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Abstract

There exists a large number of process deviations in semiconductor manufacturing1

processes. Automated root cause analysis and decision-making help to significantly2

improve the effectiveness of manufacturing processes. Manufacturing defects3

reveal typical patterns in wafer measurement data. Spatial patterns recognition in4

wafermap data improves the efficiency of finding production issues during different5

process steps, as early as possible. In this paper, we introduce a deep learning6

approach for recognition and clustering of spatial patterns in wafermap test data in7

an unsupervised fashion. First, measurement values are pre-processed, then, a deep8

variational autoencoder is used to extract a low-dimensional representation of the9

wafermaps. Finally, various structures in the latent space are detected and wafers10

assign to the extracted clusters. Extensive simulations show that the proposed11

approach outperforms the best existing methods over a real-world dataset1.12

1 Introduction13

Recently, “Industry 4.0” [1] outlined new challenges for semiconductor industry on producing smaller14

lot sizes, yet customer-specific products. Many companies have started to add new paradigms to15

their manufacturing processes, in order to stay in increasingly global markets. Automated root16

cause analysis and decision making with reduced human intervention has potential to efficiently17

improve effectiveness of semiconductor manufacturing. To this end, proposing an algorithm to detect18

defects and cluster them from given sensory data is an inevitable task [2]. Manufacturing defects19

reveal typical shapes (patterns) in measurement wafer test data (e.g. rings, spots, repetitive patterns).20

Spatial patterns recognition in wafer test data is an essential step for finding root causes of production21

issues. Several methods based on traditional image processing approaches have been proposed [3, 4].22

There exist several recent machine learning techniques recognizing more complex patterns in wafer23

measurement test data. They have been proposed based on supervised training of mixture models [5],24

singular value decomposition [6], neural networks [7], and support vector machines [8]. Although25

such techniques are powerful, their supervised setting still requires a human expert to manually label26

a training dataset. To remove the subjective factors from wafermap pattern recognition task, one can27

take the advantage of an unsupervised approach, which in turn reduces costs and classification errors.28

In addition, a method needs to automatically detect the hidden dependencies between different types29

of wafer defects, that helps identification of unknown (or overlooked) patterns. Self-organizing neural30

networks [9], self-organizing maps [10], and dimensionality reduction based methods (e.g. [11, 12])31

are among this category of methods. In this paper, we develop a deep variational autoencoder approach32

for extracting useful information from the wafer test data, then use the extracted low-dimensional33

latent features for recognizing and clustering spatial patterns in the wafermap measurements. In34

Section 3, we evaluate the performance of the proposed method compared to several well-known35

1Implementation codes and dataset will be online for camera-ready version.
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methods. We show that our approach yields better separated wafermaps clusters with more structural36

behavior for different number of clusters and size of latent space.37

2 Proposed method38

2.1 Data pre-processing39

Our available real dataset, provided by Infineon Technologies (http://infineon.com), consists of40

6 wafer lots, each has 50 wafers containing 17509 chips. Each chip is measured with 20 different41

tests (features) and its position within a wafer is stored as a tuple. We consider each test measurement42

of a wafer as a bitmap. Overall, we have 6000 wafermaps, where each one represented as a43

bitmap of size 193x115 pixel. Data pre-processing is a fundamental step to clean the data before44

designing a machine learning model [13]. We apply several consecutive pre-processing steps to raw45

wafermaps, which are depicted in Figure 1: (1) We utilize a median absolute deviation (MAD)-based46

outlier detection method by modifying the common Z-score mechanism [14]; (2) Wafermaps are47

binarized by replacing the present values with 1 and the missing values (holes) with 0. Mathematical48

morphology mechanism [15] is then used to close small holes in the wafer area and find contours of49

the wafer; (3) Missing values in wafer area are inpainted with values reconstructed from neighborhood50

information around each missing region, using Chui-Mhaskar inpainting algorithm [16] via solving51

the biharmonic equations; (4) After feature normalization, wafers are smoothened using the median52

filtering procedure within a sliding window. A sample pre-processed wafermap is depicted in Figure 2.53

The cleansed wafermaps can then be used for further feature extraction and clustering tasks.
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Figure 1: Wafermap pre-processing procedure

0 50 100

0

25

50

75

100

125

150

175

0.0 0.2 0.4 0.6 0.8 1.0
Measurement value

0

2

4

6

8

Fr
eq

ue
nc

y

Figure 2: A raw wafermap test data (left) and the output of our pre-processing procedure with clearly visible
crescent moon pattern (right).54

2.2 A Deep Variational Autoencoder55

The pre-processed wafermaps can be seen asN individual dataset containing iid samples of a discrete56

random variable X . Now, we want to extract a low-dimensional representation (i.e. latent variable57

Z) of the data to overcome the curse of dimensionality [17]. To this end, our approach is based on58

autoencoding variational Bayes [18].59

We assume latent variable Z has a prior distribution p(z) = N (0, I) and X is conditioned on Z60

with likelihood pθ(x|z; θ), which gives us the latent variable model pθ(x, z) = pθ(x|z)p(z). Since61

Bayesian inference of the latent features directly form posterior pθ(z|x) is intractable for complicated62

distributions, a new conditional distribution qφ(z|x) is introduced as an approximation. We assume63

the posterior qφ(z|x) is a multivariate Gaussian distribution with a diagonal covariance N (µ, σ2I)64

and is referred to encoder (or recognition model). Conditional distribution pθ(x|z) is referred to65

decoder. Then, the parameters of this model φ, θ are calculated by minimizing the Kullback-Leibler66

(KL)-divergence between qφ(z|x) and pθ(z|x), i.e. maximizing the following loss function:67

L(θ, φ;x) = −DKL(qφ(z|x)||pθ(z|x)) = Eqφ(z|x)
[
log

pθ(z|x)
qφ(z|x)

]
(1)

68
Using conditional distribution p(z|x) = p(x,z)

p(x) , one can get Evidence Lower Bound (ELBO) [19, 20]:69
70

L(θ, φ;x) =
Reconstruction Error︷ ︸︸ ︷

Eqφ(z|x)[log pθ(x|z)]−

Regularization︷ ︸︸ ︷
DKL(qφ(z|x)||p(z)) (2)
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Figure 3: Architecture of our deep variational autoencoder with its reparametrization trick.

We use a deep Variational Auto-Encoder (VAE) neural network [21] to implement both encoder and71

decoder. A neuron i in the neural network takes an input vector xi ∈ Rd and maps it to an output72

vector yi ∈ Rd′ with deterministic mapping (forward propagation) yi = ϕ(Wixi + bi), where ϕ(.)73

is differentiable non-linear activation function, Wi ∈ Rd×d′ is a weight matrix and bi ∈ Rd′ is a bias.74

We used Rectified Linear Unit (ReLU) and Sigmoid as activation functions of neurons in hidden layers75

and output layer, respectively. Model parameters θ = {W,b} are trained with Stochastic Gradient76

Descent (SGD) algorithm with respect to loss function L by iteratively updating θ ← θ − η ∂L∂θ77

(backpropagation), where η is learning rate. We used RMSprop [22], an adaptive learning rate in78

which the gradient is divided by a running average of its recent magnitude. Optimizing the loss79

function in Equation (2) with SGD is problematic, because the latent vector z used in pθ(x|z) must be80

sampled from distribution qφ(z|x). However, the random sampling is a non-differentiable operation,81

hence it cannot be used for calculating gradients during backpropagation. We use a reparametrizarion82

trick to shift the randomness of the sampling operation into a random noise vector ε which allows us83

to express individual samples of reparametrized random variable z̃ ∼ qφ(z|x) deterministically as84

z̃ = µ+ σ � ε, where ε ∼ N (0, I) and operator � is an element-wise product. The neural network85

architecture with its reparametrization trick, used in our experiment, is depicted in Figure 3.86

As mentioned before, the distributions p(z) = N (0, I) and qθ(z|x) = N (µ, σ2I) are normally87

distributed, so the regularization term in Equation (2) can be rewritten as:88

DKL(qφ(z|x)||p(z)) =
1

2

J∑
j=1

(
1 + log(σ2

j )− µ2
j − σ2

j

)
(3)

where J is the dimension of the latent vector z and the distribution parameters are mapped from a89

hidden layer h of the encoder as µj = Wµh+ bµ and log(σ2
j ) = Wσh+ bσ . We assume that the90

decoder is Bernoulli distributed and the reconstruction error in Equation (2) can be approximated by91

binary cross-entropy as:92

Eqφ(z|x)[log pθ(x|z)] ≈
1

L

L∑
i=1

(
log yi + (1− xi) log(1− yi)

)
(4)

where xi is the input of the encoder, yi is the output of the decoder and L is the number of latent93

samples z1, . . . , zL used to approximate the expected value of the log-likelihood. The wafermap94

dataset X consisting of N samples can be potentially very large. Only a random subset (minibatch)95

of M wafers is sampled from the whole dataset. Hence, the loss function for each minibatch is96

L(θ, φ;X) ' N
M

∑M
i=1 L(θ, φ;xi). The number of sampled latent variables L in each iteration can be97

set to 1 for sufficiently large number of minibatchesM [18] (in our implementationL = 1,M = 100).98

2.3 Wafermaps Patterns Clustering99

We have described a mechanism for non-linear mapping of high-dimensional wafer measurement data100

into a low-dimensional representation. Now, we specify how to group the extracted latent features101

into clusters based on a distance measure. Wafermaps with similar patterns should be considered in102

the same cluster and dissimilar wafermaps should be clustered in different groups. There exist two103

types of clustering methods (i.e. hierarchical and partitioning) that can be applied for clustering of104

the wafermaps. We used one algorithm from each category, namely Hierarchical agglomerative [23]105

and k-means clustering.106
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3 Evaluation107

In this section, we evaluate the performance of the proposed variational autoencoder-based method108

compared to the other commonly used decomposition methods for spatial wafermaps patterns109

clustering. Figure 4 shows the eight detected clusters in two dimensional latent space for different110

feature extraction methods. The same pre-processing and clustering algorithm used for the competing111

methods. To evaluate how similar a latent vector is to the other vectors in its own cluster compared to112

the other clusters, the Silhouette metric [24] was used. The higher this score is, the better clustering113

accuracy the method will have. Figure 5 shows the Silhouette score of the competing methods over114

various low-dimensional latent spaces for two clustering methods.115
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Figure 4: Wafermaps projected into two dimensional latent feature space and clustered into 8 clusters.
Feature extraction methods: (a) Our Variational Autoencoder; (b) Principal Component Analysis [25];
(c) Independent Component Analysis [26]; (d) t-Distributed Stochastic Neighbor Embedding [27];
(e) Truncated Singular-value Decomposition [6]; (f) Non-Negative Matrix Factorization [28].
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(b) k-means, LATE_DIM = 4
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(c) k-means, LATE_DIM = 5
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(d) Agglom., LATE_DIM = 2
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(e) Agglom., LATE_DIM = 4
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Figure 5: Evaluation of different methods with two clustering methods: k-means and agglomerative clustering.
Our approach based on variational autoencoder (VAE) yields better separated clusters in terms of Silhouette
score in comparison with the other methods in majority of cases.

4 Conclusion116

Systematic defects in manufacturing industry are caused by a malfunction in a process equipment or117

human errors. Automated detection of such production issues and automated root cause analysis will118

improve the efficiency of semiconductor production. Manufacturing defects often exhibit patterns119

in measured test data. Recognizing spatial patterns and their categorization are essential tasks in120

root cause identification of the production issues. In this paper, after pre-processing procedures, we121

extracted the most characteristic features of the data using a deep variational autoencoder neural122

network, in order to recognize the wafermap patterns. We then utilized the extracted low-dimensional123

features in clustering task to group the wafers into meaningful clusters based on their spatial patterns.124

Finally, we experimentally showed the performance superiority of the proposed approach over a real125

dataset, in comparison with several well-known methods.126
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