, 2017.

Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de novo
drug design. Science advances, 4(7):eaap7885, 2018.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical information
and modeling, 50(5):742–754, 2010.

Bidisha Samanta, Abir De, Gourhari Jana, Pratim Kumar Chattaraj, Niloy Ganguly, and Manuel
Gomez-Rodriguez. Nevae: A deep generative model for molecular graphs. arXiv preprint
arXiv:1802.05283, 2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. In Advances in Neural Information Processing Systems, pp.
992–1002, 2017.

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating fo-
cussed molecule libraries for drug discovery with recurrent neural networks. arXiv preprint
arXiv:1701.01329, 2017.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. arXiv preprint arXiv:1802.03480, 2018.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

10

Under review as a conference paper at ICLR 2020

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems, pp. 4800–4810, 2018.

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. arXiv preprint arXiv:1806.02473, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec. Graphrnn: A deep
generative model for graphs. arXiv preprint arXiv:1802.08773, 2018b.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of molecules
via deep reinforcement learning. arXiv preprint arXiv:1810.08678, 2018.

11

Under review as a conference paper at ICLR 2020

A ADDITIONAL FIGURES

Figure 6: Illustration of conditional translation. Our model generates different molecules when the
translation criteria changes. When g = [1, 1], the model indeed generates a compound with high
QED and DRD2 scores. When g = [1, 0], the model predicts another compound inactive to DRD2.

B NETWORK ARCHITECTURE

LSTM MPN Architecture The LSTM MPN is a slight modification from the MPN architecture
used in Jin et al. (2019). Let N(v) be the neighbors of node v, xv the node feature of v and xuv
be the feature of edge (u, v). During encoding, each edge (u, v) is associated with two messages
νuv and νvu, representing the message from u to v and vice versa. The messages are updated by an
LSTM cell with parameters ψ = {W z

ψ ,W
o
ψ,W

r
ψ,Wψ} defined as follows:

Algorithm 2 LSTM Message Passing

function LSTMψ

(
xu,xuv, {ν(t)

wu, c
(t)
wu}w∈N(u)\v

)
iuv = σ

(
W z

ψ

[
xu,xuv,

∑
w
ν(t)
wu

]
+ bz

)
ouv = σ

(
W o

ψ

[
xu,xuv,

∑
w
ν(t)
wu

]
+ bo

)
fwu = σ

(
W r

ψ

[
xu,xuv,ν

(t)
wu

]
+ br

)
c(t+1)
uv = iuv � tanh

(
Wψ

[
xu,xuv,

∑
w
ν(t)
wu

]
+ b
)
+
∑

w
fwu � c(t)wu

ν(t+1)
uv = ouv � tanh

(
c(t+1)
uv

)
Return ν

(t+1)
uv , c

(t+1)
uv

end function

The message passing network MPNψ (H, {xu}, {xuv}) over graphH is defined as:

Algorithm 3 LSTM MPN with T message passing iterations

function MPNψ (H, {xv}, {xuv})
Initialize messages: ν0

uv = 0, c0uv = 0
for t = 0 to T − 1 do

Compute messages ν(t+1)
uv , c

(t+1)
uv = LSTMψ

(
xu,xuv, {ν(t)

wu, c
(t)
wu}w∈N(u)\v

)
for all edges

(u, v) ∈ H simultaneously.
end for
Return node representations hv = MLP

(
xv,
∑
u∈N(v) ν

(T)
uv

)
end function

Attention Layer Our attention layer is a bilinear attention function with parameter θ = {Aθ}:

attentionθ(v, {hi}) =
∑
i

βihi βi =
exp(vTAθhi)∑
j exp(v

TAθhj)
(12)

12

Under review as a conference paper at ICLR 2020

Figure 7: Illustration of AtomG2G decoding process. Atoms marked with red circles are frontier
nodes in the queueQ. In each step, the model picks the first node vt fromQ and predict whether there
will be new atoms attached to vt. If so, it predicts the atom type of new node ut (atom prediction).
Then the model predicts the bond type between ut and other nodes in Q sequentially for |Q| steps
(bond prediction, |Q| = 2). Finally, it adds the new atom to the queue Q.

AtomG2G Architecture AtomG2G is an atom-based translation method that is directly comparable
to HierG2G. Here molecules are represented solely as molecular graphs rather than a hierarchical
graph with substructures. The encoder of AtomG2G is the same LSTM MPN over molecular graph.
This gives us a set of atom vectors cGX representing molecule X only at the atom level.

The decoder of AtomG2G is illustrated in Figure 7. Following You et al. (2018b); Liu et al. (2018),
the model generates molecule G atom by atom following their breath-first order. During generation,
it maintains a FIFO queue Q that contains the frontier nodes in the graph (i.e., nodes who still have
neighbors to be generated). Let vt be the first node in Q and Gt be the current graph at step t. In each
step, the model makes three predictions to expand the graph Gt:
1. It predicts whether there will be new atoms attached to vt. If not, the model discards v and move

on to the next node in Q. The generation stops if Q is empty.
2. Otherwise, it creates a new atom ut and predicts its atom type.
3. Lastly, it predicts the bond type between ut and other frontier nodes in Q autoregressively to fully

capture edge dependencies (You et al., 2018b). Since nodes are generated in breath-first order,
there will be no edges between ut and nodes outside of Q.

To make those predictions, we use the same LSTM MPN to encode the current graph Gt. Let hvt be
the atom representation of vt. We represent Gt as the sum of all its atom vectors hGt =

∑
v∈Gt hv.

In the first step, we model the probability of expanding a new node from vt as:

pt = σ(MLP(hvt ,hGt ,α
d
t)) αdt = attentiond

(
[hvt ,hGt], c

G
X

)
(13)

In the second step, the atom type of the new node ut is predicted using another MLP:

qt = softmax(MLP(hvt ,hGt ,α
s
t)) αst = attentions

(
[hvt ,hGt], c

G
X

)
(14)

In the last step, we predict the bonds between ut and nodes in Q = a1, · · · , an sequentially starting
with a1 = vt. Specifically, for each atom pair (ut, ak), we predict their bond type (single, double,
triple or none) as the following:

but,ak = softmax(MLP(hGt ,h
k
ut
,hak ,α

b
t)) (15)

αbt = attentionb
(
[hGt ,h

k
ut
,hak], c

G
X

)
(16)

where hak is the atom representation of node ak and hkut
is the representation of node ut at the kth

bond prediction. Let Nk(ut) be node ut’s current neighbor predicted in the first k steps. hkut
is

computed as follows to reflect its local graph structure after kth bond prediction:

hkut
= MLP

(
xut

,
∑

w∈Nk(ut)
νw,ut

)
νw,ut

= MLP(hw,xw,ut
) (17)

where xut
is the atom feature of ut (i.e., predicted atom type) and xw,ut

is the bond feature between
w and ut (i.e., predicted bond type). Intuitively, this can be viewed as running one-step message
passing at each bond prediction step (i.e., passing the message νw,ut

from w to ut).

AtomG2G is trained under the same variational objective as HierG2G, with the latent code z sampled
from the posterior Q(z|X,Y) = N (µX,Y ,σX,Y) and [µX,Y ,σX,Y] = MLP(

∑
cGY −

∑
cGX).

13

Under review as a conference paper at ICLR 2020

logP (δ = 0.6) logP (δ = 0.4) QED DRD2
Training set size 75K 99K 88K 34K

Test set size 800 800 800 1000
Substructure vocabulary |S| 478 462 307 307

Average attachment vocabulary |A(St)| 3.68 3.50 3.62 3.30

Table 3: Training set size and substructure vocabulary size for each dataset.

C EXPERIMENTAL DETAILS

Data The single-property optimization datasets are directly downloaded from the link provided in
Jin et al. (2019). The training set and substructure vocabulary size for each dataset is listed in Table 3.
We constructed the multi-property optimization by combining the training set of QED and DRD2
optimization task. The test set contains 780 compounds that are not drug-like and DRD2-inactive.
The training and test set is attached as part of the supplementary material.

Hyperparameters For HierG2G, we set the hidden layer dimension to be 270 and the embedding
layer dimension 200. We set the latent code dimension |z| = 8 and KL regularization weight
λKL = 0.3. We run T = 20 iterations of message passing in each layer of the encoder. For AtomG2G,
we set the hidden layer and embedding layer dimension to be 400 so that both models have roughly
the same number of parameters. We also set λKL = 0.3 and number of message passing iterations to
be T = 20. We train both models with Adam optimizer with default parameters.

For CG-VAE (Liu et al., 2018), we used their official implementation for our experiments. Specifically,
for each dataset, we trained a CG-VAE to generate molecules and predict property from the latent
space. This gives us three CG-VAE models for logP, QED and DRD2 optimization tasks, respectively.
At test time, each compound X is translated following the same procedure as in Jin et al. (2018).
First, we embed X into its latent representation z and perform gradient ascent over z to maximize the
predicted property score. This gives us z1, · · · , zK vectors for K gradient steps. Then we decode K
molecules from z1, · · · , zK and select the one with the best property improvement within similarity
constraint. We found that it is necessary to keep the KL regularization weight low (λKL = 0.005) to
achieve meaningful results. When λKL = 1.0, the above gradient ascent procedure always generate
molecules very dissimilar to the input X .

Ablation Study Our ablation studies are illustrated in Figure 8. In our first experiment, we changed
our decoder to the atom-based decoder of AtomG2G. As the encoder is still hierarchical, we modified
the input of the decoder attention to include both atom and substructure vectors. We set the hidden
layer and embedding layer dimension to be 300 to match the original model size.

Our next two experiments reduces the number of hierarchies in both our encoder and decoder MPN.
In the two-layer model, molecules are represented by cX = cGX ∪ cAX . We make topological and
substructure predictions based on hidden vector hAk

instead of hSk because the substructure layer is
removed. In the one-layer model, molecules are represented by cX = cGX and we make topological
and substructure predictions based on atom vectors

∑
v∈Sk hv. The hidden layer dimension is

adjusted accordingly to match the original model size.

Figure 8: Model Ablations: 1) Atom-based decoder; 2) Two-layer encoder; 3) One-layer encoder.

14

	Introduction
	Related Work
	Hierarchical Generation of Molecular Graphs
	Hierarchical Graph Decoder
	Hierarchical Graph Encoder
	Training

	Experiments
	Conclusion
	Additional Figures
	Network Architecture
	Experimental Details

