
Under review as a conference paper at ICLR 2020

PROACTIVE SEQUENCE GENERATOR VIA KNOWLEDGE
ACQUISITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequence-to-sequence models such as transformers, which are now being used in
a wide variety of NLP tasks, typically need to have very high capacity in order to
perform well. Unfortunately, in production, memory size and inference speed are
all strictly constrained. To address this problem, Knowledge Distillation (KD),
a technique to train small models to mimic larger pre-trained models, has drawn
lots of attention. The KD approach basically attempts to maximize recall, i.e.,
ranking Top-k” tokens in teacher models as higher as possible, however, whereas
precision is more important for sequence generation because of exposure bias.
Motivated by this, we develop Knowledge Acquisition (KA) where student mod-
els receive logq(yt|y<t,x) as rewards when producing the next token yt given
previous tokens y<t and the source sentence x. We demonstrate the effective-
ness of our approach on WMT’17 De-En and IWSLT’15 Th-En translation tasks,
with experimental results showing that our approach gains +0.7-1.1 BLEU score
compared to token-level knowledge distillation.

1 INTRODUCTION

We have recently witnessed rapid progress sequence models for natural language processing (NLP).
In particular, transformers (Vaswani et al., 2017; Dai et al., 2019) and BERT (Devlin et al., 2018;
Liu et al., 2019) have been established as state-of-the-art approaches for sequence generation and
language modeling respectively. However, the resulting sequence models are often exceedingly
large. For example, a big transformer with 6 layers, 1024 dim and 16 heads has∼ 100M parameters,
which can make production deployment impractical, especially on mobile devices.
Unfortunately, learning small sequence models is very challenging because of the nature of deep
learning - curve fitting. Training deep neural networks is data hungry and needs bigger “brains”. To
deal with the challenges, Kim & Rush (2016) consider applying Knowledge Distillation approaches
(Hinton et al., 2015) to match the distribution of the teacher model. At token-level, KD approaches
minimize DKL(q(yt|y<t,x)‖p(yt|y<t,x)) where q(yt|y<t,x) [teacher] or p(yt|y<t,x) [stu-
dent] is a probability distribution over tokens in the vocabulary conditioned on previous tokens
y<t and the source sentence x. In other words, the KD approaches maximize recall - the frac-
tion of the top-k” tokens in q(yt|y<t,x) have been retrieved among the top-k′ in p(yt|y<t,x).
However, sequence modeling actually cares about precision - the fraction of the top-k′ tokens in
p(yt|y<t,x) are included in the top-k” of q(yt|y<t,x), because imperfect predictions in the top-k′
cause exposure bias at inference time.
To optimize precision, we attempt to minimize KL-divergence in the reverse order, that is,
DKL(p(yt|y<t,x)‖q(yt|y<t,x)). Our approach can be thought of as a kind of Actor-Critic ap-
proach where the “Actor” is a student model asking for advice when learning to generate every
single token and the “Critic” is a teacher model that gives logq(yt|y<t,x)) as rewards. After re-
ceiving the feedback, “Actor” updates it’s belief accordingly, as shown in Fig. 1.
Unlike task-specific metrics such as BLEU score, teacher models summarize training data points and
structure knowledge in an abstract, hierarchical manner. Therefore, they are able to offer more useful
advice than matching n-grams with a finite number of human references. For example, assume there
is a training example {SRC: “Die Landschaft am Meer ist wunderschn”, TRG: “Amazing view along
the sea” }. During learning, given the first token “Amazing”, student models might ask “How about
saying amazing view?”, teacher models most likely give high rewards since it’s expected to go with

1

Under review as a conference paper at ICLR 2020

(a) Token-level Matching. (b) Learning strategy.
Figure 1: Student-Teacher learning system. (a) Given previous tokens (yellow), the student model
asks feedback for producing a token, e.g., “view”, and the teacher model gives rewards, e.g.,
logq(“view”|“Amazing”,x). (b) The difference in learning strategy matters! We ignore y<t and x for sim-
plicity. We flip the sign of gradients and demonstrate them in the 2nd row. When q(yt) dominates p(yt), the
gradients less than 0 (magenta) and p(yt) ↑. In contrast, when p(yt) dominates q(yt), the gradients greater
than 0 (cyan) and p(yt) ↓. More importantly, KA pulls the probability of “view” and “scene” more gently but
push the probability of “bird” and “boat” much harder compared to KD. In other words, KD attempts to rank
“view”, “scene” higher to increase recall, while KA aims at reducing the chance of “bird” and “boat” being
picked to maximize precision.

“Amazing view of the seaside, of the boats in the sea
of the beach, from the boats
· · · , · · ·
along the sea, of the birds flying over the water

”, where most of them express similar meanings with the human references even though they have
mismatched n-grams.
Contributions. To the best of our knowledge, we are the first to provide a depth-analysis of the

effects of minimizing DKL(p‖q) on alleviating exposure bias. In addition, we enable stable re-
inforcement training via replacing task-specific metrics with high-capacity models. Finally, we
improved +1.1 BLEU score on WMT’17 de-en task and +0.7 BLEU score on IWSLT’15 th-en task
over token-level KD with up to relative 200% improvement.

2 SEQUENCE GENERATION

Let (x,y) ∈ (X ,Y) be an example translation pair, where x is the source sentence and y is the target
sentence. yt is the token at position t and y<t is tokens before position t. Sutskever et al. (2014)
propose sequence-to-sequence models which typically factorize the joint probability p(y | x) over
a sequence of conditional probabilities with parameter θ:

p
(
y|x
)
=

T∏
t=0

pθ
(
yt | y<t,x

)
(1)

where, pθ(yt | y<t,x) is the probability of the token yt given previous tokens y<t and the source
sentence x. Basically, the preceding tokens y<t are encoded into the hidden states via a state tran-
sition function

ht = f(ht−1,yt−1;x) (2)
By substituting Eqn.(2) for Eqn.(1), we have

p
(
y|x
)
=

T∏
t=0

pθ(yt | ht)︸ ︷︷ ︸
Policy π

(3)

This tells us that the sequence models, e.g., RNNs, acts like a stochastic policy which picks a discrete
action, i.e., producing a token yt ∈ V , running on a world modelM with transition function f .
Training. We minimize the cross-entropy loss

LCE = −
∑
t

logpθ
(
yreft | yref<t ,x

)
(4)

2

Under review as a conference paper at ICLR 2020

where, yref denotes human references. At each position, the models are conditioned on the ground-
truth tokens annotated by humans no matter what tokens are predicted by themselves.
Inference. In sequence generation tasks, exact inference is intractable due to exponentially large
search space. Instead, we apply an approximation inference algorithm - Beam Search (BS). BS is
a greedy heuristic search that maintains the top-B most likely partial sequences through the search
tree, where B is referred to as the beam size. At each position, BS expands these B partial sequences
to all possible beam extensions and then selects the B highest scoring among the expansions. Unlike
training, ground-truth tokens are not available. The models have to use their own predictions in
decoding.
Evaluation. To evaluate the quality of generated sequences, we typically use metrics such as BLEU
score to measure their n-grams overlap with human references. However, the standard metrics are
problematic and none of them correlate strongly with human evaluation at the level of individual
sentences. For example, given a human reference “Amazing view along the sea”, the sequence ”The
scenery of the seaside is beautiful” gets low BLEU score because there is no matching n-grams of
order 2, 3, or 4. In addition, human references are a few sentences lacking in diversity. For example,
when asking more people, they might say “A nice beach” or “ what amazing view of the seashore”.

2.1 DISCREPANCY AMONG PROCEDURES

Exposure bias. During training, the models only explore the training data distribution, but never
get exposed to their own predictions. Searching in under-explored space causes errors. More im-
portantly, such errors accumulate over time because of greedy search. For the example in Sec. 1,
assume there are no sentences in training data starting with “Amazing”.

At position 1: pick a token from p(y|“Amazing”,x)⇒ “cup”
At position 2: pick a token from p(y|“Amazing cup”,x)⇒ “on”
At position 3: pick a token from p(y|“Amazing cup on”,x)⇒ “table”

We can see that the poor token “cup” caused by the noisy distribution p(y|“Amazing”,x) makes the
situation even worse. The distributions become more and more noisy and the generation goes far
away.
Sub-optimal models. The training objective is different with the metrics used in evaluation. To
address this issue, some works attempt to directly optimize the metrics. It definitely helps improving
the score, but we suspect that this might hurt the models because poor metrics discourage learning
the semantic meanings. For example, the low score of “The scenery of the seaside is beautiful”
makes the meanings of “Amazing” and “beautiful” or “seaside” and “sea” far from the other.

3 KNOWLEDGE ACQUISITION

Unlike knowledge distillation, we attempt to minimize

DKL
[
pθ(yt | ht)‖qφ(yt | ht)

]
(5)

= −
[
Eyt∼pθ(yt|bt)

[
logqφ(yt | ht)

]
+H

[
pθ(yt | ht)

]]
(6)

Eqn.6 can be explained as an Actor-Critic algorithm (Konda & Tsitsiklis, 2000) that maximizes the
expected rewards with an entropy term, where

“Critic”: (aka teacher models) estimate the rewards of producing token yt given preceding
tokens y<t and the source sentence x, i.e.,

Q(a = yt, s = ht) = logqφ(yt | ht) (7)
“Actor”: updates the policy pθ(yt | ht) guided by the ”Critic”

As opposed to behavior cloning, student models ask teacher models to evaluate their behaviors and
then update accordingly when producing the next token. By comparing with KD that attempts to
minimize DKL

[
q‖p

]
, our approach is actually a kind of reverse KD, which we call ”Knowledge

Acquisition” (KA).

3.1 LEARNING STRATEGY

Without loss of generality, we simplify the problem to a 1-D problem where the student model p(x)
is a single-modal Gaussian and the teacher model q(x) is a mixture of two Gaussians, as shown in

3

Under review as a conference paper at ICLR 2020

(a) p(x) and q(x) (b) Gradients
Figure 2: Matching two 1-D distributions. (a) p(x) and q(x). (b) The derivatives of DKL w.r.t p(x) in both
orders. DKL(q(x)‖p(x)) pulls more on x where q(x) > p(x) (blue region) while DKL(p(x)‖q(x)) pushes
more on x where p(x) > q(x) (red region).

Fig. 2. Let’s take a depth-analysis of their objective functions and their derivatives w.r.t. p(x) to see
what changes after swapping p(x) and q(x).

3.1.1 OBJECTIVE FUNCTIONS

The entropy term in Eqn.(6) goes away in KD because q(x) is a fixed value and never be optimized
during training. It’s clear that the entropy term helps to avoid over-fitting the model to human
references and generalize well on unseen test data.

3.1.2 DERIVATIVES

Based on Lagrangian relaxation (see Appendix A.1), the derivatives of DKL w.r.t. p(x) in both
orders are

∂DKL(q(x)||p(x))
∂p(x)

= 1− q(x)

p(x)︸ ︷︷ ︸
Gq‖p(x)

,
∂DKL(p(x)||q(x))

∂p(x)
= log

p(x)

q(x)︸ ︷︷ ︸
Gp‖q(x)

(8)

Eqn.(8) tells us that

(a) q(x) > p(x)⇒ Gq‖p(x) < 0 and Gp‖q(x) < 0

(b) q(x) < p(x)⇒ Gq‖p(x) > 0 and Gp‖q(x) > 0

That is, the probability of x is pulled up when q(x) dominates p(x), and pushed down otherwise.
However, they take efforts at different levels (see Appendix A.2).

In (a),
∣∣Gq‖p(x)

∣∣ > ∣∣Gp‖q(x)
∣∣ while in (b),

∣∣Gq‖p(x)
∣∣ < ∣∣Gp‖q(x)

∣∣
In other words, minimizing DKL(q(x)‖p(x)) attempts to pull up the probability of x that under-
estimated by the student models while minimizing DKL(p(x)‖q(x)) attempts to push down the the
probability of x that was over-estimated by the student models. If we define

Recallk′(p(x), k”) =

|p′s Top-k′ ∩ q′s Top-k”|
k”

(9)

Precisionk”(p(x), k
′) =

|p′s Top-k′ ∩ q′s Top-k”|
k′ (10)

where, p′s Top-k′ is a set including k′ items having the highest rankings in p(x) and q′s Top-k” is a
set including k” items having the highest rankings in q(x). Clearly, minimizing DKL(q(x)‖p(x)) is
to maximize recall because its role is to increase the chance that x’s in q′s Top-k” are truly picked.
By contrast, minimizing DKL(p(x)‖q(x)) is to maximize precision since its role is to avoid x’s
that are over-estimated being picked by mistake.
Overall, sequence modelling cares about precision because at test time, the generation is sensitive
to the model’s predictions. The errors caused by inaccurate predictions in the top-k′ accumulate and
make the generation brittle.

4

Under review as a conference paper at ICLR 2020

3.1.3 DOES THE DISTINCTION MATTER?

One might reasonably ask whether the distinction matters, given that both learning strategies aim to
eventually reach the same equilibrium point, i.e., p(x) = q(x)? In practice, the answer is yes due
to the following reasons:
Low-capacity p(x). In practice, student models are of limited capacity due to memory and inference
speed restrictions, especially in production. For example, running a big transformer on mobile
device with real-time response is impractical. In this case, the equilibrium state p(x) = q(x) is
unreachable. Thus, different learning strategies lead to different local optima, and result in different
performance.
Imperfect q(x). The teacher models are generally better approximations of the real underlying
distributions from which the training data is, but they are still not 100% accurate. In particular, the
exponentially-large search space makes sequence models easily over-fit to more frequently occurring
data points, while being uncertain about the data points that are less likely observed. Kim & Rush
(2016) also point out a mixture of DKL(q‖p) and cross-entropy loss reaches the best performance.
In summary, with the limited capacity and noisy q(x), picking what to learn smartly turns out to be
important.

3.2 TO BE PROACTIVE WITH RICH ADVICE

To further study the capability in exploration, we explicitly restrict the knowledge to be partially
observed by allowing only the top-k to be available. The DKL term becomes∑

x∈Top-k p(x)

p
(
x)
(
logp

(
x
)
− logq

(
x
))

where, Top-k p(x) is a set of k items with the highest ranking. Only p(x) and q(x) according to
the x in the top-k are calculated while the rest is discarded. Assume x is a discrete variable and
takes value 0, 1, 2, and 3. We build a quite simple model with a single soft-max layer to produce a
distribution over x, and set top-k=2. The real distribution is

q0 = 0.4, q1 = 0.3, q2 = 0.2, q3 = 0.1

Fig. 3 shows that KD drives p0 and p1 to the real values very quickly, but almost ignore p2 and p3

since they are not directly optimized. In contrast, KA first optimizes p0 and p2 which are the top-2.
After ∼ 100 epochs, when p0 and p1 become the top-2, the loss drops very fast and even lower
than that of KD. Moreover, KA drives p2 and p3 much closer to the real values since the model has
explored 3 states, i.e., x = 0, 1, 2.
In sequence generation tasks, if student models receive rewards at each position, the entire distribu-
tion is fully visible. KA implicitly explores in the above way.
In theory, we can generalize our approach to multi-step

Eyt:t′∼pθ(yt:t′ |ht)
[
logqφ(yt:t′ | ht)

]
+H

[
pθ(yt:t′ | ht)

]
(11)

i.e., minimizing DKL
(
pθ(yt:t′ |ht)‖qφ(yt:t′ |ht)

)
. yt:t′ are tokens starting with position t and end-

ing at position t′. By increasing t′-t, the student models can capture long-term dependency and are
much more capable of handling exposure bias. However, the training is expensive even with t′-t=2
since the search space explodes exponentially. In this case, picking top-k candidates is a solution.
However, in practice we only model the reward for a single step (but use the signal from all steps in
each batch update).

4 RELATED WORK

Our work closely relates to two lines of work: knowledge transfer and dealing with the mismatch
between training and inference procedures. Both of them have already been explored in the litera-
ture.
Learning 6= inference. To handle the mismatch between training and inference, previous works
attempt to directly optimize the task-specific metric at test time. Ranzato et al. (2015) propose
sequence-level training algorithm in reinforcement learning. The models receive rewards until the
completion of the entire sequence. Considering that the search space in sequence generation is
exponentially large, i.e., O(|V|T), where V is a set of tokens in the vocabulary (∼ 10K or more) and

5

Under review as a conference paper at ICLR 2020

(a) KD (b) KA
Figure 3: p(x) evolves over epochs. p0, p1, p2 and p3 are shown from top to bottom. Purple lines denote
p(x) and blue lines denote ground-truth q(x). p0 and p1 in KD converge to q0 and q1 in ∼ 30 epochs, while
p2 and p3 stay far away from the ground-truth q2 and q3 with respect to those in KA.

Table 1: Model configurations for WMT’17 De-En and IWSLT’15 Th-En

encoder decoder
layer dim head layer dim head

De-En student 6 512 4 1 512 4
teacher 6 1024 16 6 1024 16

Th-En student 1 128 1 1 128 1
teacher 3 256 2 1 256 2

T is the length of the sequence (∼ 20 or more), the rewards are extremely sparse. This makes the
training unstable. To alleviate the sparse rewards problem, Liu et al. (2017) use Monte Carlo rollouts
to estimate immediate rewards at each position. Unfortunately, the estimation is very noisy and of
high variance due to the exponentially large search space. Moreover, the training is computationally
expensive. In this paper, we attempt to use Actor-Critic algorithms, where the “Critic” is a teacher
model used to estimate action-value function, i.e., the rewards of producing the current token given
previous tokens, and the “Actor” is a student model that learns to produce a token at each position.
To deal with exposure bias, Bengio et al. (2015) propose to gradually replace tokens from human
references to generated tokens during training. The training starts with tokens from human ref-
erences and ends up with using generated tokens. However, the rewards which are the matching
n-grams with a few human references limits the capability of the models in exploration. In this pa-
per, we equip the models with knowledgeable teachers which offer smart advice based on semantic
meanings.
Transfer learning. In the context of sequence generation, pre-training with monolingual data (Rad-
ford et al., a;b) has had significant success in language understanding. Another line of work is
knowledge distillation (KD) (Hinton et al., 2015), in particular when models are of different archi-
tectures and sizes. Kim & Rush (2016) propose two levels of knowledge distillation. At sequence-
level, student models are trained on the augmented dataset with outputs of running beam search
with teacher models. At token-level, they get the conditional probability of each token given pre-
ceding tokens closer to that of teacher models. In other words, this is equivalent to minimizing
DKL(q‖p), where q is the distribution of teacher models and p is the distribution of student
models. Yu et al. (2017) use adversarial training to encourage the models producing human-like
sequences by learning a sequence-level discriminator to distinguish generated sequence and hu-
man references. In fact, this is equivalent to minimizing Jensen-Shannon Divergence (JSD, i.e.,
0.5∗DKL(q‖p)+0.5∗DKL(p‖q)), but at sequence-level. In this paper, we offer a thorough analy-
sis of the effects of minimizing DKL(p‖q) on avoiding exposure bias, and we find that minimizing
DKL(p‖q) performs the best among DKL(q‖p) and JSD.

6

Under review as a conference paper at ICLR 2020

(a) Accuracy vs. Top-k (b) No. of novel tokens
Figure 4: Ablation study on WMT’17 De-En task. (a) Accuracy on validation set with variable k. Larger k
means a larger part of distribution is observed. (b) Number of novel tokens emerge in the top-16. High number
indicates strong exploration in search space. We noticed that ∼80% probability mass are put on the top-16
tokens.

Table 2: BLEU scores on WMT’17 De-En and IWSLT’15 Th-En. (On test set)

Student Teacher KD KA 1/2KA+1/2KD

De-En 30.23 34.10 31.13 32.24 31.51
Th-En 12.37 17.55 12.70 13.36 12.93

5 EXPERIMENTS

5.1 DATASET

We test our approach on WMT 2017 German-English with 4M sentence pairs, validate on new-
stest2016 and test on newstest2017. All the sentences are first tokenized with moses tokenizer and
then segmented into 40K joint source and target byte pair encoding (Sennrich et al., 2015). Another
Thai-English dataset comes from IWSLT 2015. There are 90k sentence pairs in training and we take
2010/2011 as the dev set and 2012/2013 as the test set. Byte pair encoding is of size 10K.

5.2 TRAINING

Without a good starting point, the performance of minimizing DKL(p‖q) degrades because the
models are more than likely stuck on the current best tokens and unlikely to explore. We therefore
pre-train student models and fine-tune them in all the experiments by minimizing

LALL(y;x, θ, φ) = (1− λ)LNLL(y;x, θ) + λ
∑
t

DKL
(
pθ(yt | ht)‖qφ(yt | ht)

)
︸ ︷︷ ︸

DKL(qφ‖pθ)for KD

(12)

where, λ is trade-off parameters. Basically, “Critic” and “Actor” are optimized simultaneously.
However, in this paper, we simply freeze teacher models and leave joint training to future work.
Model. Our teacher models and students models all use the transformer architecture, which has
achieved state-of-the-art accuracy and is widely used in recent NMT research. Model configurations
are listed in Table.1. We train all transformer models using the implementation in Fairseq (Ott
et al., 2019). We use Adam optimizer (Kingma & Ba, 2014) with β0 = 0.9, β1 = 0.98, ε = 1e−8.
Learning rate is 0.0001 and dropout rate is 0.3. At inference time, we use beam search with a beam
size of 6 and length penalty 1.0.

5.3 RESULTS

Our results on NMT tasks are reported in Table.2. We tune hyper-parameters λ and top-k on vali-
dation set where λ = 0.5 for KD which is consistent with that in Kim & Rush (2016). We observed
that KA consistently outperforms KD on both De-En (high-resource) and Th-En (low-resource)
tasks by 0.7 - 1.1 BLEU score. In addition, we also test JSD (i.e., 1

2 KA + 1
2 KD), which is equiv-

alent to GAN. The accuracy lies between KA and KD. The results say that KA does help avoiding
exploration bias and further close the gap between training and inference.
Exploration. Similar to Sec.3.2, we evaluate the performance by allowing only top-k tokens to be
available. We vary k from 2 to 16 and conduct the experiments on validation set. In Fig. 4a, we

7

Under review as a conference paper at ICLR 2020

Table 3: Top-10 tokens in KD and KA over epochs. ([A] denotes the token the models are trying to produce at
the current position and B is the unique token included in one approach but not the other)

SRC: Ich werde mich in dieser Woche darum kmmern. SRC:Er knnte sich nicht frei bewegen.
TRG: I will [attend] to it this week TRG: He could [not] move freely.

KD

look, be, take, deal, do, work, care, consider, address, make not, be, do, move, ’t, never, hardly, avoid, have, remain
look, be, take, deal, work, do, make, consider, care, get not, be, do, move, no, avoid, never, stop, have, also
look, be, take, deal, work, do, care, make, consider, concern not, be, avoid, do, move, no, never, stop, make, have
ok, be, take, deal, make, work, do, care, get,concern not, be, move, do, never, no, avoid, have, make, stop
look, be, take, deal, work, do, make, care, get, concern not, be, move, do, avoid, no, make, never, have, also

KA

look, be, take, deal, do, work, care, consider, address, make not, be, do, move, ’t, never, hardly, avoid, have, remain
look, take, be, deal, care, work, do, make, try, consider not, be, move, avoid, never, do, no, fail, have, resist
take, look, be, deal, care, work, make, consider, do, give not, move, be, never, hardly, avoid, do, make, no, also
look, be, take, deal, work, make, consider, do, care, try not, move, be, avoid, never, hardly, no, do, refrain, fail
look, be, take, deal, make, work, see, do, get, consider not, move, be, avoid, never, no, hardly, do, make, go

see that the distribution is noisy because the accuracy of either KD or KA eventually goes down and
when using the full information, i.e., k = |V|, KD achieves 35.41 BLEU while KA achieves 35.79
BLEU, which are far away from the best. Moreover, KA is able to learn more from noise because
KD directly goes down as k increases, while the accuracy of KA goes up first and then drops after
k = 8.

Figure 5: Entropy over epochs.

To further analyze the capability in exploration, we at-
tempt to count the tokens in the top-k which have never
been included in previous epochs.∣∣∣{yt ∈ Top-k piθ(yt|ht)}

&{yt /∈ Top-k pjθ(yt|ht),∀j < i}
∣∣∣

where the superscript i denotes epoch. We randomly sam-
ple 2000 sentence pairs from WMT’17 De-En training
data. In Fig. 4b, we see that there are much more novel to-
kens in KA than that in KD. Table.3 demonstrates two ex-
amples. a) Given the prefix tokens “I will” and the source
sentence, KA probably imagines

try to attend? give attention? see to?

which provide different ways to express the meaning of attend, while KD just try to explore
concern. b) when predicting the token no, KA proposes a set of negative tokens

fail,resist,refrain

, and even go which may relate to the next token move.
Fig. 5 shows that the entropy of KA goes up while the entropy of KD dropping during fine-tuning.
This also indicates that KA motivates exploration more than KD.

6 CONCLUSION

We proposed a learning principle where student models actively ask for advice from teacher models.
The theoretical analysis proves that it helps to alleviate exposure bias in sequence generation and
improve the capability of generalization on unseen data. In general, our approach is extendable to
phase-level or sequence-level, but we simply focus on token-level due to practical issues. How-
ever, our token-level KA approach is complementary to sequence-level KD by using the outputs of
teacher models as extra data. Experimental results on benchmark translation data sets show that our
approach improves over previous methods of leveraging large models (or ensembles) to improve the
quality of smaller, more efficient models.

REFERENCES

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Sys-
tems, pp. 1171–1179, 2015.

8

Under review as a conference paper at ICLR 2020

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. CoRR,
abs/1901.02860, 2019. URL http://arxiv.org/abs/1901.02860.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama, and Kevin Murphy. Improved image cap-
tioning via policy gradient optimization of spider. In Proceedings of the IEEE international
conference on computer vision, pp. 873–881, 2017.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. a.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. b.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
ing with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

A APPENDIX

A.1 DERIVATIVES

• DKL(q(x)‖p(x)). The objective is

Minimize
∑

q(x) log(
q(x)

p(x)
), s.t.

∑
p(x) = 1 (13)

9

Under review as a conference paper at ICLR 2020

We write the Lagrangian for Eqn.13 as

Lq‖p(x, λ) =
∑

q(x) log(
q(x)

p(x)
) + λ

(∑
p(x)− 1

)
(14)

Method of Lagrangian multipliers involves setting the derivative of L
q‖p w.r.t p(x) to 0,

Gq‖p =
∂Lq‖p

∂p(x)
= λ− q(x)

p(x)
= 0 (15)

Using the fact that
∑

p(x) = 1, we can show that λ = 1.
• DKL(p(x)‖q(x)). The objective is

Minimize
∑

p(x) log(
p(x)

q(x)
), s.t.

∑
p(x) = 1 (16)

We write the Lagrangian for Eqn.16 as

Lp‖q(x, λ) =
∑

p(x) log(
p(x)

q(x)
) + λ

(∑
p(x)− 1

)
(17)

Method of Lagrangian multipliers involves setting the derivative of L
p‖q w.r.t p(x) to 0,

Gp‖q =
∂Lp‖q

∂p(x)
= 1 + λ+ log

p(x)

q(x)
= 0 (18)

Using the fact that
∑

p(x) = 1, we can show that λ = −1.

A.2 PROPERTY

We’ll prove the key properties in Sec.3.1.2.

(a) When q(x) > p(x), we have 1 − q(x)
p(x) < 0 and log p(x)

q(x) < 0. And, when q(x) < p(x),

we have 1− q(x)
p(x) > 0 and log p(x)

q(x) > 0.

(b) Let’s first consider the function z − log z

z − log z

{
> 1 if z 6= 1

= 1 if z = 1
(19)

It’s easy to prove because when z < 1, the gradient 1− 1
z < 0 and when z > 1, the gradient

1− 1
z > 0. Thus, the function reaches the minimum value 1 at z = 1.

When q(x) > p(x), we have∣∣Gq‖p(x)
∣∣− ∣∣Gp‖q(x)

∣∣ = ∣∣1− q(x)

p(x)

∣∣− ∣∣ log p(x)

q(x)

∣∣ (20)

=
q(x)

p(x)
− log

q(x)

p(x)
− 1 > 0 (21)

When q(x) < p(x), we have∣∣Gq‖p(x)
∣∣− ∣∣Gp‖q(x)

∣∣ = ∣∣1− q(x)

p(x)

∣∣− ∣∣ log p(x)

q(x)

∣∣ (22)

= 1− (
q(x)

p(x)
− log

q(x)

p(x)
) < 0 (23)

10

