
Under review as a conference paper at ICLR 2019

FEATURE MATTERS:
A STAGE-BY-STAGE APPROACH FOR TASK INDEPEN-
DENT KNOWLEDGE TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

Convolutional Neural Networks (CNNs) become deeper and deeper in recent
years, making the study of model acceleration imperative. It is a common practice
to employ a shallow network, called student, to learn from a deep one, which is
termed as teacher. Prior work made many attempts to transfer different types of
knowledge from teacher to student, however, there are two problems remaining
unsolved. Firstly, the knowledge used by existing methods is highly dependent
on task and dataset, limiting their applications. Secondly, there lacks an effective
training scheme for the transfer process, leading to degradation of performance.
In this work, we argue that feature is the most important knowledge from teacher.
It is sufficient for student to just learn good features regardless of the target task.
From this discovery, we further present an efficient learning strategy to mimic
features stage by stage. Extensive experiments demonstrate the importance of
features and show that the proposed approach significantly narrows down the gap
between student and teacher, outperforming the state-of-the-art methods.

1 INTRODUCTION

Over the past few years, Convolutional Neural Networks (CNNs) have advanced various tasks in
computer vision field, such as image classification (Hu et al., 2018), object detection (Lin et al.,
2017b), semantic segmentation (Chen et al., 2018), etc. However, along with the architecture
growing deeper (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; He et al., 2016; Huang
et al., 2017), the great success of CNN is at the cost of large computational power, which can
not be afforded by most devices in practice. Some lightweight models are presented by recent
work (Howard et al., 2017) to reduce the computing cost especially for mobile devices, but the
performance drops severely compared with the state-of-the-art methods. Accordingly, it is crucial
to balance the trade-off between efficiency and capability of a CNN model.

To tackle this problem, knowledge distillation is introduced in Hinton et al. (2014) for model
acceleration. The core idea is to train shallow networks (student) to mimic deep ones (teacher)
following two folds. First, teacher employs a very deep model to achieve satisfying performance by
excavating information (knowledge) from labeled data. Second, student learns the knowledge from
teacher with a shallow model to speed up without losing much accuracy. Accordingly, the main
challenges, corresponding to the above two steps respectively, lie in (1) what kind of knowledge
should be transferred to student, and (2) how to transfer the knowledge from teacher to student as
much as possible.

For the first issue, previous work usually make student to learn from both teacher and original
labeled data. There are mainly two problems in doing so. On one hand, it is very sensitive to
tasks and datasets. The hyper-parameters, e.g. the loss weights to balance these two objective
functions, require careful adjustment, or otherwise, it may cause severe performance degradation.
On the other hand, the purposes to learn from teacher and to learn from ground-truth are not always
consistent with each other. For example, teacher model may eliminate some label errors during the
training process. In this case, trying to minimize the loss to mimic teacher as well as the loss from
target task may cause confusions to student. Furthermore, prior work has also characterized various
types of knowledge from teacher model for student to learn, such as attention map (Zagoruyko

1



Under review as a conference paper at ICLR 2019

& Komodakis, 2017), information flow (Yim et al., 2017), etc. However, all types of knowledge
are manually defined, which may not fully conform with the information contained in the teacher
network. In other words, teacher is trained independently from these handcraft definitions, but
is required to guide the student with such knowledge, which may cause some ambiguities. For the
second issue, previous approaches do not solve the problem caused by the gaps between the learning
abilities of student and teacher. Intuitively, student model has much less parameters compared to
teacher, resulting in lower representation capability. Training it from scratch may always lead to
poor performance.

In this paper, we address these weaknesses by proposing a task independent knowledge transfer
approach, where student is trained to mimic features from teacher stage by stage. Here, for
simplicity, we do not distinguish between feature and feature map. It has two appealing properties.

First, we isolate the knowledge contained in teacher model from the information provided by
ground-truth. This goal is achieved with two phases. In the first phase, student learns knowledge
by mimicking the output features of teacher, while in the second phase, student is trained with task
dependent objection function based on the features from first phase. In this way, student can focus
on acquiring information from only one source in each phase, making the transfer process more
accurate. Separating these two phases apart also makes our method more generic to various tasks.
Besides, we directly treat features as knowledge in this work. Since teacher model just uses features
for inference in practice, they are expected to contain the compete information extracted by teacher
from training data.

Second, instead of training all parameters of student together, we divide the transfer process into
different stages and only train a sub-network at one time. Student network has far more limited
representation ability than teacher, resulting in the huge difficulty to mimic the final features directly.
To alleviate such obstacle, we let the student to learn from teacher gradually. In other words, both
teacher network and student network are separated into sequential parts. Then, in each stage, one
part of student will be trained to mimic the output of the corresponding part of teacher with all
previous parts fixed. In doing so, the gap between learning powers between student and teacher
is narrowed down. As long as each stage is well trained, they will finally collaborate to achieve
appealing results.

To summarize, the contributions of this work are as follows:

• We demonstrate the effectiveness of mimicking features directly in task independent
knowledge transfer.

• We present a stage-by-stage training strategy to learn features accurately and efficiently.

• We show experimentally that our approach surpasses the state-of-the-art methods on
various tasks with higher performance and stronger stability.

2 RELATED WORK

There have been several attempts in the literature to reduce computational cost by model compres-
sion. Network pruning was proposed to find a balance between performance and storage capacity
by removing redundant structures of the network. Molchanov et al. (2017) and Li et al. (2017)
introduced different criteria to evaluate the importance of neurons and filter out the insignificant
channels to reduce the network size. Besides, quantization (Courbariaux et al., 2016), which uses
fewer bits for each neuron, and low-rank approximation (Zhang et al., 2015), which factorizes a huge
matrix with several small matrices, are also widely applied for model acceleration. In this work, we
focus on the other model acceleration technique, knowledge transfer, where a shallow student model
is trained to gain information from a deep teacher model.

The preliminary view of knowledge transfer was adopted in Ba & Caruana (2014), which makes
a shallow network to learn from a deep network by using data labeled by the deep one. Hinton
et al. (2014) introduced the concept of Knowledge Distillation (KD), which describes the process
of compression as a student learning from a teacher and trying to get similar outputs as teacher.
To achieve this goal, the student model is trained with not only the original classification label, but
also the class probabilities produced by teacher. Both of these two methods consider the soft label
prediction as the key knowledge from teacher model. However, such soft target is not well defined

2



Under review as a conference paper at ICLR 2019

in other tasks, limiting their applications. In addition, KD is very sensitive to the temperature in the
softmax function, and the performance drops severely when the number of classes is very small.

To solve the above problem, Romero et al. (2015) presented FitNets by introducing an intermediate
layer as hint for student. Instead of merely learning the soft probabilities, student can also get
feature-level knowledge by mimicking the output feature map of the hint layer. Furthermore, FitNets
is formulated as a two-stage training, where the student network can get a better initialization in
the first stage. Different from FitNets, stages in our framework are trained separately, i.e. only
parameters of a sub-network will be updated in one stage while others will be fixed. In this way, we
can prevent the transferred knowledge vanishing and speed up the mimicking process as well.

Inspired by FitNets, various types of knowledge have been proposed to assist student to get better
results. Zagoruyko & Komodakis (2017) attempted to transfer spatial attention map, which is
defined as the statistics of feature maps across the channel dimension. Huang & Wang (2017)
proposed to learn feature map through Maximum Mean Discrepancy (MMD), which can be regarded
as a sample-based metric to measure the distance between two probability distributions. Yim et al.
(2017) used Flow of Solution Procedure (FSP) to describe the information flow of a CNN model,
which computes the Gram matrix of features from two layers. Similarly, Lee et al. (2018) applied
Singular Value Decomposition (SVD) to derive the correlation between two features and forced
student to learn such distilled information.

However, all the above methods, no matter single-stage or multiple-stages, learning from probabili-
ties or features, using MMD or SVD as the description of the relationship between features, do not
treat knowledge transfer as a task independent problem. They combine their proposed methods with
the original task loss together, which leads to three main problems: (1) Poor stability, since they
are sensitive to the hyper-parameters, such as the weights to balance different loss terms; (2) Huge
limitations, as some specific designs hinder their migration to other tasks; (3) Low performance,
because the knowledge from teacher and the information from original data are not always aligned
with each other. Moreover, existing methods lack an effective solution to close the enormous gap of
learning abilities between student and teacher.

On the contrary, we propose to transfer the knowledge from network level instead of task level,
leading to a much more general solution which can be easily integrated into different scenarios.
Besides, we introduce a stage-by-stage training strategy to reduce the representation capability
difference between shallow and deep models in each stage. Similar to our method, a recent work
(Wang et al., 2018) mentioned a progressive block-wise training scheme. However, in their work,
when training a particular block, the latter blocks of student should be replaced by those of teacher
temporarily to make sure the original task loss can be applied. Accordingly, all blocks should be
computed at each stage, which is very time consuming. Besides, the block conversion between
teacher and student may also cause some confusions to student. By contrast, our approach is much
more efficient and accurate.

There is also some work introducing reinforcement learning (Ashok et al., 2018) and adversarial
network (Belagiannis et al., 2018) to model compression problem. However, training these networks
is still not trivial for now, e.g. how to design the networks, how to update the parameters, how to
formulate the reward in reinforcement learning, or how to establish the competition in adversarial
nets. Even so, we still would like to appreciate their contributions.

3 PROPOSED METHOD

Figure 1 illustrates our method where student mimics features from teacher stage by stage. Before
going into details, we will introduce two observations to explain our motivation intuitively.

Observation 1. In general, most deep CNN models can be regarded as two parts, which are feature
extraction and feature application. More specifically, given an image, the first part will interpret
it as a high dimensional feature, and then the second part will take such representation as input
and output a prediction for some specific tasks. Taking classification task as an example, after
characterizing an input sample as a feature vector, the classification model engages a fully-connected
(fc) layer followed by a softmax function to predict the probabilities of this sample for different
classes. Similarly, this is also applicable to detection model, such as RetinaNet (Lin et al., 2017b),
which uses a backbone structure to extract feature map as well as subnets to predict bounding boxes.

3



Under review as a conference paper at ICLR 2019

Stage 1

⋯

⋯

⋯

Teacher

Student

Stage 2 Stage 3 Stage 𝑲𝑲 Final Stage

mimicking loss ℒ𝑆𝑆3

𝐱𝐱 𝐟𝐟1𝑆𝑆 𝐟𝐟2𝑆𝑆 𝐟𝐟3𝑆𝑆 𝐟𝐟𝐾𝐾−1𝑆𝑆 𝐟𝐟𝐾𝐾𝑆𝑆𝑆𝑆1 � 𝑆𝑆2 � 𝑆𝑆3 � 𝑆𝑆𝐾𝐾 �

𝐱𝐱 𝐟𝐟1𝑇𝑇 𝐟𝐟2𝑇𝑇 𝐟𝐟3𝑇𝑇 𝐟𝐟𝐾𝐾−1𝑇𝑇 𝐟𝐟𝐾𝐾𝑇𝑇𝑇𝑇1 � 𝑇𝑇2 � 𝑇𝑇3 � 𝑇𝑇𝐾𝐾 � 𝑇𝑇𝐹𝐹 �

𝑆𝑆𝐹𝐹 �

�𝑦𝑦𝑇𝑇

�𝑦𝑦𝑆𝑆

Figure 1: Overview of the proposed stage-by-stage knowledge transfer approach. Both teacher
and student models are divided into K stages, where the number of rectangular bars indicates the
depth of the sub-network. Student is trained to mimic the output feature of teacher at each stage and
the output feature of the K-th stage can be finally applied to different tasks. Note that we do not
transfer the knowledge in the final stage, since teacher and student share the same network structure
in this stage. When training a particular stage, as shown in green color, all parameters in previous
well-trained stages are fixed. Red dashed arrow shows the backward propagation. Better viewed in
color.

For simplicity, both feature and feature map are called features in this work, no matter it is a 1D
vector, 2D matrix or a 3D tensor.

Observation 2. In the two parts mentioned above, the only difference between student and teacher
is the ability to extract features from images, because they share the same structure in how to use
these features. For example, in classification task, the fully-connected layer of student has the
same number of parameters as that of teacher, resulting in equal capability in converting features
to probabilities. In other words, if the student could produce identical feature as teacher, it should
be able to achieve as promising performance as teacher. In this way, when transferring knowledge
from teacher to student, we should focus on the feature extraction part instead of the entire network.
Another advantage in doing so is that student gains all the information from teacher and does not
need to learn from the labelled data, making it a generic solution which is independent from tasks.

3.1 FEATURE TRANSFER

As discussed before, given an input image x, a CNN model M(·) makes inference through two
steps. The first step is called feature extractor ME(·), which encodes the image to feature space
with f = ME(x). Then, the second step, which is termed as final stage MF (·) in this work, aims
at predicting the ground-truth y based on the feature from first step by producing ŷ = MF (f).
Therefore, we have

M = MF ◦ME , (1)

where ◦ indicates the function composition.

Then the model can be trained with objective function

min
ΘM

LM = φ(y,M(x)), (2)

where ΘM , consisting of ΘME
and ΘMF

, is the trainable parameters of the entire model. φ is the
task-related energy function, such as softmax cross-entropy loss in classification task, bounding box
regression loss in detection task, etc.

To transfer knowledge, we employ a shallow student model S(·) to learn from a deep teacher
model T (·), which has been well trained with Eq.(2). However, unlike existing methods where
student is trained to acquire information from teacher and minimize the original task loss in Eq.(2)
simultaneously, we divide the training process into two phases, feature learning and task adaption,
corresponding to the above two steps respectively.

In the first phase, student tries to mimic the output feature fT = TE(x) from teacher with

min
ΘSE

LSE
= d(fT , SE(x)), (3)

4



Under review as a conference paper at ICLR 2019

where d(·, ·) is a metric to measure the distance between two features. Actually, there are many
choices of d(·, ·), such as l1 distance, l2 distance, KL divergence, JS divergence, etc. But the
attempts on different losses are out of the scope of this work, and we just use the l2 distance in
our experiments.

In the phase of task adaption, student learns to apply features for different tasks by minimizing
Eq.(2). However, different from the training of teacher, we fix the parameters ΘSE

to prevent the
transferred knowledge vanishing, and only ΘSF

is updated. As mentioned before, SF (·) and TF (·)
have the same learning ability, thus there is no need to use teacher to guide student in this step any
more. In other words, we transfer knowledge from teacher to student in the first step, and train
student how to apply the features for some certain tasks in the second step.

3.2 STAGE-BY-STAGE TRAINING SCHEME

From discussion above, it is crucial for our method that student can learn similar features as teacher.
However, considering the wide difference between the representation capabilities of these two
models, the goal is not that easy to achieve through simple end-to-end learning. To tackle this
problem, we break them down into multiple stages, as shown in Figure 1. It is much easier for
student to mimic the output of teacher in each stage. Taking teacher model as an instance, we have

fT0 = x, (4)

fTi = Ti(f
T
i−1) i = 1, 2, · · · ,K, (5)

TE = T1 ◦ T2 ◦ · · · ◦ TK , (6)

whereK is the total number of stages, excluding the final task adaption stage. fTi is the output feature
of the i-th stage in teacher network, while fT0 is the initial feature, i.e. the image fed into the network.
Ti(·) is the sub-network of teacher model in each stage, and the feature encoder TE(·), which is
defined in Section 3.1, can be considered as a composition of a set of sub-networks. Similarly,
student feature encoder is also divided into K stages.

Under such separation, we propose to train the student model stage by stage with

min
ΘSi

LSi = d(fTi , Si(f
S
i−1)), (7)

where d(·, ·) is same with that in Eq.(3). Taking after the training strategy for final stage mentioned
in Section 3.1, we fix all parameters in previous stages when training a new stage, to prevent the
transferred knowledge vanishing. That is to say, only a subset of parameters will be updated at each
stage in this scheme. Therefore, even though we have more stages than the conventional end-to-end
training, the computational cost of training process almost remains the same, making our method
not only accurate but also efficient.

Note that how to break down teacher and student models is worth studying in this framework, but
is also out of the scope of this work. We just use the down-sampling layers of the network (or
up-sampling layers in some particular structure) as the breakpoints.

4 EXPERIMENTS

To evaluate the performance of our proposed method, we carry out various experiments on different
datasets and different tasks. Section 4.1 briefly introduces the basic settings used in our experiments.
Section 4.2 conducts a series of comparative experiments to verify the importance of learning
good features in CNN model. Section 4.3 demonstrates the efficiency of the novel stage-by-stage
feature transfer scheme. Section 4.4 explores our approach on classification and detection tasks and
compares with other state-of-the-art knowledge transfer methods.

4.1 EXPERIMENTAL SETTINGS

We evaluate our feature transfer method on several standard datasets, including CIFAR-100
(Krizhevsky & Hinton, 2009), ImageNet (Krizhevsky et al., 2012) and COCO (Lin et al., 2014).
Among them, CIFAR-100 and ImageNet are used for classification task, while COCO is for

5



Under review as a conference paper at ICLR 2019

Table 1: Experiments on features with ImageNet dataset.

Experiment Model top1 top5
student ResNet-18 69.572 89.244
student (fixed feature) ResNet-18 69.952 89.242

teacher ResNet-34 73.554 91.456
teacher (fixed feature) ResNet-34 73.532 91.439
teacher (fixed first block) ResNet-34 73.547 91.458

KD (Hinton et al., 2014) ResNet-18 70.759 89.806
KD (fixed feature) ResNet-18 70.752 89.837

detection task. For classification task, a pre-trained ResNet-34 (He et al., 2016) is employed as
teacher model and a shallower network, ResNet-18, is adopted as student model. We also present
experimental results on detection task with RetinaNet following settings in Lin et al. (2017b).
ResNet-101 (Lin et al., 2017a) and ResNet-50 are applied as teacher student models respectively.

To further validate the effectiveness of our method, a set of comparison experiments have been done
with state-of-the-art knowledge transfer approaches, including KD (Hinton et al., 2014), FitNets
(Romero et al., 2015), AT (Zagoruyko & Komodakis, 2017) and NST (Huang & Wang, 2017). We
set T = 4 and λ = 16 in KD following the settings in (Hinton et al., 2014). For FitNets, AT and
NST, the transfer loss is calculated with 4 outputs of each residual block in classification task, and
with 4 feature maps fed into Feature Pyramid Network (FPN) in detection task.

4.2 PRELIMINARY EXPERIMENTS ON FEATURES

In this section, we set up a series of experiments to show the importance of features and the
sufficiency of training a model with fixed well-learned features. We take classification task on
ImageNet as an example. As discussed in Observation 1 of Section 3, the whole network can be
divided into two parts, which are feature extraction part before fully-connected (fc) layer and the
softmax-activated fc layer as the classifier part.

Given a model, student or teacher, we firstly train the entire network with task-related objective
function. Then we randomly re-initialize the fc layer, fix the feature extraction part, and merely
train fc layer with same loss. As shown in the first four lines in Table 1, as long as the network can
learn good enough features for follow-up task, no matter shallow (student) or deep (teacher), it will
always achieve nearly the same results as end-to-end training. We also experiment on relaxing the
fixed part to the first residual block and start training from the second block. It turns out that there
is no real distinction in where to break up the model. This is also the basis for the feasibility of our
proposed stage-by-stage feature transfer scheme.

To further prove whether this conclusion is applicable for knowledge transfer, we conduct the same
experiment on the classic KD method (Hinton et al., 2014). As shown in the last two lines in Table
1, after the transfer process, even the feature is fixed, KD can still achieve competitive results. It
suggests that learning distilled knowledge just help student to get a better feature representation than
learning from scratch. Under this conclusion, if student can learn an identical feature from teacher,
then the left part of the network should have the ability to get to the same performance as teacher,
even without the supervision from teacher. Therefore, we argue that it is much more efficient to
make student directly mimic the output features of teacher.

4.3 STAGE-BY-STAGE LEARNING

To show the effectiveness of training with multiple stages, we apply experiments on CIFAR-100
by using different number of stages. ResNet-18 and ResNet-34 are adopted as student model and
teacher model respectively, and the network is divided into 4 blocks using down-sampling layers as
breakpoints. We train four independent student models with 1 ∼ 4 stages respectively, in addition to
a final stage to fine-tune the classifier layer. Here, one stage indicates an end-to-end feature learning,
two-stages strategy trains the first block independently from other parts, and so on and so force.

6



Under review as a conference paper at ICLR 2019

Table 2: Experiments on number of training stages with CIFAR-100 dataset.

Method Model top1 top5
student ResNet-18 68.062 89.598
teacher ResNet-34 73.045 90.545

1 stage ResNet-18 70.371 89.100
2 stages ResNet-18 71.223 90.000
3 stages ResNet-18 72.321 90.795
4 stages ResNet-18 72.768 91.396

When training a new stage, all previous stages are fixed and only the parameters in the sub-network
of current stage will be updated. Besides the number of stages, we keep all other hyper-parameters
same.

Table 2 summarizes the results. It is not hard to tell that all these four models achieve higher accuracy
than the baseline of student model, which is the first line in Table 2. Furthermore, along with the
number of training stages increasing, the performance gets better and better. Training with 4 stages,
which is the final version of our method, achieves 4.7% improvement in top1 accuracy compared
with the baseline model, and 2.4% compared with the single stage model. This benefits from the
narrowed gap between student and teacher in each stage. In this way, it is much easier to transfer
knowledge between these two models. Consequently, for teachers with more layers or with more
complicated structures, we can add more stages to improve the performance of student by following
this strategy.

4.4 KNOWLEDGE TRANSFER ON DIFFERENT TASKS

In this section, we compare our approach with other state-of-the-art knowledge transfer methods
on different tasks, including image classification and objective detection. Note that we use exactly
the same training settings, e.g. learning rate and optimizer type, when performing experiments on
different tasks (or datasets), to verify that our method can be generally applied for various problems.

4.4.1 IMAGE CLASSIFICATION

For classification task, we apply CIFAR-100 and ImageNet as validation datasets to evaluate how
our framework can fit with various numbers of classes. With the same setting in Section 4.3, we
employ ResNet-18 and ResNet-34 as student and teacher respectively, and use 4 stages in the training
process.

Evaluation on CIFAR-100. We firstly start with CIFAR-100 dataset which consists of 50K training
images and 10K testing images from 100 classes. Table 3 shows the comparison results. Our
proposed stage-by-stage feature transfer scheme surpasses other work in both top1 accuracy and
top5 accuracy. We even achieve similar performance as teacher model, suggesting that student in
our approach collects as much information from teacher as possible.

Evaluation on ImageNet. We also conduct large-scale experiments on ImageNet dataset, which
includes over 1M training images and 50K testing images collected from 1,000 categories. As shown
in Table 4, our method also achieves the best results. In addition, by comparing Table 3 and Table 4,
we can tell that other methods perform inconsistently on different datasets. For example, although
learning attention map in AT method (Zagoruyko & Komodakis, 2017) works well on ImageNet,
the accuracy drops a lot when it is applied to CIFAR-100. Similarly, FitNets (Romero et al., 2015)
achieves good transfer on CIFAR-100, but fails on ImageNet. That is because the design of these
methods is highly sensitive to the hyper-parameters, making them share discrepancies on different
datasets. Compared to them, our method, which focuses on transferring knowledge from network to
network independently from tasks, shows much stronger stability.

7



Under review as a conference paper at ICLR 2019

Table 3: Comparison results of image classification task on CIFAR-100 dataset.

Method Model top1 top5
student ResNet-18 68.062 89.598
teacher ResNet-34 73.045 90.545

KD (Hinton et al., 2014) ResNet-18 72.393 91.062
FitNets (Romero et al., 2015) ResNet-18 71.662 90.277
AT (Zagoruyko & Komodakis, 2017) ResNet-18 70.741 90.036
NST (Huang & Wang, 2017) ResNet-18 70.482 89.241
ours ResNet-18 72.786 91.396

Table 4: Comparison results of image classification task on ImageNet dataset.

Method Model top1 top5
student ResNet-18 69.572 89.244
teacher ResNet-34 73.554 91.456

KD (Hinton et al., 2014) ResNet-18 70.759 89.806
FitNets (Romero et al., 2015) ResNet-18 70.662 89.232
AT (Zagoruyko & Komodakis, 2017) ResNet-18 71.237 90.146
NST (Huang & Wang, 2017) ResNet-18 70.762 89.586
ours ResNet-18 71.361 90.496

Table 5: Comparison results of object detection task on COCO benchmark.

Method Backbone mAP AP50 AP75 APS APM APL

student ResNet-50 35.5 55.6 38.5 17.8 39.1 47.7
teacher ResNet-101 38.7 58.7 41.9 21.5 42.3 49.9

FitNets (Romero et al., 2015) ResNet-50 36.2 55.3 39.1 19.0 40.6 48.5
AT (Zagoruyko & Komodakis, 2017) ResNet-50 35.9 54.7 38.2 19.3 39.6 46.6
NST (Huang & Wang, 2017) ResNet-50 35.7 54.3 38.0 18.6 39.7 46.8
ours ResNet-50 36.5 55.6 39.4 19.5 40.7 48.8

4.4.2 OBJECT DETECTION

To further prove that our method is task independent, we also conduct experiments on detection
tasks. As described in Section 4.1, we use RetinaNet (Lin et al., 2017b) as the detection framework,
and employ ResNet-50 and ResNet-101 as the backbones of student and teacher respectively. The
feature mimicking part is trained in the same way as classification task in Section 4.4.1. We do not
compare with KD method in this task, since soft target can not be directly applied to bounding box
regression in objection detection.

From the results in Table 5, we can see that our method outperforms the baseline model with
1.0% mean Average Precision (mAP) and also surpasses all the other methods, demonstrating the
effectiveness of our approach.

Furthermore, by comparing the performance of each method on different tasks, we find that previous
work is not as stable as ours, consistent with the conclusion in Section 4.4.1, where a same approach
shows different performance on different datasets. This situation is caused by combining the
knowledge transfer loss and the task loss together. Although teacher is trained with task loss as well,
it is able to filter out some impractical information from original data. Such distillation requires
strong learning ability, which the student model does not possess. This is also the reason why we
require a teacher model to guide the student. However, mixing these two objective functions together
will cause the confusion of the student, since it has no idea about which information, filtered by
teacher or extracted from raw data, is more accurate. In other words, mimicking loss and target loss
are not always consistent with each other. On the contrary, our method divides the whole process

8



Under review as a conference paper at ICLR 2019

into feature learning stage and final stage, which are trained with these two losses independently,
leading to stronger stability.

5 CONCLUSION

This work presents a stage-by-stage knowledge transfer approach by training student to mimic the
output features of teacher network gradually. Compared to prior work, our method pays more
attention to the information contained in the model, regardless of what task the model is applied for,
making it a generic solution for model acceleration. The progressive training strategy helps reduce
the learning difficulties of student in each stage, and all stages cooperate together for a better result.
Extensive experimental results suggest that our scheme can significantly improve the performance
of student model on various tasks with strong stability.

REFERENCES

Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and Kris M. Kitani. N2n learning: Network to
network compression via policy gradient reinforcement learning. In ICLR, 2018.

Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In NIPS, 2014.

Vasileios Belagiannis, Azade Farshad, and Fabio Galasso. Adversarial network compression. arXiv
preprint arXiv:1803.10750, 2018.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. TPAMI, 2018.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1
or -1. arXiv preprint arXiv:1602.02830, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS Workshop, 2014.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

Zehao Huang and Naiyan Wang. Like what you like: Knowledge distill via neuron selectivity
transfer. arXiv preprint arXiv:1707.01219, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012.

Seung Hyun Lee, Dae Ha Kim, and Byung Cheol Song. Self-supervised knowledge distillation
using singular value decomposition. In ECCV, 2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In ICLR, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

9



Under review as a conference paper at ICLR 2019

Tsung Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In CVPR, 2017a.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In ICCV, 2017b.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In ICLR, 2017.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Hui Wang, Hanbin Zhao, Xi Li, and Xu Tan. Progressive blockwise knowledge distillation for neural
network acceleration. In IJCAI, 2018.

Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning. In CVPR, 2017.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. In ICLR, 2017.

Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and Jian Sun. Efficient and accurate
approximations of nonlinear convolutional networks. In CVPR, 2015.

10


	Introduction
	Related Work
	Proposed Method
	Feature Transfer
	Stage-by-Stage Training Scheme

	Experiments
	Experimental Settings
	Preliminary Experiments on Features
	Stage-by-Stage Learning
	Knowledge Transfer on Different Tasks
	Image Classification
	Object Detection


	Conclusion

