
Under review as a conference paper at ICLR 2020

ROLE-WISE DATA AUGMENTATION FOR KNOWLEDGE
DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge Distillation (KD) is a common method for transferring the “knowl-
edge” learned by one machine learning model (the teacher) into another model
(the student), where typically, the teacher has a greater capacity (e.g., more param-
eters or higher bit-widths). To our knowledge, existing methods overlook the fact
that although the student absorbs extra knowledge from the teacher, both models
share the same input data – and this data is the only medium by which the teacher’s
knowledge can be demonstrated. Due to the difference in model capacities, the
student may not benefit fully from the same data points on which the teacher is
trained. On the other hand, a human teacher may demonstrate a piece of knowl-
edge with individualized examples adapted to a particular student, for instance,
in terms of her cultural background and interests. Inspired by this behavior, we
design data augmentation agents with distinct roles to facilitate knowledge distil-
lation. Our data augmentation agents generate distinct training data for the teacher
and student, respectively. We focus specifically on KD when the teacher network
has greater precision (bit-width) than the student network.
We find empirically that specially tailored data points enable the teacher’s knowl-
edge to be demonstrated more effectively to the student. We compare our ap-
proach with existing KD methods on training popular neural architectures and
demonstrate that role-wise data augmentation improves the effectiveness of KD
over strong prior approaches. The code for reproducing our results will be made
publicly available.

1 INTRODUCTION

Background and Motivation. In the educational psychology literature, it is generally considered
beneficial if teachers can adapt curricula based upon students’ prior experiences (Bandura, 2002;
Brumfiel, 2005; Gurlitt et al., 2006; Slotta & Chi, 2006). These vary widely depending on students’
cultural backgrounds, previous educational experiences, interests, and motivations. To help students
with different prior experiences to comprehend, memorise, and consolidate a piece of knowledge,
teachers may provide extra and customized teaching material during their teaching processes. For
instance, when teaching the concept of the color pink, a teacher may choose flamingos, sakura
(cherry blossoms), or ice cream cones as the example, depending on a student’s background.

Knowledge distillation (KD) (Bucilua et al., 2006; Hinton et al., 2014) is a common framework
for training machine learning models. It works by transferring knowledge from a higher-capacity
teacher model to a lower-capacity student model. Most KD methods can be categorized by how they
define the knowledge stored in the teacher (i.e., the “soft targets” of training as defined in existing
literature). For instance, Hinton et al. (2014) originally proposed KD for neural networks, and they
define the output class probabilities (i.e., soft labels) generated by the teacher as the targets for
assisting the training of students. In a follow up work, Romero et al. (2015) defined the soft targets
via the feature maps in the teacher model’s hidden layers.

To train a student network with KD effectively, it is important to distill as much knowledge from the
teacher as possible. However, previous methods overlook the importance of the medium by which
the teacher’s knowledge is demonstrated: the training data points. We conjecture that there exist
examples, not necessarily seen and ingested by the teacher, that might make it easier for the student
to absorb the teacher’s knowledge. Blindly adding more training examples may not be beneficial

1

Under review as a conference paper at ICLR 2020

because it may slow down training and introduce unnecessary biases (Ho et al., 2019). The analogy
with how human teachers adjust their teaching to their students’ particular situations (e.g., with the
feedback gathered from the students during teaching) suggests that a reasonable yet uninvestigated
approach might be to augment the training data for both the teacher and student according to distinct
policies.

In this paper, we study whether and how adaptive data augmentation and knowledge distillation
can be leveraged synergistically to better train student networks. We propose a two-stage, role-
wise data augmentation process for KD. This process consists of: (1) training a teacher network till
convergence while learning a schedule of policies to augment the training data specifically for the
teacher; (2) distilling the knowledge from the teacher into a student network while learning another
schedule of policies to augment the training data specifically for the student. It is worth noting
that this two-stage framework is orthogonal to existing methods for KD, which focus on how the
knowledge to be distilled is defined; thus, our approach can be combined with previous methods
straighforwardly.

Although our proposed method can in principle be applied to any models trained via KD, we focus
specifically on how to use it to transfer the knowledge from a full-precision teacher network into
a student network with lower bit-width. Network quantization is crucial when deploying trained
models on embedded devices, or in data centers to reduce energy consumption (Strubell et al., 2019).
KD-based quantization (Zhuang et al., 2018; Polino et al., 2018) jointly trains a full-precision model,
which acts as the teacher, alongside a low-precision model, which acts as the student. Previous
work has shown that distilling a full-precision teacher’s knowledge into a low-precision student,
followed by fine-tuning, incurs noticeable performance degradation, especially when the bit-widths
are below four (Zhuang et al., 2018; Polino et al., 2018). We show that it is advantageous to use
adaptive data augmentation to generate more training data for the low-precision network based on its
specific weaknesses. For example, low-precision networks may have difficulties learning rotation-
related patterns,1 and the data augmentation agent should be aware of this and generate more such
data points. One positive side-effect for demonstrating the effectiveness of our method is that the
improvement brought by our proposed method is more significant compared to the experiments on
all full-precision models.

2 RELATED WORK

Knowledge distillation. KD is initially proposed for model compression, where a powerful
wide/deep teacher distills knowledge to a narrow/shallow student to improve its performance (Hin-
ton et al., 2014; Romero et al., 2015). In terms of the definition of knowledge to be distilled from
the teacher, existing models typically use teacher’s class probabilities (Hinton et al., 2014) and/or
intermediate features (Romero et al., 2015; Park et al., 2019; Seunghyun Lee, 2019; Hyun Lee et al.,
2018). Among those KD methods that utilize intermediate feature maps, Relational KD (RKD)
considers (Park et al., 2019) the intra-relationship in the same feature map, while Multi-Head KD
(MHKD)(Seunghyun Lee, 2019) and KD using SVD (KD-SVD) (Hyun Lee et al., 2018) utilize the
inter-relationship across feature maps. By contrast, we propose to incorporate both the intra- and
inter-relationships within and across feature maps.

Automated data augmentation. Manually applying data augmentation rules such as random ro-
tating, flipping, and scaling are common practices for training neural models on image classification
tasks (Krizhevsky et al., 2012; He et al., 2016). Several recent works attempt to automate the data
augmentation process. Generative adversarial networks (Ratner et al., 2017) and Bayesian optimiza-
tion (Tran et al., 2017) have been used for this process. DeVries & Taylor (2017) augment training
data in the learned feature space by injecting noise and interpolation. Lemley et al. (2017) learn
how to combine pairs of images for data augmentation. AutoAugment (Cubuk et al., 2018) searches
for the optimal data augmentation policies (e.g., how to rotate) based on reinforcement learning.
However, the search process is computationally expensive. Population-based augmentation (PBA)
(Ho et al., 2019) uses an evolution-based algorithm to automatically augmenting data in an efficient
way. In contrast to previous approaches, we study the effect of the training data for KD and propose
to use automatic data augmentation to train the student better from her teacher.

1We will visualize the learned schedules of policies in Section 5.5.

2

Under review as a conference paper at ICLR 2020

3 PRELIMINARIES

3.1 POPULATION-BASED AUGMENTATION (PBA)

PBA (Ho et al., 2019), as an evolutionary search algorithm, learns a dynamic per-epoch schedule
of augmentation policies, denoted as A. Since this schedule is epoch-based, it will re-create the
augmented dataset every epoch. More concretely, PBA begins with a population of models that
are trained in parallel on a small subset of the original training data. The weights of the worst
performing models in the population are replaced by those from better performing models (i.e.,
exploitation), and the policies are mutated to new ones within the pre-defined policy search space
(i.e., exploration). After training, PBA usually keeps the learned augmentation schedule of policies
but discards the elementary parameters of the models. A different model (e.g., a larger one) can then
use the learned schedule to improve its training on the same task.

3.2 KNOWLEDGE DISTILLATION (KD)

Following the notations in (Park et al., 2019), a KD method aims to minimize the objective function

Lgeneral = Ltask + λ · LKD, (1)

where λ is a hyper-parameter to balance the impact of the KD loss term.

In this paper, for classification tasks, Ltask =
∑

xi∈X H(softmax(Ffinal
S (xi)), ytruth), where X refers

to training sample space, ytruth ∈ Y are the ground-truth labels, FS(·) is the student network, and
H(·) denotes the cross-entropy.

The KD term can be defined as

LKD =
∑
xi∈X

l(FT (xi),FS(xi)), (2)

where F(·) is the function of the network and l(·) is a loss function to compute the difference
between the teacher network and the student network.

For KD methods that use soft labels (Hinton et al., 2014), the objective can be defined as

Lsoft
KD =

∑
xi∈X

H(softmax(Ffinal
T (xi)), softmax(Ffinal

S (xi))), (3)

where Ffinal(xi) is the feature map of the final layer.

There exist some KD methods that utilize the intermediate feature maps in complementary ways.
For example, Relational KD (Park et al., 2019) considers the intra-relationships. That is, given the
feature map of layer j, the KD loss can be formulated as:

Lintra
KD =

∑
xi∈X

l(Φ(F j
T (xi)),Φ(F j

S(xi))), (4)

where Φ(·) refers to the potential function measuring the pairwise relationship inside a feature map
from student network or teacher network and F j(xi) is the feature map of layer j (which may
include the final logits layer). Therefore, this feature-based KD method includes the benefits of
using soft labels.

On the other hand, some works (Seunghyun Lee, 2019; Hyun Lee et al., 2018) consider the inter-
relationships, where the KD term can be formulated as:

Linter
KD =

∑
xi∈X

l(ϕ(F j
T (xi),Fk

T (xi)), ϕ(F j
S(xi),Fk

S(xi))). (5)

Here, ϕ(·) measures the inter-relationship between feature maps of different layers, i.e. k 6= j.

3

Under review as a conference paper at ICLR 2020

Augmentation

Agent

Teacher

Network

Feedback

Augmented

Training DataOriginal

Training Data

K
n

o
w

led
g
e D

istillatio
n

Augmentation

Agent
Student

Network
Feedback

Augmented

Student Training

DataOriginal

Training Data

Teacher

Network
(Pre-trained

and fixed)

Knowledge

Figure 1: Concept diagram (stage-α) of training a data augmentation agent for the NT .

3.3 QUANTIZATION

In this work, we use DoReFa2 (Zhou et al., 2016) to quantize both weights and activations. The
quantization function Q(·) is defined as:

rq = Q(r) =
1

2nbits − 1
· round((2nbits − 1) · r), (6)

where r is the full-precision value, rq indicates the quantized value, nbits refers to the number of bits
to represent this value. With this quantization function, the quantization on weights w is defined as:

wq = 2 ·Q(
tanh(r)

2 ·max(|tanh(w)|)
+

1

2
)− 1. (7)

The back-propagation is approximated by the straight-through estimator (Bengio et al., 2013) and
the partial gradient ∂l

∂r w.r.t. the loss l is computed as:

∂l

∂r
=

∂l

∂rq
· ∂rq
∂r
≈ ∂l

∂rq
. (8)

4 THE PROPOSED METHOD

Our proposed method has two stages, which will be described in the following subsections. In the
first stage, we train a teacher network, denoted as NT , with the help of PBA-based augmentation.
In the second stage, we further distill the knowledge from NT (pre-trained in the first stage) to
the student network, denoted as NS , while learning another augmentation schedule to augment the
training data for NS .

4.1 STAGE-α

In general, a teacher can provide better training signals for the student if the teacher’s performance
increases (Mirzadeh et al., 2019). As shown in Fig. 1, we apply PBA to learn a dynamic per-epoch
schedule of augmentation policies, AT , for NT on a small subset of training data. That is, the
augmentation agent’s training signal is defined as the feedback of NT ’s accuracy on a subset of the
dataset. After this, we use the discovered schedule AT to augment the whole training dataset and
re-train NT on it till convergence.

4.2 STAGE-β

KD methods have shown to be effective at improving the performance of lower-capacity networks
using the knowledge from higher-capacity networks. In order to take advantage of this functionality,
we apply the KD methods together with data augmentation in stage-β, as shown in Fig. 2.

More concretely, we first use PBA to learn an epoch-based augmentation schedule AS for NS on
a subset of the dataset. Different from the schedule AT learned in stage-α, AS is learned based
on the feedback (i.e., accuracy) from NS , which is trained with KD. In other words, NS receives
additional training signals from NT that is pre-trained in stage-α. We then use the learned AS to
augment the whole training dataset, and re-train NS on it with the distilled knowledge from NT .
Note that, because the learned schedule is epoch-based, we do not use the discovered schedule AT

from stage-α to augment the training data as initialization.

2It should be noted that our proposed method is orthogonal to any particular quantization method.

4

Under review as a conference paper at ICLR 2020

Augmentation

Agent

Neural

Network

Feedback

Augmented

Training DataOriginal

Training Data

K
n

o
w

led
g
e D

istillatio
n

Augmentation

Agent
Student

Network
Feedback

Augmented

Student Training

DataOriginal

Training Data

Teacher

Network
(Pre-trained

and fixed)

Knowledge

Figure 2: Concept diagram (stage-β) to augment training datapoints for both NT and NS . The
NT has been pre-trained using the method shown in Section 4.1, and is fixed during training. The
augmentation agent in stage-β is designed to learn schedules of polices that are different from those
learned in stage-α, and thus the agent only receives the feedback from NS .

WhenNS is a low-precision network, following (Furlanello et al., 2018), we share the same network
architecture3 between NT and NS . When NS is a full-precision network, it will have fewer layers
compared to NT .

5 EXPERIMENTS

5.1 SETTINGS

We evaluate our approach on two benchmark datasets: CIFAR-10 (Krizhevsky et al., 2009) and
CIFAR-100. CIFAR-10 consists of 60,000 32×32 color images in 10 classes, with 6000 images per
class and CIFAR-100 has 100 classes with 600 images per class. Both have 50,000 training images
and 10,000 test images.

We search over a “reduced” CIFAR-10/CIFAR-100 with 4,000 training images and 36,000 validation
images, which is the same as in (Ho et al., 2019). All the data augmentation models are run with 16
total trials to generate augmentation schedules. Following PBA, in stage-α, we run PBA to create
schedules over separate models and then transfer the CIFAR-10 policy to CIFAR-100. However, for
student network training in stage-β, we empirically use the respective “reduced” dataset. The data
augmentation approaches for the baselines include random crop and horizontal flipping operations.
Following (Ho et al., 2019), our policy search space has a total of 15 operations, each having two
magnitude and discrete probability values. We use discrete probability values from 0% to 100%, in
increments of 10%. Magnitudes range from 0 to 9.

The models we evaluate on include AlexNet (Krizhevsky et al., 2012) and ResNet18 (He et al.,
2016). The number of epochs is 200 and the batch size is set to 128. For full-precision networkNT ,
the learning rate starts from 0.1 and is decayed by 0.1 after every 30% of the total epochs. we use
SGD with a Nesterov momentum optimizer. The weight decay is set to 5× 10−4. For quantization,
the learning rate is set to 10−3 and is divided by 10 every 30% of the total epochs. We use the
pre-trained teacher network model as the initial point of student network. We use a smaller weight
decay 10−5 assuming that less regularization is needed by the lower-precision networks. Following
DoReFa (Zhou et al., 2016), the first layer and last layer are not quantized.

Following Clark et al. (2019), during training, we gradually transit the student from learning based
on the teacher to training based on the ground-truth labels. This heuristic provides the student with
more rich training signals in the early stage but does not force the student to strictly mimic the
teacher’s behaviors. As for the implementation, we decay the balancing hyper-parameter λ in the
KD loss by 0.5 every 60 epochs.

5.2 COMPARING DIFFERENT KD METHODS

As mentioned in Section 3.2, there exist complementary KD methods considering both intra- and
inter-relationships within and across feature maps. A natural question is if it would be beneficial

3Note this is not a hard constraint, we choose such strategy to reduce the number of factors that might
influence the final performance.

5

Under review as a conference paper at ICLR 2020

to combine them to further boost the performance together with data augmentation. Therefore, we
propose a simple extension to these complementary KD methods, dubbed as II-KD, by incorporating
intra-relationships inside the feature map and inter-relationships across different feature maps. We
incorporate the two relationships into the final objective function as follows:

LII
KD = Loriginal + λ · (Lintra

KD + Linter
KD), (9)

where we only use a single balancing hyper-parameter λ between the original loss and the distillation
loss, which does not introduce extra hyper-parameters.

More precisely, our KD method incorporates components of three conventional KD methods: RKD
(Park et al., 2019), MHGD (Seunghyun Lee, 2019) and KD-SVD (Hyun Lee et al., 2018). As shown
in Eq. (9), we add the three KD terms together with equal coefficients. We use the loss function
l(·) following their approaches. For the back-propagation, we clip the gradient for KD loss as in
KD-SVD, because this will smoothly post-processes the gradient to limit the impact of KD loss in
training. For AlexNet we select the feature maps of ReLU layers after the convolution/max pooling
layer. For ResNet18, we select the feature maps of the last ReLU layer of each residual block.

We evaluate our proposed KD extension on CIFAR-100 with ResNet18 for different bit-width set-
tings by comparing with various KD methods. For the baseline methods, we use their default settings
with a fixed and pre-trained teacher network in the training stage and λ = 1 for the knowledge distil-
lation loss. We set λ = 0.4 for II-KD in Eq. (9), as we have two KD terms. Tab. 1 reports the results
on various augmented KD methods. We observe that our proposed methods clearly outperforms the
other KD methods on all the settings, though the improvements over MHGD and KD-SVD are not
huge. The results also reveal that only relying soft labels is not as effective as utilizing multiple
supervising signals from the teacher.

Table 1: Accuracy (%) on CIFAR-100 with ResNet18 using different KD methods. We compare
ours with the following methods: Soft labels (Hinton et al., 2014), DML (Zhang et al., 2018), RKD
(Park et al., 2019), MHGD (Seunghyun Lee, 2019) and KD-SVD (Hyun Lee et al., 2018).

Bit-Width
(Weight / Activation) Soft labels DML RKD MHGD KD-SVD II-KD

4/4 70.48 72.47 71.84 73.52 73.92 74.21
2/2 70.09 69.72 70.71 71.80 72.97 73.35

5.3 IS ROLE-WISE AUGMENTATION WITH KD EFFECTIVE FOR QUANTIZATION?

In this subsection, we aim to answer this question: is our two-stage role-wise augmentation with KD
effective for network quantization? We conduct experiments on CIFAR-10 and CIFAR-100 datasets
under full-precision, 4-bit, and 2-bit settings.

From Tab. 2, we can observe that training with learned data augmentation schedules does not im-
prove the performance of low-precision networks too much. Similar to the results obtained in
(Zhuang et al., 2018), transferring knowledge from the full-precision to the low-precision student
usually helps the training of students, which is especially obvious on the CIFAR-100 dataset. Tab. 2
also clearly shows that our proposed pipeline consistently improves the performance of the low-
precision student networks. For example, the 4-bit NS is comparable with full-precision reference
without loss of accuracy for CIFAR-10 and with loss of accuracy within 1.0% on CIFAR-100. When
decreasing the precision to 2-bit, the results are still promising as compared with other baselines,
even though there is a performance gap between the 2-bit and the full-precision models. For in-
stance, our approach usually outperforms the strong baseline, only using II-KD, by more than 1.0%.

5.4 COMPARING SCHEDULES

Here we aim to answer this question: how effective is it if we useAT , learned based on the feedback
from NT in stage-α, to dynamically augment the training dataset and train NS on it? Tab. 3 reports
the accuracy comparison with different KD methods and augmentation schedules. We can clearly
see that augmenting the training dataset for NS with AS consistently outperforms those using the
transferred schedules AT among different KD methods. This observation is consistent with our
assumption that NS has her own optimal augmentation schedule, AS , that is different from AT for
NT . In particular, blindly applying the teacher augmentation scheduleAT may negatively influence

6

Under review as a conference paper at ICLR 2020

Table 2: Accuracy (%) on CIFAR-10 and CIFAR-100 datasets with different bit-widths. Vanilla
Training for 4-bit and 2-bit refers to training a network based on DoReFa (Zhou et al., 2016) from
scratch without learned data augmentation. Teacher after Stage-α refers to using learned schedules
discovered by PBA to re-train NT as described in Section 4.1. Student with only II-KD refers to
training NS using II-KD but without the learned data augmentation. Student after Stage-β refers
to training NS using II-KD and the learned data augmentation. For Vanilla Training and Teacher
after Stage-α, we report the accuracy of NT , and for the rest we report the accuracy of NS .

Methods AlexNet
CIFAR-10

AlexNet
CIFAR-100

ResNet18
CIFAR-10

ResNet18
CIFAR-100

Vanilla Training
32-bit 90.58 65.80 93.57 74.85
4-bit 89.72 60.25 90.97 69.81
2-bit 88.77 58.96 90.00 67.06

Teacher after Stage-α
32-bit 91.62 66.40 94.49 75.19
4-bit 90.06 60.65 91.47 70.24
2-bit 89.28 58.59 89.99 67.32

Student with only II-KD 4-bit 90.55 65.55 91.42 73.85
2-bit 89.18 63.49 90.60 72.44

Student after Stage-β 4-bit 92.00 65.69 94.44 74.21
2-bit 90.63 64.06 93.20 73.35

the training of NS as compared to only using KD. For example, the learned schedule based on the
teacher AT degrades the performance of NS by 0.58% for AlexNet on CIFAR-100 as compared to
applying KD methods, as shown in Tab. 2.

Table 3: Accuracy (%) on CIFAR-100 with 4-bit networks using different KD methods.

AlexNet ResNet18
Methods DML MHGD Ours DML MHGD II-KD

Schedule based on teacher 61.61 61.62 64.97 71.78 69.76 73.46
Schedule based on student 63.73 63.47 65.69 72.47 73.52 74.21

5.5 ANALYZING THE LEARNED SCHEDULES

To analyze the difference on the discovered schedules between NT (i.e., full-precision ResNet18)
and NS (i.e., 4-bit ResNet18), we report their augmented schedules quantitatively in terms of nor-
malized probability and magnitude on CIFAR-100 in Fig. 3. We normalize the probability of each
epoch by dividing the maximal summation of probabilities for all operations across all epochs.

It can be seen that the discovered schedules AS for NS is quite different from AT for NT . In
particular, for AT , there is an emphasis on Brightness, Posterize, Rotate, Sharpness and TranslateY,
while AS cares more about Contrast, ShearX and TranslateY. Furthermore, we observe that the
probability and magnitude increase as the epoch evolves. For AS , in the beginning, KD plays a
more important role, and there is no augmentation operation before about epoch 50. As the training
continues, the augmentation policies become more important. One possible reason is that, for low-
precision networks, KD methods can provide rich training signals such that data augmentation does
not help in the early training phases.

Furthermore, we observe that, compared toAT , the schedule for studentAS evolves more smoothly
in the sense that the policy updating frequency is lower. For example, the probability and magnitude
values change about every 40 epochs for student, while the policies for teacher update about every
15 epochs. One possible reason is that for the low-precision NS , KD methods make the training
process more smooth and it is not necessary to change the augmentation policies too frequently.
This is consistent with the observations shown in Tab. 2 that KD can already provide useful training
signals. Also, this validates our assumption that NS has her own optimal augmentation schedule
AS that is different from AT .

7

Under review as a conference paper at ICLR 2020

(a) Normalized plot of operation probability parame-
ters over time for the teacher network NT .

(b) Operation magnitude parameters over time for the
teacher network NT .

(c) Normalized plot of operation probability parame-
ters over time for the student network NS .

(d) Operation magnitude parameters over time for the
student network NS .

Figure 3: Evolution of magnitude and probability parameters in the learned schedules. Each opera-
tion appears in the parameter list twice, and we take the mean values of the parameter.

5.6 FURTHER COMPARISON ON FULL-PRECISION NETWORKS

This subsection aims to verify the effectiveness of our proposed methods on more conventional
settings where bothNT andNS are full-precision networks. We select ResNet18 as the teacher, and
ResNet8 as the student to check how our proposed methods affect the student network.

Tab. 4 shows that our proposed method outperforms the standard baseline training. The discovered
augmentation schedule further boosts the performance of shallow NS based on II-KD, though the
improvement is not that significant compared with the results obtained when NS is low-precision
network. This shows that our proposed method can be used for full-precision training tasks.

Table 4: Accuracy (%) on CIFAR-100 with full-precision ResNet8 as NS and full-precision
ResNet18 as NT under different settings. Vanilla Training refers to training a full-precision net-
work from scratch. Re-Training with PBA refers to using learned schedules discovered by PBA
to re-train NT as described in Section 4.1. Student with only II-KD refers to training NS using
II-KD but without the learned data augmentation. Student after Stage-β refers to trainingNS using
II-KD and the learned data augmentation.

Vanilla Training Re-Training with PBA Student with only II-KD After Stage-β
Accuracy 74.31 74.52 75.52 75.88

6 CONCLUSION

Previous literature on KD focuses on exploring the knowledge representation and the strategies for
distillation. However, both the teacher and student learn from the same training data without adapt-
ing the different learning capabilities. To address this issue, we propose customizing distinct agents
to automatically augment the training data for the teacher and student, respectively. We have exten-
sively studied the effect of combining data augmentation and knowledge distillation. Furthermore,
we propose a simple feature-based KD variant that incorporates both intra- and inter-relationships
within and across feature maps. We have empirically observed that the student can learn better from
the teacher with the proposed approach, especially in the challenging low-precision scenario, and
the learned schedules are different for the teacher and student.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Albert Bandura. Social cognitive theory in cultural context. Applied Psychology, 51(2), 2002.
doi: 10.1111/1464-0597.00092. URL https://onlinelibrary.wiley.com/doi/
abs/10.1111/1464-0597.00092.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Geoff Brumfiel. Who has designs on your students’ minds? Nature Publishing Group, 2005.

Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2006.

Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal, Christopher D Manning, and Quoc V
Le. Bam! born-again multi-task networks for natural language understanding. arXiv preprint
arXiv:1907.04829, 2019.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Terrance DeVries and Graham W Taylor. Dataset augmentation in feature space. arXiv preprint
arXiv:1702.05538, 2017.

Tommaso Furlanello, Zachary C Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. arXiv preprint arXiv:1805.04770, 2018.

Johannes Gurlitt, Alexander Renkl, Michael A Motes, and Sabine Hauser. How can we use con-
cept maps for prior knowledge activation: different mapping-tasks lead to different cognitive
processes. In Proceedings of the 7th international conference on Learning sciences. International
Society of the Learning Sciences, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
Proc. Adv. Neural Inf. Process. Syst. Workshops, 2014.

Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, and Xi Chen. Population based augmentation:
Efficient learning of augmentation policy schedules. In Proc. Int. Conf. Mach. Learn., 2019.

Seung Hyun Lee, Dae Ha Kim, and Byung Cheol Song. Self-supervised knowledge distillation
using singular value decomposition. In Proc. Eur. Conf. Comp. Vis., 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Proc. Adv. Neural Inf. Process. Syst., 2012.

Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation learning an optimal
data augmentation strategy. Ieee Access, 2017.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, and Hassan Ghasemzadeh. Improved knowl-
edge distillation via teacher assistant: Bridging the gap between student and teacher. arXiv
preprint arXiv:1902.03393, 2019.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proc.
IEEE Conf. Comp. Vis. Patt. Recogn., 2019.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quanti-
zation. In Proc. Int. Conf. Learn. Repren., 2018.

9

https://onlinelibrary.wiley.com/doi/abs/10.1111/1464-0597.00092
https://onlinelibrary.wiley.com/doi/abs/10.1111/1464-0597.00092

Under review as a conference paper at ICLR 2020

Alexander J Ratner, Henry Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher Ré. Learn-
ing to compose domain-specific transformations for data augmentation. In Proc. Adv. Neural Inf.
Process. Syst., 2017.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In Proc. Int. Conf. Learn. Repren., 2015.

Byung Cheol Song Seunghyun Lee. Graph-based knowledge distillation by multi-head attention
network. In Proc. Brit. Mach. Vis. Conf., 2019.

James D Slotta and Michelene TH Chi. Helping students understand challenging topics in science
through ontology training. Cognition and instruction, 2006.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, and Ian Reid. A bayesian data augmenta-
tion approach for learning deep models. In Proc. Adv. Neural Inf. Process. Syst., 2017.

Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep mutual learning. In Proc.
IEEE Conf. Comp. Vis. Patt. Recogn., 2018.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards effective low-
bitwidth convolutional neural networks. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2018.

10

