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ABSTRACT

Neural networks show great vulnerability under the threat of adversarial exam-
ples. By adding small perturbation to a clean image, neural networks with high
classification accuracy can be completely fooled. One intriguing property of the
adversarial examples is transferability. This property allows adversarial exam-
ples to transfer to networks of unknown structure, which is harmful even to the
physical world. The current way of generating adversarial examples is mainly
divided into optimization based and gradient based methods. Liu et al. (2017)
conjecture that gradient based methods can hardly produce transferable targeted
adversarial examples in black-box attack. However, in this paper, we use a simple
technique to improve the transferability and success rate of targeted attacks with
gradient based methods. We prove that gradient based methods can also generate
transferable adversarial examples in targeted attacks. Specifically, we use knowl-
edge distillation for gradient based methods, and show that the transferability can
be improved by effectively utilizing different classes of information. Unlike the
usual applications of knowledge distillation, we did not train a student network
to generate adversarial examples. We take advantage of the fact that knowledge
distillation can soften the target and obtain higher information, and combine the
soft target and hard target of the same network as the loss function. Our method
is generally applicable to most gradient based attack methods.

1 INTRODUCTION

Neural networks have been shown to be susceptible to adversarial examples. They can be misled
when we add small perturbation to a clean image, even though the perturbation may be invisible to
the human eye. Adversarial examples are widely used in different physical attack scenarios, includ-
ing face recognition, voice recognition, and autonomous driving. In the physical world, however,
it is difficult to obtain the structure of neural networks. This creates a need for attack algorithms
in black-box scenarios. As attack algorithms are created for defense purposes, early discovery of
adversarial examples that harm the physical world can help us defend against unknown threats.

Many researchers have observed that adversarial examples can be transferred between different net-
works. Papernot et al. (2016) create adversarial examples which can be transferred to black-box
scenarios by attacking a constructed substitute model. Existing attack algorithms have high attack
success rate in white-box scenarios and good transferability in non-targeted attacks. However, there
is a very low transferability in targeted black-box scenes which is more harmful. Due to the tricky
degree of targeted attack transferability problem, almost all existing researches to improve the trans-
ferability focus on the untargeted attack part. In fact, it is easy to understand that an untargeted
attack only needs to move the original image away from its category, while a targeted attack needs
to reach the target category while penetrating the classification boundary.

Liu et al. (2017) consider gradient based method only searching attacks in a 1-D subspace. In this
approach, the subspace contains just a small subset of all target labels. They improve transferabil-
ity by using ensemble neural networks in the optimization based method. They also prove that the
approach of ensemble models is not effective for the gradient based method. For their experimental
results and hypotheses, there is no difference between attacking ensemble neural networks and at-
tacking a neural network for the transferability of gradient based method. We will show this is not
correct by our study.
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There are two problems in existing gradient based methods for targeted attacks. Firstly, the attack
success rate of gradient based method cannot be improved after a certain number of iterations.
Secondly, targeted attacks do not make full use of the information between different categories.

Existing adversarial attack algorithms usually ensemble neural networks to produce adversarial ex-
amples. Dong et al. (2018b) use an approach namely “fuse in logits” to ensemble models. “Fuse in
logit” performs a simple weighted average of logits before the softmax layer of the neural network,
and then calculates the cross entropy loss between logits and the one-hot vector of the target labels.
The ensemble attack algorithm produces adversarial examples in each ensembled model, which can
achieve a good attack success rate. But this is not black-box transferability, since every model struc-
ture which is ensembled can be acquired by an attack algorithm. Black-box transferability refers to
the fact that adversarial examples can still attack successfully against the networks with unknown
structures. In this paper, the term transferability will refer uniformly to the black-box and targeted
attack scenarios.

Hinton et al. (2015) put forward the concept of knowledge distillation. Knowledge distillation is
used to extract useful dark knowledge from bloated models to train a small and lightweight network.
Knowledge distillation puts forward the concept of soft targets and hard targets. Through the cum-
bersome model of probability distribution divided by a value greater than 1, the original probability
distribution can be transformed to soft targets. When the soft targets have high entropy, they provide
much more information.

Instead of training a small model from multiple large models, we simply take advantage of the
fact that knowledge distillation can effectively extract knowledge. Actually, we are not attacking
a lightweight model extracted from a bloated model. It is simpler and more efficient to produce
transferable adversarial examples in targeted attack, which we call self-distillation adversarial attack.

2 BACKGROUND

2.1 ADVERSARIAL EXAMPLES

Deep neural networks are proved vulnerable to adversarial attacks since Szegedy et al. (2014), which
shows that neural networks can be misclassified by adding small perturbations to a clean picture.
The existing of adversarial examples has proven to be a huge threat to the entire application of deep
learning algorithms, including speech recognition, face recognition, and even the recognition of road
signs in the physical world. As a result, more and more attention has been paid to adversarial exam-
ples, and many defensive researches have been made to improve the robustness of neural networks.
At present, the research on the attack and defense of neural network is also in a state of game and
spiral. The research on adversarial examples is also a good starting points for the explainability of
neural network.

2.2 GRADIENT-BASED ADVERSARIAL ATTACK METHODS

The current methods of generating adversarial examples are mainly gradient based and optimization
based. Here, we briefly introduce the gradient based method.

Goodfellow et al. (2015) come up with a way to get adversarial examples by applying the sign of the
gradient to a real example only once. They call this method the Fast Gradient Sign Method (FGSM).

Kurakin et al. (2017) move the adversarial example in the direction of the sign of the gradient in
each iteration.

Dong et al. (2018b) integrate momentum into iterative FGSM (I-FGSM), and this can help attack
algorithm stabilizing update directions and escaping from poor local maxima. This method which is
called MI-FGSM solves the problem that I-FGSM is easy to obtain local extreme value and “overfit”
model.

Madry et al. (2018) propose a saddle point formulation, which can convert the attack problems and
defense problems to inner maximization problems and outer minimization problems, respectively.
They suppose projected gradient descent (PGD) could be the strongest universal attack method.
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2.3 THE WEAKNESS OF GRADIENT BASED METHOD

The first problem with gradient based methods is that they lose their effectiveness after a certain
number of iterations. In neural networks, softmax is usually used as the activation function to
get probability output for multi-classification problems. In gradient based adversarial attacks, the
probability output of image in a neural network is usually concerned. Therefore, most adversarial
attack methods also use softmax activation function to obtain the probability and calculate the cross
entropy with the target category, and finally optimize the cross entropy loss function to get the
adversarial example.

However, softmax has saturation problems. Softmax’s probability output sum is 1, so there is com-
petition among each output. In extreme cases, it becomes winner-take-all, and when one output
“approaches 1”, the others “approach 0”. Another downside of softmax is that it can cause either
overspill or underspill problems. Although this downside can be effectively alleviated by subtract-
ing the maximum value of all inputs from the input value of softmax, it causes the output value
of softmax to be driven by the maximum input value. When the input value is the maximum, the
output value will be close to 1. On the contrary, the large difference can cause softmax’s output to
be saturated to 0.

Liu et al. (2017) prove that the classification boundaries between white-box models and black-box
models do not coincide. And for the model which is not used to generate the adversarial image,
its classification area is much smaller. This means that when a successful attack on neural network
whose structure is known, adversarial examples cannot penetrates the classification boundaries of
other neural networks unknown structure precisely. It is more important to obtain information of
different categories. The gradient update stop caused by softmax saturation makes gradient based
adversarial examples unable to accurately penetrate classification boundaries.

So, insufficient information acquisition for different categories and premature stop of gradient update
are the reasons why gradient based methods have low transferability in targeted black-box scenes.
The solution to this problem is very simple. We introduce knowledge distillation into gradient based
methods.

2.4 DISTILL IN NEURAL NETWORKS

In machine learning tasks, researchers always train many different kinds of models on the same
dataset, and combine the results of each single model into a final result (Dietterich (2000)). A
simple combined method is to average the predictions, but the cost of this ensemble method is too
expensive to deploy.

Hinton et al. (2015) find that instead of simply averaging the predictions, it will get much better
performance if converting the logits by:

qi =
exp(zi/T )∑
j exp(zj/T )

(1)

where T is called a temperature. Using a higher T can produce a softer probability distribution over
classes. And it will be normal softmax-layer when T is set by 1.

Distillation in neural networks can make the combination of multiple networks perform better, and
the knowledge of the cumbersome model can tansfer to a small model in an effective way. The
current research on distillation is mainly used to train a smaller model from a bloated model set.
However, distillation can effectively help to get the target information in adversarial attacks.

3 METHODOLOGY

3.1 THE SOLVE OF SATURATION PROBLEM

Here, we prove that knowledge distillation can effectively reduce the distance between classes and
solve the saturation problem. If we use the ratio ρ to measure the distance between the softmax-
layer’s outputs, we can get the distance of two hard targets below.
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If we distill the logits with a temperature T like formula-1, the distance will be as follows.

ρ′ =
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=
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=
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So the relationship between ρ′ and ρ is:

ρ′ = T
√
ρ (4)

The distillation processing is essentially the dispersion of the softmax results among different clas-
sifications using the T -th power of the square root, so that the different classification softmax values
distribution are closer.

3.2 GET MORE ACCURATE DIRECTION

It may be a good thing for untargeted attacks when data classes are close to each other, because
it makes easy for adversarial examples to randomly move from the original category to a target
category and the attack succeeds. But for targeted attacks, this is a problem, making it more likely
to attack the wrong class.

Liu et al. (2017) observe that the decision boundaries of all models are very consistent with each
other. They think this explains why non-targeted adversarial images can transfer among models. But
for targeted attack, decision boundaries of models do not generate adversarial examples in a small
area, thus tiny change of gradient will make adversarial examples change to wrong target categories.
We assume that a gradient based method can obtain a more accurate gradient direction by knowledge
distillation.

The distance between the gradient of a target class and the gradient of a wrong class can be give by:

∆ =
∂Ctarget
∂zi

− ∂Cwrong
∂zi

= (pTrue − qtarget)− (pTrue − qwrong) = qwrong − qtarget (5)

where Ctarget means the cross entropy about target class, Cwrong means the cross entropy about
wrong probability. ∆ means the distance of two gradient. We define δ = ∆/ptrue, so it is easy to
get:

φ =
δ′

δ
=

∆′/p′true
∆/ptrue

=
(q′wrong − q′target)/p′true
(qwrong − qtarget)/ptrue

=

ewrong/T−etarget/T∑
i e

i/T / e
true/T∑
i e

i/T

ewrong−etarget∑
i e

i / e
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i

=
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/
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(6)

Compared to the true class, the values of the wrong class and the target class tend to zero. We can
approximate that:

φ ≈ wrong/T − target/T
etrue/T

/
wrong − target

etrue
≈ etrue

etrue/T
>> 1 (7)
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It means distillation can effectively increase the distance between the gradient of the target class and
the gradient of a wrong class. In this way, the gradient based attack method can attack to a targeted
class more precisely.

4 DISTILLATION ADVERSARIAL ATTACK

4.1 SINGLE MODEL GRADIENT-BASED ATTACK

Any gradient based adversarial attack algorithm can be easily extended to include distillation. For
example, FGSM can be simply extended to Distillation FGSM (D-FGSM) as follows.

Xadv = xreal + ε · sign(5xJ(
L(x)

T
, y))

Here, 5xJ is the gradient of loss function, L(x) means the logits of image x produced by neural
network, and sign(·) is sign function limits the size of the disturbance.

Momentum iteration fast gradient sign method can be simply extended to Distillation MI-FGSM
(D-MIFGSM).

gt+1 = µ · gt +
∇xJ(L(x)T , y)

‖ ∇xJ(L(x)T , y) ‖1
xadvt+1 = xadvt + α · sign(gt+1)

4.2 ENSEMBLE BASED METHOD

Liu et al. (2017) ensemble neural networks to improve transferability in optimize based method.
They consider there is no difference between single model attack and ensemble based attack in
fast gradient based method, and both these two methods can not produce transferable adversarial
examples. Dong et al. (2018b)’s ensemble method is a simple weighted average of logits generated
by multiple neural networks, which they call “fuse in logits”.

We have a better ensemble approach. By distilling logits generated by n neural networks, n softened
logits can be obtained. In the gradient based attack method, n logits can obtain n cross entropy
losses, and the cross entropy losses generated by the softened logits and the original logits, namely
the hardened logits, can produce a total of 2n cross entropy losses. A simple weighted average of
these cross entropy losses can extend the gradient based approach to the ensemble attack method
that includes knowledge distillation:

J(L(x), y) = λ1 ·
n∑
i=1

J(
L(xi)

T
, y) + λ2 ·

n∑
i=1

J(L(xi), y) (8)

where L(x) is the logit produced by different neural networks, and J(x, y) is the cross entropy
between the logit x and the attack target y.

We have carried out experiments on different adversarial attack algorithms and found that the mo-
mentum iterative fast gradient sign method based on knowledge distillation (D-MIFGSM) is the
most effective method to produce transferable adversarial examples.

We summarize our ensemble based method in Algorithm 1, and the rest of our experiments are based
on this algorithm. Specifically, when we input a clean image x and get K logits from K classifiers,
we distill these N logits using a pre-defined temperature T . Then, we perform Equation 8 “fuse in
cross entropy” on these distilled logits. The rest of the algorithm is the same as MI-FGSM.

5 EXPERIMENT

5.1 SETUP

To see how distillation works on targeted attack and what is the best distillation environment, we
design a series of experiments. We choose four networks, Inception V 3, Inception V 4 (Szegedy
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Algorithm 1 Ensemble D-MIFGSM
Input: The logits ofK classifiers l1, l2, ..., lK ;Temprature T ; a real example x and target label y∗;
Input: The size of perturbation ε; iterationsN and decay factor µ.
Output: An adversarial example x∗ with ‖ x∗ − x ‖inf≤ ε
1: α = ε/N ;
2: for i = 0 toN − 1 do
3: Input x∗

i and output lk(x∗
i ) for k = 1, 2, ..., K;

4: Get different logits as l(x∗
i ) =

{
l(x∗

i )

T

l(x∗
i )

5: Fuse the softmax cross-entropy loss J(x∗
i , y

∗) based on Equation 8.
6: Obtain the gradient∇xJ(x

∗
i , y

∗);

7: Update gi+1 by accumulating the velocity vector in the gradient direction as gi+1 = µ · gi +
∇xJ(x

∗
i , y

∗)

‖ ∇xJ(x∗
i , y

∗) ‖1
;

8: Update x∗
i+1 by applying the sign gradient as x∗

i+1 = x∗
i − α · sign(gi+1);

9: end for
10: return x∗ = x∗

N .

et al. (2016)), V GG16 and V GG19 (Simonyan & Zisserman (2015)), to produce the adversarial
examples. We use ResNet V 1 50, ResNet V 1 152 (He et al. (2016)) and Inception Resnet
(Szegedy et al. (2017)) as the networks in black-box attacks to test the transferability of the adver-
sarial examples.

To verify the true effectiveness, we tend to choose a bigger dataset. So, we randomly choose 10,000
images from ILSVRC 2012 validation set, with 10 images in each class, and make sure they can
be all classified correctly by the networks we use. We define the disturb of adversarial examples by
Linf -distance.

5.2 SINGLE MODEL ATTACK

For Liu et al. (2017), attacking one model is the same as attacking multiple models in fast gradient
method, neither of which can produce adversarial examples with high transferability. We test the
performance of different networks in a single model attack. Table 1 shows that the transferability
in single model attack can reach about 30% by attacking V GG networks. And we find that only
attacking V GG networks can produce transferable adversarial examples.

IncV 3 IncV 4 V GG16 V GG19 Resnet 50 Resnet 152 Inc Res
IncV 3 0.999 0.018 0.009 0.007 0.006 0.005 0.020
IncV 4 0.059 0.991 0.125 0.010 0.005 0.005 0.027
V GG16 0.241 0.205 1.0 0.929 0.340 0.235 0.201
V GG19 0.233 0.197 0.918 1.0 0.333 0.241 0.191

Table 1: The success rate of D-MIFGSM in single model attack. The cell (i, j) indicates the accuracy
of the adversarial examples generated for model i (row) evaluated over model j (column).

5.3 ENSEMBLE BASED METHOD

We find that attacking V GG networks can generate adversarial examples with high transferability
in a single model attack. Moreover, in the optimization-based approach, ensemble networks have
been proved to be able to produce transferable adversarial examples.

We test the impact of ensemble on transferability of different networks. In our test, we take off one
of the four known networks each time, and the results are shown on Table 2.

Since it is possible to generate a large number of adversarial examples with high transferability in
the distillation based method through ensemble models, we perform different parameter tests on this
method.

5.4 THE EFFECT OF TEMPERATURE

Firstly, we want to know how different distillation temperatures affect the attack success rate, and
which is the best temperature to distill. We test different temperatures while the iteration number is
20 and the max disturb limit is 32.
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IncV 3 IncV 4 V GG16 V GG19 Resnet 50 Resnet 152 Inc Res
All 0.949 0.982 1.0 1.0 0.471 0.385 0.334

−IncV 3 0.499 0.991 1.0 1.0 0.575 0.462 0.386
−IncV 4 0.937 0.294 1.0 1.0 0.437 0.355 0.219
−V GG16 0.939 0.980 0.803 1.0 0.232 0.176 0.192
−V GG19 0.941 0.979 1.0 0.787 0.228 0.173 0.188

Table 2: The success rate of D-MIFGSM in ensemble based method. Cell (i, j) indicates that the
accuracy of the targeted adversarial examples generated for the ensemble of the four models except
model i (row) is predicted as the target label by model j (column). In each line , − means the
network behind is not used in ensemble attack.

Figure 1 shows the effect of different distillation temperatures on black-box targeted attack, where
the temperature equals 1 means there’s no distillation processing. It is clear that the distillation
can make effects on both single model attack and ensemble based method. And the distillation
temperature makes best effects when it reaches about 16.

(a) Different Temperature in Single
Models

(b) Different Temperature in Ensemble
Models

Figure 1: Effect of Different Temperature

5.5 THE EFFECT OF THE ITERATION

After the test of temperature, we want to know the effect of the iteration number on the success rate
of the attack in the distillation method. Dong et al. (2018a) suppose that the adversarial examples
generated by iterative methods have a tendency to overfit, which means iteration is negative to the
transferability of adversarial examples.

But in our method, as Figure 2 shows, the more iterations, the much transferability we can get, until
it is large enough to converge. In another word, to certain extent, we avoid the overfit problem.

(a) Different Iterations in Single Models (b) Different Iterations in Ensemble
Models

Figure 2: Effect of Different Iterations

However, high iterations also mean long computing time. In our experiment, we suggest 30 to 50
iterations to be a better choice.
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5.6 THE EFFECT OF THE DISTURB LIMIT

(a) Different Disturb Limit in Single
Models

(b) Different Disturb Limit in Single
Models

Figure 3: Effect of Different Disturb Limit

The distance between origin images and adversarial examples is also an important indicator to judge
the performance of attacking methods. In both MIFGSM and D-MIFGSM, the distance depends on
the max disturb limit which is a hyperparameter in attack processing. It is also an important task to
find out the best disturb limit.

As Figure 3 shows, lower disturb causes lower attack success rate. But at the mean time, too big
disturb limit also has a negative effect on the success rate of adversarial attack. On the other hand,
bigger disturb means bigger noise, which is more likely to be realized by human. Above all, in our
experiment, we prefer to choose the disturb limit between 16 and 32.

5.7 THE COMPARISON BETWEEN MIFGSM AND D-MIFGSM

We compare the attack success rate in both black-box and white-box attack scenarios between
MIFGSM and our D-MIFGSM. The setup of the temperature is 16, the iterations is 20 and the
disturb limit is 32.

Table 3 shows that in both two kinds of attack scenarios D-MIFGSM provides a significant boost to
MI-FGSM.

Black-Box White-Box
Resnet 50 Resnet 152 Inc Res IncV 3 IncV 4 V GG16 V GG19

Single
Model

MIFGSM 0.072 0.050 0.002 − − 1.0 −
D −MIFGSM 0.333 0.231 0.191 − − 1.0 −

Ensemble
Models

MIFGSM 0.201 0.154 0.170 0.944 0.789 0.993 0.988
D −MIFGSM 0.471 0.385 0.334 0.982 1.0 1.0 0.949

Table 3: The success rate of MIFGSM and our D-MIFGSM. The single model attack use V GG16
to generate adverarial examples. Ensemble based method use all four models to generate adverarial
examples in 5.1.

6 CONCLUSION

In this paper, we show that gradient based methods can also produce adversarial examples with high
transferability. In order to generate adversarial examples with high transferability in targeted attack,
we introduce knowledge distillation into gradient based methods. Our method can be easily imple-
mented in any method based on fast gradient. In targeted attack, the ensemble of multiple networks
and optimization based methods is proved to produce adversarial examples with high transferability.
But optimization-based methods are notoriously slow. We introduce knowledge distillation into the
momentum iterative fast gradient method to produce adversarial examples of about 30% to 50%
transferability in the experiment. At the same time, we find out that the network structure also has
an effect on transferability, and it will be our future work to explore neural network structures that
can produce transferability.
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