
Proceedings of Machine Learning Research 102:39–62, 2019 MIDL 2019 – Full paper track

Image Synthesis with a Convolutional Capsule
Generative Adversarial Network

Cher Bass1,2,3 C.BASS14@IMPERIAL.AC.UK

Tianhong Dai1 TIANHONG.DAI15@IMPERIAL.AC.UK

Benjamin Billot1 BENJAMIN.BILLOT.18@UCL.AC.UK

Kai Arulkumaran1 KAILASH.ARULKUMARAN13@IMPERIAL.AC.UK

Antonia Creswell1 ANTONIA.CRESWELL11@IMPERIAL.AC.UK

Claudia Clopath1 C.CLOPATH@IMPERIAL.AC.UK

Vincenzo De Paola3 VINCENZO.DEPAOLA@CSC.MRC.AC.UK

Anil Anthony Bharath1 A.BHARATH@IMPERIAL.AC.UK
1 Department of Bioengineering, Imperial College London, UK
2 Centre for Neurotechnology, Imperial College London, UK
3 MRC Clinical Science Centre, Faculty of Medicine, Imperial College London, London, UK

Abstract
Machine learning for biomedical imaging often suffers from a lack of labelled training data. One so-
lution is to use generative models to synthesise more data. To this end, we introduce CapsPix2Pix,
which combines convolutional capsules with the pix2pix framework, to synthesise images condi-
tioned on class segmentation labels. We apply our approach to a new biomedical dataset of cortical
axons imaged by two-photon microscopy, as a method of data augmentation for small datasets. We
evaluate performance both qualitatively and quantitatively. Quantitative evaluation is performed
by using image data generated by either CapsPix2Pix or pix2pix to train a U-net on a segmen-
tation task, then testing on real microscopy data. Our method quantitatively performs as well as
pix2pix, with an order of magnitude fewer parameters. Additionally, CapsPix2Pix is far more
capable at synthesising images of different appearance, but the same underlying geometry. Finally,
qualitative analysis of the features learned by CapsPix2Pix suggests that individual capsules capture
diverse and often semantically meaningful groups of features, covering structures such as synapses,
axons and noise.
Keywords: Capsule Network, Generative Adversarial Network, Neurons, Axons, Synthetic Data,
Segmentation, Image Synthesis, Image-to-Image Translation

1. Introduction

Deep neural networks (DNNs) have significantly advanced the state-of-the-art in biomedical image
analysis, particularly where data is well curated for specific tasks such as segmentation and clas-
sification (Ronneberger et al., 2015; Frid-Adar et al., 2018b). However, there remain significant
challenges. A key problem in analysing biomedical datasets is inadequate quantities of data for
training. This may occur where data is scarce, or the expert resources are needed for curated ground
truth. We may specifically care about learning from a few data points, as animal or patient data is
often restricted.

c© 2019 C. Bass, T. Dai, B. Billot, K. Arulkumaran, A. Creswell, C. Clopath, V. De Paola & A.A. Bharath.

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Recent years have shown that synthetic data, in combination with or even without real data,
can be used to effectively train computer vision systems (Gaidon et al., 2018). One such approach
would be to train a generative model on modest amounts of labelled data, and use this to aug-
ment the dataset with synthesised images. To achieve this, we introduce a convolutional capsule
generative adversarial network (GAN), CapsPix2Pix (Figure 1), to synthesise images conditioned
on segmentation labels. Through experimental evaluation we show that our method quantitatively
and qualitatively matches or outperforms pix2pix, a state-of-the-art conditional image synthesis
model (Isola et al., 2017).

In particular, we use our method to synthesise images based on a new 152-image cortical axon
dataset, captured with a two-photon microscope in the mouse cortex. We use the synthesised images
to pretrain a segmentation model, and show that it improves performance over using only the orig-
inal dataset. Better segmentation performance allows us to better automate the study of neurons.
This is relevant for the field of experimental neuroscience, where there is interest in examining the
structure of neurons under different conditions, or in response to a stimuli. We believe that our
results validate the use of CapsPix2Pix, which could be applied to other biomedical datasets and
downstream tasks.

Figure 1: CapsPix2Pix generator architecture.

1.1. Summary of Our Contributions

We introduce for the first time a convolutional capsule network in the GAN framework. We propose
a convolutional capsule architecture—CapsPix2Pix—for conditional image generation, that utilises
an input label and a latent vector (Figure 1). We show that CapsPix2Pix quantitatively performs as
well as the state-of-the-art pix2pix (Isola et al., 2017) for generating realistic images with our
dataset, while drastically reducing the number of network parameters: 7× smaller than pix2pix
(7.9M vs. 50M parameters). We show that capsules capture qualitatively different features for

40

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

the relevant structures in our dataset, and can create varied synthetic images from the same labels
(Figures A5 and 2). We also explore the features learned by convolutional capsules. Through this
we find that they group similar features in the same capsule. Finally, we present a new dataset
of cortical neurons and segmentation labels collected using two-photon microscopy in the mouse
cortex. The dataset is available at https://doi.org/10.5281/zenodo.2559237, and the
code for our method can be found at https://github.com/CherBass/CapsPix2Pix.

Figure 2: Comparison of the features of pix2pix (16/64 final layer activations— see Figure A7
for all activations) and CapsPix2Pix (16/16 final layer activations) from the same geo-
metric description of an axon.

2. Background and Related Work

Recent years have seen the introduction of several methods that are capable of conditional image
synthesis. Such methods may take as input segmentation labels (Isola et al., 2017), object bounding
boxes (Reed et al., 2016b) or even text (Reed et al., 2016a), and produce realistic images condi-
tioned on this information. For biomedical data, the ability to synthesise new samples would allow
us to apply powerful supervised learning methods to datasets with few labels—effectively, semi-
supervised learning by synthesising new labelled samples. Accordingly, some prior work has used
such methods to generate synthetic biomedical datasets (Hinterstoisser et al., 2017; Alzantot et al.,
2017; Frid-Adar et al., 2018a,b; Sixt et al., 2018; Korkinof et al., 2018; Baur et al., 2018).

In this work we build upon pix2pix (Isola et al., 2017), a conditional GAN (cGAN) (Good-
fellow et al., 2014; Mirza and Osindero, 2014) that is capable of synthesising images conditional
on segmentation labels. We augment pix2pix with convolutional capsules (Sabour et al., 2017;
LaLonde and Bagci, 2018), which are proposed to be better able to capture relationships between
features than standard convolutional NNs (CNNs).

41

https://doi.org/10.5281/zenodo.2559237
https://github.com/CherBass/CapsPix2Pix

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

2.1. Generative Adversarial Networks

GANs are a type of implicit generative model that map latent vectors z ∼ Pz(z) to samples y, via a
generator model G : z→ y (Goodfellow et al., 2014). They can be extended to the conditional setting
(Mirza and Osindero, 2014), where the mapping is from z and an additional input label x, such that
G : {x,z}→ y. For the case of our biomedical dataset, x represents the geometry of the structures to
be synthesised, z captures additional properties of the data distribution, such as imaging noise and
variations in axon intensities, and y is a sample resembling a cortical axon image.

GAN training also involves a discriminator model D : {x,y}→ [0,1], where D is shown both real
and synthetic image-label pairs and is trained to distinguish between them via a binary classification
task. G is then trained to generate samples that fool the discriminator. Training is formulated as a
two-player minimax game, where the objective is to find a Nash equilibrium for both models:

min
G

max
D

LcGAN(G,D) =Ex,y∼Pdata(x,y)
[

logD(x,y)
]
+

Ex∼Pdata(x),z∼Pz(z)
[

log(1−D(x,G(x,z)))
] (1)

For more information on (conditional and unconditional) GANs we refer readers to Goodfellow
(2016); Creswell et al. (2018).

The pix2pix network (Isola et al., 2017) is a fully-convolutional cGAN based on a U-net-style
encoder-decoder architecture (Ronneberger et al., 2015). In order to encourage the final output to
better adhere to the structure of the label, they also minimise an L1 loss between synthesised and
real images with the corresponding label:

min
G

L1(G) = Ex,y∼Pdata(x,y),z∼Pz(z)
[
‖ y−G(x,z) ‖1

]
(2)

The final objective, which we also use for CapsPix2Pix, is the value function V (G,D):

min
G

max
D

V (G,D) = LcGAN(G,D)+λL1(G) (3)

where λ = 0.1 for pix2pix, and λ = 1 for CapsPix2Pix (see Appendix C for results comparing
λ ∈ {0.1,1} for CapsPix2Pix). The original formulation of pix2pix also forgoes using z∼ Pz(z)
to generate a distribution of images, and instead uses dropout to stochastically generate outputs,
as they found that their generator’s outputs were largely independent of z. We instead retain the
approach of inputting random latent vectors to drive CapsPix2Pix, as we found that it was capable
of learning meaningful manifold in latent space (Figure 3).

2.2. Capsule Networks

Capsule networks were first introduced by Sabour et al. (2017), and were made to better encode
spatial relationships between features than standard CNNs. As opposed to standard DNNs, where
scalar values represent a feature, capsules output vectors, where the orientation of the vector repre-
sents properties (e.g., pose, texture, etc.), and the magnitude represents the probability of the feature
being present. The second key component of capsule networks is “dynamic routing”, an iterative
algorithm in which outputs of capsules are routed to capsules in the layer above based on how well
their predictions agree. We detail the dynamic routing algorithm in Algorithm 1.

However, traditional capsules use a high-dimensional transformation matrix, and thus were only
applied to small images. The size of the weight matrix is also fixed based on the input size, and so

42

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Figure 3: Linear interpolation between two z vectors for CapsPix2Pix. We show 5 selected features
(activations) from our 16D capsule at the last layer. The red arrows in the axon/ boutons
row, point to an example of how a bouton appears and disappears in the feature space,
when interpolating the z vectors. The red arrows in the high intensity noise row, point to
changing high intensity noise.

the same network cannot be applied to different sized images. LaLonde and Bagci (2018) solved this
issue by introducing convolutional capsules, and successfully applied them to a segmentation task
with large images (512×512 pixels). As in standard CNNs, convolutional capsules benefit from a
smaller memory usage and faster computation. By using a primarily fully-convolutional structure,
we are also able to analyse intermediate layer activations (see Figure A6 for some examples from
our trained model).

We note that there have been two prior works (Jaiswal et al., 2018; Upadhyay and Schrater,
2018) that have combined capsules with GANs by changing the discriminator model to use (non-
convolutional) capsules. They therefore were unable to demonstrate the benefits of using capsules
in the generator model, and did not demonstrate an application to images beyond (64×64 pixels).
In initial experiments (Appendix C), we found that standard convolutional discriminators (Radford

43

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

et al., 2015) qualitatively performed better than convolutional capsule discriminators, and so opted
to use the former.

3. Methods

3.1. Convolutional Capsules and Local Dynamic Routing

Our generator utilises convolutional capsules (LaLonde and Bagci, 2018), where the dynamic rout-
ing is instead preceded by a convolution instead of a weight matrix multiplication. Convolutional
capsule layers take inputs a, of size [B, I,CI,WI,HI], and output û, of size [B, I,WJ,HJ,J,CJ], where
B = batch size, I = number of input capsules, CI = number of input channels, W = width, H =
height, J = number of output capsules and CJ = number of output channels. In the convolution
step, the kernels KW ×KH are shared between the input capsules in order to reduce the number of
parameters, such that the total number of parameters per convolution is CI×KW ×KH×CJ×J. For
each layer of the network, the output of the convolution û—the activations of the child capsules—
are routed to all the parent capsules. We use i and j to denote indices for child and parent capsules,
respectively.

LaLonde and Bagci (2018) also introduce the local dynamic routing algorithm to accompany
convolutional capsules. With convolutional capsules, since û has width and height dimensions, each
spatial location in the input capsule is routed to the same spatial location in the output capsules,
using a spatial kernel of size Kr = 1 1. The spatial kernel is formed from the parameter b, of size
[I,WJ,HJ,J], which is normalised to form vectors ci j using the softmax function:

ci j =
exp(bi j)

∑i exp(bi j)
, (4)

where bi j is updated in every routing iteration.
The routing process involves taking the dot product of ûi j with ci j over the input capsules to

give s j—each spatial location (W,H) in the input capsules is routed to the corresponding location in
the output capsules.

The output of the dot product, s j, is then passed through the nonlinear “squash” function to give
v j:

v j =
‖s j‖2

2

1+‖s j‖2
2
·

s j

‖s j‖2
(5)

The purpose of this nonlinear function is to normalise the output between [0,1], and to ensure
that the vector direction is retained, which is important in the bi j update step. For the update, bi j

is incremented with the dot product of v j with ûi j, which is a key element of the dynamic routing
algorithm. The dot product essentially looks at the similarity between the input and output capsules,
and updates bi j accordingly (similar features increase the value of b, and dissimilar features reduce
it).

The entire procedure for convolutional capsules followed by dynamic routing is illustrated in
Algorithm 1, where we use ∗ to denote either convolution or transpose convolution.

1. While both LaLonde and Bagci (2018) and we use Kr = 1, it is possible to use any kernel size.

44

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Algorithm 1: Convolutional Capsules + Local Dynamic Routing
Input: a, capsules in layer l; l, layer; r, iterations; bias; weight
Output: v j, capsules in layer (l +1)
ûI×J×CJ ← biasJ×CJ +∑

CI
n=0 weightJ×CJ ,n ∗an

for all capsules i in layer l and capsules j in layer (l +1): bi j← 0
for 1 to r do

for all capsules i in layer l and capsule j in layer (l +1): ci j← so f tmax(bi j) B Eq. 4
for all capsules j in layer (l +1): s j← ∑i ci jûi j

for all capsules j in layer (l +1): v j← squash(s j) B Eq. 5
for all capsules i in layer l and capsule j in layer (l +1): bi j← bi j + ûi j · v j

end

3.2. Convolutional Capsule Generator

Our generator architecture is based on the U-net-style encoder-decoder network with skip connec-
tions (Figure 1) (Ronneberger et al., 2015), similarly to pix2pix (Isola et al., 2017) and SegCaps
(LaLonde and Bagci, 2018). This architecture is designed to output an image that is aligned with
the structure of the input, and to encode both low and high level features by using skip connections.
We later demonstrate that capsules learn highly relevant features at the last layer, while having far
fewer parameters as compared to the original pix2pix.

In order to generate a distribution of synthetic images, we additionally augment our network
with a 100D latent vector z ∼N (0,I) (Figure 1). This vector is passed through a fully-connected
layer of size 100× 2562, with the output reshaped to be the same spatial dimensions as the input
image (256× 256). This is then concatenated with the input segmentation label as an additional
channel, so that the input into the first convolutional layer is of size [B,2,256,256]. By fixing the
input segmentation label and sampling different latent vectors, the network is able to produce varied
images with the same geometry as represented by the label.

3.3. Conditional DCGAN Discriminator

Our discriminator is mainly based on the deep convolutional GAN (DCGAN) architecture (Radford
et al., 2015). As per the original, the network is built with standard 2D convolutions followed by
batch normalisation (Ioffe and Szegedy, 2015) and leaky ReLU nonlinearities (Xu et al., 2015); we
also add a final fully-connected layer of size 169× 1 to compensate for the larger input size. To
make D conditional, it receives as an input the image and label concatenated, giving an input size
[B,2,256,256].

4. Datasets

We used both a real microscopy dataset and a physics-based dataset in our experiments (Figure 4).
These datasets comprise of both labels and images. In addition, we also describe several methods
that can take labels (from either dataset) as input, and generate new images.

45

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

4.1. Synthetic Datasets

One baseline for synthesis of axon data is based on a simple statistical shape model. This model
is produced by adding point locations – created by taking angle-constrained random walks – to a
list of node locations in a 2D plane. The skeleton of the axon-like structures is obtained by fitting
spline curves through these points (Wen and Chklovskii, 2008). This approach permits an infinite
number of variations of axon-like geometry to be specified. Ground-truth binary labels for the
corresponding centrelines are defined by keeping all pixels within a short distance from the curves,
but the full curve description is maintained for a physics-based imaging model.

PBAM-SSM: Given a spline description, the corresponding images can be used to drive a sim-
ple physics-based imaging appearance model (PBAM). This model first builds a distance map be-
tween the spline description of the axon centreline, and the rest of the image. Distances are con-
verted into intensity values by assuming a Gaussian axon profile or similar centreline-dependent,
variable-width intensity profile. The final image is obtained by introducing intensity variations
along the axons, optical blur, white and coloured noise sources. Synaptic protrusions are also added
onto the axons. The combined geometry/appearance model is used as a baseline generative model
for microscopy images.

CapsPix2Pix-SSM & pix2pix-SSM: The statistical shape model representing axons can be
used to drive different geometrical realisations for the appearance-based generative models based
on either the CapsPix2Pix or pix2pix networks.

4.2. Microscopy Dataset

We combined data from two published sources (Bass et al., 2017; Canty et al., 2018) to obtain
152 (512×512) 2D images (produced from a max projection over 3D image stacks), and manually
produced the corresponding labels; 20 of the images are held out for testing. These images were
collected using in-vivo two-photon microscopy from the mouse somatosensory cortex. Examples
of the labels and images in this dataset are shown in Figure 4. The labels are binary segmentation
maps of the axons. The full dataset is available at https://doi.org/10.5281/zenodo.
2559237.

4.3. Training of Networks

The conditional generative models pix2pix and CapsPix2Pix are trained on labels and images
from the microscopy dataset, which is augmented with random crops of size 256×256, which we
denote as “cropped real” (CR). The segmentation models (U-nets) are trained using data synthesised
from labels obtained from the SSM, and labels from the microscopy dataset, augmented with ran-
dom flips, rotations, zooming and crops of size 64×64, which we denote as “augmented real” (AR).
Examples of synthetic images from different models compared to real data are shown in Figure 5.
We use 26,400 images in all our experiments for training the segmentation, and 13,200 images in
all our experiments for training conditional generative models.

46

https://doi.org/10.5281/zenodo.2559237
https://doi.org/10.5281/zenodo.2559237

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Figure 4: Examples of labels and images from the real and physics-based synthetic datasets. Ab-
breviations: SSM = statistical shape model; PBAM = physics-based imaging appearance
model.

5. Experiments and Results

5.1. Evaluation of Generative Models

Evaluating the quality of generative models is known to be a difficult problem (Theis et al., 2016).
Several quantitative methods, such as Parzen window log-likelihood estimates (Breuleux et al.,
2010) and the Inception score (Salimans et al., 2016) have been proposed, but these may not always
be appropriate. We provide a further discussion in Appendix B. In the case of conditional image
synthesis, we could use quantitative metrics such as mean squared error or structural similarity index
to compare against “ground truth” images. Unfortunately, these do not give a meaningful evaluation
of the quality of the synthesis, since if the structure is similar, but the quality or data distribution is
bad, the scores might still be high. A more general way of evaluating synthetic image quality is to
allow human observers to discriminate between “real” and “fake” images. However, as our dataset
contains biomedical images, subjects would need to be trained on the data first before performing
the task. We instead choose to quantitatively evaluate our method by testing how its synthesised
images affect the performance in downstream tasks of interest—in this case, segmentation. This
task-based evaluation has previously been used for evaluating generative models in, for example,

47

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Figure 5: Examples of synthetic images compared to images from the real dataset. All images have
a resolution of 256×256 pixels.

skin lesion datasets (Frid-Adar et al., 2018a,b). Qualitatively, it is possible to examine the latent
space to see how well the network has learned high level information about the data distribution,
and the network’s activations to see what features have been learned.

5.2. Quantitative Analysis

As the end goal of our work on generative models is to improve the analysis of biomedical datasets,
we chose to quantitatively evaluate our model by using synthesised images in a segmentation task.
We trained separate U-nets from scratch, on different datasets (real, and synthetic images from dif-
ferent models), and repeat each experiment 10 times to get means and standard deviations per model.
Testing was done on the same 400 crops (64×64) of held-out test dataset of 20 images (512×512).
Performance was measured using the Dice score, receiver operator characteristic (ROC, Figure A3)
area under the curve (AUC), and precision-recall (PR) AUC metrics (Table 1). We compared our
model, CapsPix2Pix, to the state-of-the-art pix2pix (Isola et al., 2017). ROC and test plots for
selected U-nets (trained on different datasets) are displayed in Figures A3 and A4.

Training U-net from scratch on real or synthetic datasets: When comparing the Dice score
per experiment (Table A1), we found that the CapsPix2Pix-SSM model performs better than the
pix2pix-SSM model (p < 0.0001, t-test), and better than the PBAM-SSM (p < 0.0001, t-test).

48

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Table 1: Segmentation results. The same U-net architecture was trained on different datasets,
and evaluated on the test set of 400 crops of size 64×64 from the original dataset (20 test
images of size 512×512). The same number of samples—26,400 images of size 64×64—
were used in training in all experiments. Hyphenated names refer to image synthesis
model, followed by the label source. The † refers to the usage of only 1,320 unique labels,
but generating 20 images per label. We highlight in bold the best scores in each section
separated by a horizontal line. We repeat each experiment 10 times, and report averages
and standard deviations across those experiments in this table. Abbreviations: PBAM =
physics-based imaging appearance model; SSM = (synthetic labels of the) statistical shape
model; AR = augmented real (labels).

Images Labels Pretrained Dice ROC AUC PR AUC
PBAM SSM No 0.6094±0.0083 0.9560±0.0054 0.6157±0.0102
pix2pix AR No 0.6592±0.0034 0.9670±0.0004 0.6834±0.0034
pix2pix SSM No 0.6353±0.0036 0.9631±0.0012 0.6635±0.0063
CapsPix2Pix AR No 0.6407±0.0040 0.9608±0.0022 0.6572±0.0050
CapsPix2Pix SSM No 0.6528±0.0028 0.9637±0.0014 0.6691±0.0002
Real data AR No 0.6827±0.0010 0.9725±0.0002 0.7149±0.0015
pix2pix AR† No 0.6438±0.0031 0.9652±0.0009 0.6676±0.0047
pix2pix SSM† No 0.6393±0.0041 0.9635±0.0014 0.6657±0.0045
CapsPix2Pix AR† No 0.6423±0.0075 0.9638±0.0015 0.6621±0.0117
CapsPix2Pix SSM† No 0.6540±0.0078 0.9620±0.0048 0.6689±0.0069
Real data AR pix2pix-AR 0.6856±0.0005 0.9731±0.0002 0.7170±0.0009
Real data AR pix2pix-SSM 0.6830±0.0005 0.9724±0.0002 0.7145±0.0007
Real data AR CapsPix2Pix-AR 0.6870±0.0005 0.9734±0.0001 0.7190±0.0006
Real data AR CapsPix2Pix-SSM 0.6855±0.0005 0.9730±0.0001 0.7175±0.0006

However, the pix2pix-AR model performs better than CapsPix2Pix-AR (p < 0.0001, t-test). We
conclude that, overall, training U-net from scratch on CapsPix2Pix or pix2pix synthetic data leads
to comparable results, since they each perform better in one case when using either SSM or AR as
input labels. Overall, using the real data with augmentation leads to better segmentation results than
training only on the synthetic images (p < 0.0001, t-test).

Pre-training U-net on synthetic datasets: To test whether using the synthetic datasets could
improve upon only training with real images, we pretrain our U-nets on synthetic images, and fine-
tuned using the real data. Doing so significantly improves the Dice score (compared to just training
on real data) when pretraining on pix2pix-AR data (p < 0.0001, t-test), but not on pix2pix-
SSM (p > 0.05, t-test). In contrast, we achieve a significant improvement on both CapsPix2Pix-AR
and CapsPix2Pix-SSM data (AR & SSM; p < 0.0001, t-test). Overall, we reach the best results
when pretraining on CapsPix2Pix-AR (0.6870±0.00005), and we find that it is significantly better
than the pretrained model on pix2pix-AR data (p < 0.0001, t-test).

49

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Training U-net on synthetic datasets with reduced unique labels: We performed an addi-
tional experiment to quantitatively demonstrate that our model can synthesise more diverse data,
given the same input label. We trained U-nets with a reduced number of SSM or AR labels (1,320
unique labels), but several synthetic images per label (20 images) for a total of 26,400 (i.e. same
number of images as in other experiments), for both CapsPix2Pix and pix2pix. We found that
while training on CapsPix2Pix-SSM† data (where † refers to a model trained with reduced labels)
leads to good performance, training on pix2pix-SSM† data leads to overfitting, and performance
is reduced to∼ 0.61 by the end of training (bottom of Figure A4). In addition, when comparing per-
formance of the best models (i.e., before overfitting; Table 1), we found that CapsPix2Pix-SSM† is
significantly better than pix2pix-SSM† and pix2pix-AR† (p < 0.0001, and p < 0.005, t-test).
This strongly indicates that our model is better able to synthesise diverse images. See Figure A5 for
randomly picked examples of synthetic images from the same input labels.

5.3. Qualitative Analysis

We investigated how well our model captured the data distribution of the axon and noise using linear
interpolation between 2 randomly sampled z vectors (Figure 3). The synthetic images display a large
variation in noise and axon intensity (including synapses on different locations on the axon). We
also display the features (activations) of the last capsule layer, demonstrating the variety of features
learned by the network, even with a reduced number of parameters. In addition, we found that
individual capsules appear to group similar features (Figure A6). This could be key in learning a
balanced data distribution within and across classes, as different capsules could represent different
classes, and the features within each capsule could encode the variability within that class.

We also compared the 16 features (the last layer activations) produced from the same label
between pix2pix and CapsPix2Pix (Figure 2). While pix2pix also learns different features,
many of them appear to be redundant and do not capture the noise very well (see Figure A7 for all
pix2pix features at the last layer). CapsPix2Pix learns both features of the axon and noise (high
intensity, and general noise) quite well.

Finally, we synthesised different images for the same label from each network (Figure A5), and
found that while CapsPix2Pix can generate a large variation of images from one label, pix2pix is
only able to make minor alterations to the images.

6. Conclusion

In this paper we introduced CapsPix2Pix, a novel method which utilises convolutional capsule net-
works in the cGAN framework for synthesising images conditional on segmentation labels.

We quantitatively validate our method by training U-nets on synthesised data from CapsPix2Pix
and the state-of-the-art pix2pix model, which leads to comparable performance in a segmenta-
tion task (Section 5.2), while using far fewer parameters (Appendix A). More relevant to our end
goal, we show that if the U-net is pretrained with synthesised data from CapsPix2Pix, it increases
performance in the segmentation task. We attempt to compare the data distributions of the real and
synthetic images via kernel density estimation, but conclude that this method is invalid in our case
(see discussion in Appendix B).

Qualitatively, we show that CapsPix2Pix is able to synthesise considerably different images
from the same images, while pix2pix does not (Section 5.3, Figure A5). We quantified whether
being able to synthesise different images from the same label would impact the results when training

50

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

U-net. We synthesised images from a reduced number of unique labels with 20 images per label, and
showed that segmentation performance was better when CapsPix2Pix data was used (Section 5.2,
bottom of Figure A4). We also show that CapsPix2Pix learns relevant features for our dataset,
and appears to capture the distribution of the noise and neuron classes well (Figures 2, 3 and A6),
while pix2pix mainly just captures the axon class (Figures 2 and A7). Because of this property,
we hypothesise that CapsPix2Pix could generalise well to other or more complicated datasets with
multiple classes, and possibly even improve on the problem of mode collapse. For example, it
could apply well to other biomedical datasets, where class imbalance is a common problem, and
the dataset could benefit from a generator that captures a balanced distribution both within and
across classes. In particular, our model’s ability to synthesise diverse images could be of greater
importance when dealing with datasets with a small amount of labelled data—another common
problem in biomedical datasets. For instance, Dai et al.(2019) apply deep reinforcement learning
to the problem of centreline tracking on axons (Bass et al., 2017), but are limited to training on
hand-engineered synthetic data due to the amount of labelled data required; a natural next step to
improve the results would be to use CapsPix2Pix to instead generate a large amount of more realistic
data.

Acknowledgments

This work was supported by the Engineering and Physical Sciences Research Council [grant number
EP/L016737/1].

References

Moustafa Alzantot, Supriyo Chakraborty, and Mani Srivastava. Sensegen: A deep learning ar-
chitecture for synthetic sensor data generation. In Pervasive Computing and Communications
Workshops (PerCom Workshops), 2017 IEEE International Conference on, pages 188–193. IEEE,
2017.

Cher Bass, Pyry Helkkula, Vincenzo De Paola, Claudia Clopath, and Anil Anthony Bharath. De-
tection of axonal synapses in 3d two-photon images. PloS one, 12(9):e0183309, 2017.

Christoph Baur, Shadi Albarqouni, and Nassir Navab. Melanogans: High resolution skin lesion
synthesis with gans. arXiv preprint arXiv:1804.04338, 2018.

Olivier Breuleux, Yoshua Bengio, and Pascal Vincent. Unlearning for better mixing. Universite de
Montreal/DIRO, 2010.

Alison J Canty, Johanna S Jackson, Lieven Huang, Antonio Trabalza, Cher Bass, Graham Little,
and Vincenzo De Paola. Single-axon-resolution intravital imaging reveals a rapid onset form of
wallerian degeneration in the adult neocortex. bioRxiv, page 391425, 2018.

Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A
Bharath. Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35
(1):53–65, 2018.

Tianhong Dai, Magda Dubois, Kai Arulkumaran, Jonathan Campbell, Cher Bass, Benjamin Billot,
Fatmatulzehra Uslu, Vincenzo de Paola, Claudia Clopath, and Anil Anthony Bharath. Deep

51

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

reinforcement learning for subpixel neural tracking. In Medical Imaging with Deep Learning,
2019.

Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit
Greenspan. Gan-based synthetic medical image augmentation for increased cnn performance
in liver lesion classification. arXiv preprint arXiv:1803.01229, 2018a.

Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit Greenspan. Synthetic
data augmentation using gan for improved liver lesion classification. In Biomedical Imaging (ISBI
2018), 2018 IEEE 15th International Symposium on, pages 289–293. IEEE, 2018b.

Adrien Gaidon, Antonio Lopez, and Florent Perronnin. The reasonable effectiveness of synthetic
visual data. International Journal of Computer Vision, 126(9):899–901, 2018.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pages 2672–2680, 2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems, pages 6626–6637, 2017.

Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and Kurt Konolige. On pre-trained image
features and synthetic images for deep learning. arXiv preprint arXiv:1710.10710, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pages 448–
456, 2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. arXiv preprint, 2017.

Ayush Jaiswal, Wael AbdAlmageed, and Premkumar Natarajan. Capsulegan: Generative adversarial
capsule network. arXiv preprint arXiv:1802.06167, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Dimitrios Korkinof, Tobias Rijken, Michael O’Neill, Joseph Yearsley, Hugh Harvey, and Ben
Glocker. High-resolution mammogram synthesis using progressive generative adversarial net-
works. arXiv preprint arXiv:1807.03401, 2018.

Rodney LaLonde and Ulas Bagci. Capsules for object segmentation. arXiv preprint
arXiv:1804.04241, 2018.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

52

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS Autodiff Workshop, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. In Proceedings of the 33rd International Con-
ference on International Conference on Machine Learning-Volume 48, pages 1060–1069. JMLR.
org, 2016a.

Scott E Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, and Honglak Lee.
Learning what and where to draw. In Advances in Neural Information Processing Systems, pages
217–225, 2016b.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in Neural Information Processing Systems, pages 3856–3866, 2017.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pages 2234–2242, 2016.

Leon Sixt, Benjamin Wild, and Tim Landgraf. Rendergan: Generating realistic labeled data. Fron-
tiers in Robotics and AI, 5:66, 2018.

L Theis, A van den Oord, and M Bethge. A note on the evaluation of generative models. In
International Conference on Learning Representations (ICLR 2016), pages 1–10, 2016.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Yash Upadhyay and Paul Schrater. Generative adversarial network architectures for image synthesis
using capsule networks. arXiv preprint arXiv:1806.03796, 2018.

Quan Wen and Dmitri B. Chklovskii. Costbenefit analysis of neuronal morphology. Journal of
Neurophysiology, 2008.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.

53

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Appendix A. Computational Comparison

Here we shown a comparison of the computational footprint of CapsPix2Pix and pix2pix.
Weights and activations: We compared the number of trainable parameters for the generator of

CapsPix2Pix and pix2pix. CapsPix2Pix has 7.9M parameters while pix2pix has in total 54M
parameters, i.e. CapsPix2Pix is ×7 smaller. The size of the activations in the network is compa-
rable between the two networks—with CapsPix2Pix having 18M elements for a single sample, and
pix2pix having 16M elements.

Run-time in training and inference: We found that during training, running 1 training epoch
for a batch size of 1, for both generator and discriminator, takes CapsPix2Pix 0.27 seconds and
pix2pix 0.055 seconds, i.e. CapsPix2Pix is ∼ ×5 slower than pix2pix. During inference,
isolating 1 run through the generator for 1 image, we found that it takes CapsPix2Pix 0.058 seconds,
and pix2pix 0.00445 seconds, i.e. CapsPix2Pix is∼×13 slower than pix2pixwhen comparing
the generator only. These run-time experiments were performed on the same PC with a GeForce
GTX 1080Ti GPU.

Appendix B. Quantitative Metrics for Evaluating Generative Models

Ideally, we would be able to quantify how well samples from a generative model match samples
from the real data distribution. This is one motivation for using Parzen window estimates (Breuleux
et al., 2010)—in which a nonparameteric kernel density estimator is fit to real data, giving the
ability to evaluate log-likelihoods for model samples against the density estimator. We performed
this evaluation, fitting 100 Gaussian kernels, with bandwidths ranging from 0.1 to 0.4, to 10000
samples of real data (32× 32), and evaluated the log-likelihoods of 10 draws of 1000 samples of
synthetic data (pix2pix, CapsPix2Pix). As a control, we also evaluated 10 draws of 1000 samples
from left-out real data. The results can be seen in Figure A1: while CapsPix2Pix has a higher log-
likelihood than pix2pix across all bandwidths, real data has the lowest log-likelihoods. This has
been shown to occur before, and unfortunately invalidates its use as a quantitative metric (Theis
et al., 2015).

Another metric—the Inception score—is based on the Kullback-Leibler divergence between the
conditional label distribution, p(y|x), and the marginal label distribution, p(y), where the distribu-
tions are evaluated using a pretrained discriminative network (originally Inception-v3 trained on
ImageNet data) (Salimans et al., 2016). A high score corresponds to generating meaningful objects
(the entropy of p(y|x) is low) and a wide range of classes (the entropy of p(y) is high). While this
metric may make sense for image datasets with a large number of classes with a balanced set of
samples, it breaks down for a small number of classes with imbalanced data—as is the case for our
axon dataset (Bass et al., 2017). In particular, generated samples with a low amount of noise could
potentially score higher, although this is unrealistic.

The Fréchet inception distance compares the activations in a pretrained discriminative network
(originally Inception-v3) of both real and generated samples (Heusel et al., 2017). This comparison
is similar to Parzen window estimation, but occurs in a relevant feature space rather than on raw
features. The feature space of the pretrained network is important. The image statistics of generic,
real images are vastly different to those of medical images, requiring a network pretrained on med-
ical imaging data. However, the previously described problem with noise re-occurs, as we typically
train discriminative networks to be robust to noise in the input images.

54

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Figure A1: Kernel density estimation plot, comparing the average (of 10 experiments) log-
likelihoods of samples from pix2pix, CapsPix2Pix and held-out real data. As the
estimated log-likelihood of the real data is consistently below generated data, this in-
validates its use as a quantitative metric. Abbreviation: SSM = (synthetic labels of the)
statistical shape model.

Appendix C. Additional Training Experiments For CapsPix2Pix

We performed some initial experiments to explore possible configurations for CapsPix2Pix. We
tested whether using the same L1 lambda (λ = 0.1) as in pix2pix (Isola et al., 2017) would
work well for CapsPix2Pix. We found that while the synthetic images were reasonable, the images
were too noisy at times, and might be unrealistic in some cases (Figure A2). Also, we found
that during training, the quality of synthetic images oscillated a lot more than when using λ = 1.
We also experimented with using different discriminator networks, including a network based on
the traditional capsules (Sabour et al., 2017; Jaiswal et al., 2018; Upadhyay and Schrater, 2018),
and one based on convolutional capsules (this network was similar in structure to a DCGAN, i.e.,
using batch normalisation, leaky ReLUs, the same number of convolutional layers, etc). We found
that the traditional capsule discriminator did not work well at training the generator network, and
that the convolutional capsule discriminator led to reasonable synthetic image generation, but was
not as good as when using a DCGAN discriminator (Figure A2). In addition, both capsule-based
discriminator networks increased training time. Lastly, we experimented with different ways to
insert noise into the network, including broadcasting noise, adding it to the bottleneck, or using
dropout in inference as in pix2pix, but these initial experiments were not promising.

55

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Figure A2: Additional training experiments.

Appendix D. CapsPix2Pix Training Details

To optimise our network, we follow the approach laid out by Goodfellow et al. (2014). We train
G to maximize logD(x,G(x,z)), instead of minimizing log(1−D(x,G(x,z))). In addition, we use
Adam (Kingma and Ba, 2014) as our optimiser, with learning rate = 0.0002, β1 = 0.5,β2 = 0.999;
we linearly decay the learning rate to 0 by the end of training. To prevent D from becoming over-
confident we use two-sided label smoothing (Salimans et al., 2016), with positive labels set to 0.9
and negative labels set to 0.1 when updating D. We also train G with a dropout probability of 0.5,
which we do not apply during inference. Due to memory constraints we use small minibatch sizes
(1-4) and hence do not use batch normalisation to train G.2 We train D with batch normalisation,
as in the original DCGAN. Unlike pix2pix, we input a latent vector z, so we do not need to add
additional stochasticity to our generator during inference.

We trained the networks on the CR dataset (Section 4). Examples of the synthetic images are
shown in Figure 5. The same dataset was used to train pix2pix for comparison. We trained
pix2pix as described in the original work (Isola et al., 2017). All experiments were implemented
using PyTorch (Paszke et al., 2017).

Appendix E. U-net Segmentation Training Details

For each experiment we trained a standard U-net (with same padding so that the output has the same
image size). These were trained on 26,400 (64×64) crops from various datasets, and were tested on
the same 400 crops from the test dataset (20 images, 512×512). During training we used a dropout

2. We found that using batch normalisation is effective when training on smaller images [64×64], where using higher
batch size is possible.

56

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

probability of 0.5, a batch size of 32, and Adam with learning rate = 0.00001, β1 = 0.5,β2 = 0.999.
We keep aside 20% of the training data for validation.

Figure A3: Comparison of U-net test results using ROC curves for different datasets. Each ROC
curve is a concatenation of all false positive rates and true positive rates per dataset (×10
experiments). Abbreviations: PBAM = physics-based imaging appearance model; SSM
= (synthetic labels of the) statistical shape model; AR = augmented real (labels); pt =
pretrained network.

57

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Figure A4: Comparison of U-net test curves for different datasets. The shaded regions represent±1
standard deviation. Abbreviations: PBAM = physics-based imaging appearance model;
SSM = (synthetic labels of the) statistical shape model; AR = augmented real (labels);
pt = pretrained network.

58

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Figure A5: Examples of synthetic images from CapsPix2Pix and pix2pix based on the same
labels. CapsPix2Pix has a large variation between synthetic images (when varying the
z vector), but pix2pix only slightly alters the image (by applying dropout during
inference).

59

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Figure A6: Examples of features (activations) at different capsule layers. The capsules from the
intermediate layers group similar features (capsule conv 3 & 4). The outputs of the
last convolutional capsules (capsule conv 10) are a combination of different types of
features.

60

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Table A1: Per-experiment Dice scores for different datasets. Abbreviations: AR = augmented real
data; P2P = pix2pix; Caps = CapsPix2Pix; pt = pretrained on CapsPix2Pix-AR data;
Std = standard deviation.

Exp AR PBAM-SSM P2P-AR Caps-AR P2P-SSM Caps-SSM AR-pt
1 0.6834 0.6121 0.6564 0.6358 0.6448 0.6558 0.6869
2 0.6829 0.5954 0.6578 0.6350 0.6332 0.6531 0.6867
3 0.6828 0.6154 0.6606 0.6398 0.6418 0.6537 0.6871
4 0.6839 0.6071 0.6602 0.6400 0.6423 0.6500 0.6864
5 0.6818 0.6021 0.6564 0.6389 0.6475 0.6529 0.6882
6 0.6821 0.5993 0.6583 0.6343 0.6394 0.6503 0.6876
7 0.6827 0.6089 0.6617 0.6270 0.6411 0.6490 0.6864
8 0.6808 0.6169 0.6568 0.6329 0.6394 0.6556 0.6867
9 0.6843 0.6129 0.6678 0.6342 0.6353 0.6578 0.6866
10 0.6820 0.6240 0.6560 0.6350 0.6426 0.6500 0.6875
Mean 0.6827 0.6094 0.6592 0.6353 0.6407 0.6528 0.6870
Std 0.0010 0.0083 0.0034 0.0036 0.0040 0.0028 0.0005

61

IMAGE SYNTHESIS WITH A CONVOLUTIONAL CAPSULE GAN

Figure A7: All 64 features (activations) of the last layer in a trained pix2pix model for a single
input (the same as in Figure 2).

62

	Introduction
	Summary of Our Contributions

	Background and Related Work
	Generative Adversarial Networks
	Capsule Networks

	Methods
	Convolutional Capsules and Local Dynamic Routing
	Convolutional Capsule Generator
	Conditional DCGAN Discriminator

	Datasets
	Synthetic Datasets
	Microscopy Dataset
	Training of Networks

	Experiments and Results
	Evaluation of Generative Models
	Quantitative Analysis
	Qualitative Analysis

	Conclusion
	Computational Comparison
	Quantitative Metrics for Evaluating Generative Models
	Additional Training Experiments For CapsPix2Pix
	CapsPix2Pix Training Details
	U-net Segmentation Training Details

