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ABSTRACT

In the multi-objective reinforcement learning (MORL) paradigm, the relative im-
portance of each environment objective is often unknown prior to training, so
agents must learn to specialize their behavior to optimize different combinations
of environment objectives that are specified post-training. These are typically lin-
ear combinations, so the agent is effectively parameterized by a weight vector that
describes how to balance competing environment objectives. However, many real
world behaviors require non-linear combinations of objectives. Additionally, the
conversion between desired behavior and weightings is often unclear.
In this work, we explore the use of a language based on propositional logic with
quantitative semantics–in place of weight vectors–for specifying non-linear be-
haviors in an interpretable way. We use a recurrent encoder to encode logical
combinations of objectives, and train a MORL agent to generalize over these en-
codings. We test our agent in several grid worlds with various objectives and show
that our agent can generalize to many never-before-seen specifications with per-
formance comparable to single policy baseline agents. We also demonstrate our
agent’s ability to generate meaningful policies when presented with novel specifi-
cations and quickly specialize to novel specifications.

1 INTRODUCTION

Reinforcement Learning (RL) is a method for learning behavior policies by maximizing expected
reward through interactions with an environment. RL has grown in popularity as RL agents have
excelled at increasingly complex tasks, including board games (Silver et al., 2016), video games
(Mnih et al., 2015), robotic control (Haarnoja et al., 2018), and other high dimensional, complex
tasks. RL continues to be a valued area of research as algorithms become more generalizable and
sample efficient, making them more feasible for deployment in real world scenarios.

Many RL tasks can be imagined in which multiple possibly conflicting objectives exist. The relative
importance of each objective may not be known by the system designer prior to training, and–when
it comes to real world deployment–it may be difficult or impossible to retrain agents as the priorities
of objectives change over time. Rather than retrain agents for each prioritization, multiple objective
RL (MORL) (Roijers et al., 2013) seeks to learn a set of potential policies so that importance of
objectives can be specified after training, thus creating more flexible, adaptable agents.

For example, a cleaning agent in a house environment may have several objectives such as dusting,
sweeping, and vacuuming. The agent can learn to complete each of these objectives, but certain
objectives may take priority over others. A user may specify that dusting is twice as important
as sweeping and that vacuuming is not important at all. These priorities may change, and MORL
allows agents to learn policies that can satisfy any prioritization of objectives.

As part of MORL, a scalarization function is chosen to convert a multiple objective reward vector
into a scalar. The most common scalarization function for MORL is a linear combination in the form
of a weight vector. However, many real world scalarization functions are non-linear. Additionally,
weight vectors are not ideal for specifying desired behavior. A user may need to experiment in order
to find the weights that result in a desired behavior. Thus scalarization functions that are interpretable
and allow for non-linearities are preferred.
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Returning to the cleaning agent example, a user may specify that the cleaning agent should either
sweep or vacuum, but it is not necessary to do both. Perhaps the decision should be determined by
whichever is more likely to be done well in consideration of other prioritized objectives. Or, it may
be useful to specify that the house should always be kept 75% dusted and that the rest of the agent’s
time should be spent vacuuming. These specifications become difficult or impossible to encode with
simple linear weightings.

Multi-task RL (MTRL) (Caruana, 1997) is a generalization of MORL in which an agent learns
to complete multiple tasks simultaneously, often with the ultimate goal of completing some more
complex task. Recently, Universal Value Function Approximators (UVFA) (Schaul et al., 2015)
were developed for MTRL to learn state or q-values over multiple goals. UVFAs require a goal
parameterization as input usually defined as an element of the state (Andrychowicz et al., 2017).
However, the environment state is not always expressive enough to parameterize all of the goals we
may want to learn. Multiple objectives may provide a better way to define additional goals that are
not part of the environment state.

The contributions of this work can be defined in two parts. First, we propose a simple language
based on propositional logic to specify logical combinations of multiple objectives. This language
is equipped with quantitative semantics that are used to define scalarization functions for MORL.
The resulting scalarization functions can express non-linear combinations of objectives and are more
interpretable than traditional weight vectors. The language also acts as a way of specifying goals for
multi-task learning that will be parameterized to use UVFAs. Second, we develop a MORL agent
for use with this language. The agent prepends a recurrent encoder onto a UVFA architecture to
parameterize goals specified in our language. The agent also follows a learning curriculum over
specifications to improve training speed and performance.

We demonstrate that our agent generalizes to never-before-seen specifications defined in our lan-
guage by providing a test set of novel specifications; this can be seen as a form of zero-shot RL.
Performance on test sets is compared to baseline agents trained on single specifications, and we
show that our agent performs comparably to baselines despite having never been trained on the test
specifications. We demonstrate this over multiple grid worlds with various objectives. Finally, we
demonstrate our agent’s ability to quickly specialize to novel specifications post-training.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Traditional RL problems are often modeled by a Markov Decision Process (MDP) defined by the
tuple (S,S0,A, p) where S is the set of states, S0 is the set of initial states, A is the set of actions,
and p(r, s′|s, a) defines transition probabilities for the environment. Here s′ ∈ S is the subsequent
state and r ∈ R is the reward. An agent’s objective is to maximize expected return:

U = E
s∼S

[
Rπ(s)

]
(1)

Rπ(s) = E
r,s′∼p

[
r + γRπ(s′)

]
(2)

where Rπ is the return under a policy π : S → A mapping states to actions, and γ is a discount
factor.

Q-learning is an approach to solving reinforcement learning problems. The Deep Q-Learning (DQN)
algorithm (Mnih et al., 2015) utilizes a neural network Q to estimate the Q-value of a state-action
pair. The return under a policy Rπ can be expressed by the Q-value when the policy is defined by
the network Q:

Rπ(s) = max
a∼A

Q(s, a) (3)

π(s) = argmax
a∼A

Q(s, a). (4)

We utilize the DQN algorithm in this paper to build our MORL agent, although our language and
the way we construct our agent are not limited to the DQN algorithm.
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2.2 MULTI-OBJECTIVE REINFORCEMENT LEARNING

We alter the traditional RL formulation as an MDP by using a vector of rewards rather than a scalar
reward, resulting in a Multi-Objective Markov Decision Process (MOMDP) (Roijers et al., 2013).
We represent a MOMDP as a tuple (S,S0,A, p) where p(r, s′|s, a) maps to the reward vector r ∈
Rn rather than a scalar reward. Each of the n elements in r represents the reward for a particular
objective.

Next, we modify the DQN algorithm for MORL. Equation 2 requires a scalar reward to sum with
the discounted future rewards. Since the new transition function p provides a vector reward r we
need a scalarization function. Typically, the scalarization function is defined as a linear combination
of objectives in the form of a weight vector (Abels et al., 2018). In this work, we explore the use of
non-linear scalarizations functions defined by logical combinations of objectives.

In offline MORL, the scalarization function is unknown prior to training, so an agent’s goal is to
learn a coverage set (Roijers et al., 2013) of policies in which there is at least one optimal policy
for any scalarization function. Previously this has been done by finding a convex coverage set of
policies (Mossalam et al., 2016). However, this method does not work for non-linear scalarization
functions.

Abels et al. (2018) explored the use of UVFAs to train MORL agents in an online setting. In an
online MORL setting, an agent must learn on the fly and is not given the opportunity to learn a
coverage set prior to testing. Instead the agent must adapt quickly to new scalarization functions
without forgetting policies for previously seen scalarization functions. Online MORL is outside of
the scope of this paper, but we also utilize UVFAs to instead learn a dense set of policies, trained
offline, to be used post training with arbitrary behavior specifications.

2.3 UNIVERSAL VALUE FUNCTION APPROXIMATORS

Universal Value Function Approximators (UVFA) (Schaul et al., 2015) learn value functions over
multiple goals, taking as input to a neural network a goal parameterization along with environment
state or a state action pair. This dense set of value functions induces an equally dense set of policies
which can be applied to their respective goals. Empirically, UFVAs are shown to be able to general-
ize to novel goals. We utilize this method to parameterize goals specified by logical expressions in
our language and show that these statements can be generalized across as well. Many similar tech-
niques are applied in multi-task learning scenarios. Although, the purpose of multi-task learning is
often to improve the learning speed of an agent rather than improve its ability to generalize to new
tasks. The latter is our objective.

3 MULTI-OBJECTIVE RL WITH LOGICAL COMBINATIONS OF OBJECTIVES

Rather than learn a set of individual policies to approximate a coverage set over scalarization func-
tions, we train a single agent to generalize over encoded representations of scalarization functions.
We define scalarization functions in the semantics of a custom language. Behavior specifications are
represented as logic strings, passed through an encoder, and then given to a Q-network for learning.
In this section we lay out our language’s syntax and semantics, the agent architecture, the encoding
method, and the learning curriculum for our agent.

3.1 LANGUAGE SYNTAX AND SEMANTICS

We define a language based on propositional logic to specify combinations of objectives. The logic
operates over objective rewards between [0, 1] inclusive, and is defined as follows.

3.1.1 SYNTAX

We define the grammar of our specification logic as follows:

ψ := ψ ∧ ψ | ψ ∨ ψ | on | ¬on | on ≥ c | on ≤ c
Here, on is the value of the nth objective, or the nth element in a reward vector, and c is a constant.
For the purposes of training, we use the current environment’s reward function to define the possible
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Figure 1: Network architecture: A behavior specification is encoded using a three layer bidirectional
GRU, concatenated with the state representation, and used as input to a UVFA to estimate Q-values.

values of c for each objective. Also notice that the∧ and∨ operations can be performed non-terminal
elements of the grammar.

3.1.2 SEMANTICS

The quantitative semantics of our specification language are defined below:

f(r, on) = r[n]

f(r,¬on) = 1− r[n]

f(r, on ≥ c) = 1 if r[n] ≥ c else 0
f(r, on ≤ c) = 1 if r[n] ≤ c else 0
f(r, ψ1 ∧ ψ2) = min(ψ1, ψ2)

f(r, ψ1 ∨ ψ2) = max(ψ1, ψ2)

Notice that any objective may be either minimized or maximized according to a soft (on, ¬on) or
hard (on ≥ c, on ≤ c) constraint. The soft constraints return the value of the objective reward while
the hard constraints return a value of one or zero.

With these semantics, we are able to specify complex desired behaviors. Consider once again a
cleaning agent tasked with several cleaning objectives: 1) dust, 2) sweep, and 3) vacuum. In this
scenario, the reward vector returned by the environment represents what percentage of the house
is cleaned sufficiently for each of the objectives. That means our language allows us to instruct
an agent to sweep as much as possible, maintain a certain percentage swept, or even make as big
of a mess as possible. Additionally, if we instruct an agent to dust or sweep, we can expect it to
complete one objective and not the other. We can also expect that the agent will choose to complete
the objective that can be satisfied more quickly because it will have a higher expected return. With
the above defined predicate logic we can express desired behaviors such as:

o1 ≥ .5 ∧ o2 Dust 50% of the house and sweep as much as possible.

o1 ≥ .8∧ o2 ≥ .8∧ o3 ≥ .8 Keep the house 80% dusted, swept, and vacuumed.

(o1 ∧ o2) ∨ (o2 ∧ o3) Either dust and sweep or sweep and vacuum.

o2 ∧ (o1 ∨ o3) Sweep and either dust or vacuum.

o1 ∧ ¬o2 Dust while increasing the amount of sweeping to be done.

3.2 MULTI-OBJECTIVE DQN

For our MORL agent we implement a vanilla DQN as described by Mnih et al. (2015), although
our method is easily applicable to most RL algorithms. Recent advances in MTRL, such as the
use of UVFAs for generalizing across goals, has become more common in multiple objective set-
tings (Friedman & Fontaine, 2018; Abels et al., 2018). We also utilize UVFAs to generalize across
encoded behavior specifications and output Q-values for each environment action. The system ar-
chitecture for the MORL agent is diagrammed in Figure 1. Output from the encoder is concatenated
with a state representation and passed through a four-layer neural network of hidden size 128 that
outputs Q-values for each action in the finite action space.

As the agent gains experience, tuples of state, action, next state, terminal, and reward vector
(s, a, s′, t, r) are stored in a replay buffer for future training. In our implementation, every 5 steps
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a batch of size 32 is sampled from the replay buffer, and every sampled tuple is augmented with 8
different behavior specifications ψ. Experience tuples are augmented using the reward vector from
the tuple and the semantics of a sampled specification to generate a scalar reward. The loss is then
calculated over this batch using the formula:

Loss = Q(s, a)− (f(r, ψ) + γ max
a′∼A

Q̂(s′, a′)(1− t)) (5)

Here f : r × ψ → R are the language semantics that map reward vectors and specifications to
scalar rewards. Also, Q̂ is the target Q-network, part of the typical DQN algorithm, a bootstrapped
estimate of the true Q-value updated regularly with the parameters of Q.

3.3 LANGUAGE ENCODER

We utilize Gated Recurrent Units (GRU) (Cho et al., 2014) in order to encode behavior specifications
in the previously defined language. We implement this encoder with three bidirectional layers of
hidden size 64 as shown in Figure 1. The input to our encoder is a sequence of one-hot encodings
generated from a tokenized specification. The hidden states of the last layer in each direction are
used as the specification encoding. The output of this encoder then serves as input to our MORL
agent.

We train this language encoder end-to-end along with the rest of our agent. During testing, we
found that allowing gradients to flow from the DQN back through the encoder gave us better results
than other attempts to train the encoder in a separate supervised setting. In the supervised training
scenario, we trained using the output of the encoder along with a sampled reward vector to predict
the scalarized reward produced by the specification’s semantics (the idea being that the encoded
specification should retain sufficient information to predict the scalarized reward). However, after
several experiments with supervised pretrained and co-trained encoders, we determined that end-to-
end training provided the DQN agent with better specification encodings.

3.4 LEARNING CURRICULUM

We started by training our agent with a new, randomly sampled behavior specification for each
training episode. Additionally, we randomly sampled behavior specifications to augment training
batches. However, we wondered if it would struggle to generalize to long, complex specifications.

We therefore experimented with using curricula to slowly increase the complexity of sampled spec-
ifications. Under this curriculum, we only use a subset of all behavior specifications when sampling
for environment episodes and batch augmentation. This subset of behaviors is defined by the max-
imum length of specification strings in the subset. In our final agent, we increment the maximum
length of specifications in the subset every 5000 timesteps. The curriculum increments the maximum
length a total of 20 times, starting at a base length of 25 characters up to the maximum specification
length for the entire set of specifications.

We compare learners trained with and without a learning curriculum in the experiments in Section 4.

4 EXPERIMENTAL RESULTS

We present the following experiments and results to demonstrate our agent’s ability to encode
the quantitative semantics of behavior specifications and behave appropriately according to never-
before-seen specifications.

The gridworld shown in Figure 2 is a diagram of the environment used to test our MORL agent’s
ability to generalize to new behavior specifications in a multi-objective setting. We refer to this as
the navigation environment. It has three objectives: 1) stay on the road, 2) avoid hazards, and 3)
move right. The first is marked by increasingly dark cells indicating increasing reward. Reward for
the second objective decreases starting inside the red outline until it reaches zero at the location of
the darkest cell. Finally, the third objective reward increases closer to the right side of the grid.

Environment state is finite and can be represented by the location of an agent in the grid. The
environment’s action space is also finite and composed of up, down, left, and right movements. All
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Figure 2: A visualization of the navigation environment. There are three objectives: 1) staying on
the road, 2) avoiding hazards, and 3) moving to the right. Darker cells correspond to higher rewards
in objectives one and three and lower rewards in objective two. All rewards are scaled between zero
and one.

Figure 3: The left graph plots the average score for 100 never-before-seen test specifications over
environment steps. The middle graph shows agents trained on a single specification initialized with
parameters from the curriculum agent at 100,000 timesteps compared with the baselines for 100
averaged test specifications. The right graph compares the performance of our agent with the per-
formance of a multi-objective agent trained with linear weight vectors.

transitions have a 10% chance of being random. The agent’s initial state is indicated in Figure 2,
one square down and to the right from the top left corner.

4.1 ZERO-SHOT GENERALIZATION RESULTS

Our initial experiments compare our agent to baseline agents trained on a single policy. For these
experiments, we use the navigation environment defined previously with three objectives: stay on
the road, avoid hazards, and move right. Note that the opposite of each of these objectives are
also included in possible behavior specifications due to the semantics of our language that enable
minimization. We define a set of 50,000 specifications to sample from during training, with which
the agent learns to generalize to novel specifications. These specifications are randomly generated
according to number of atomic statements, logical connectives, hard vs. soft constraints, and value
of constraints. We randomly sample test specifications from these generated specifications. The
left plot in Figure 3 shows the average episodic reward for 100 never-before-seen test specifications
throughout training for our agent with and without curriculum learning. We compare the results of
these two agents with 100 baseline DQN agents trained on each of these 100 behaviors. The error
bars in Figure 3 show one standard deviation in average reward for multiple agent initializations.

Our results indicate that learning curricula with respect to specification length improve the speed
and performance of learning and decrease the variance of learned policies. Our agents are able to
learn near baseline policies for never-before-seen specifications with the same amount of experience
and network updates that it takes baseline DQN agents to learn individual policies.

Figure 4 visualizes resulting reward functions and policies learned by our agent for three never-
before-seen behavior specifications. The policies generated by our agent demonstrate an under-
standing of the specified behavior. For example, the specification shown in the left grid in Figure 4,
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Figure 4: Zero-shot reward functions and policies for three never-before-seen test specifications.
Darker cells indicate higher reward for entering that state. The left specifications instructs the agent
to avoid hazards while moving to the right. The middle specification instructs the agent to move to
the right two or left two columns. The right specification instructs the agent to stay on the road,
while avoiding the four rightmost columns. See text for additional details.

o2 ≥ 1 ∧ o3, can be interpreted as: avoid being within 4 squares of the marked hazards while
maximizing the proximity to the rightmost column. The derived policy, focuses on arriving at the
rightmost column of the grid where it will receive the greatest reward while moving away from the
hazards when appropriate. The middle grid’s specification, o3 ≥ .9 ∨ o3 ≤ 0, instructs the agent
to move to the right two or the left two columns. Note that the policy correctly sends the agent to
the appropriate columns near the ends of the grid, but the center of the grid contains a few loops
and other artifacts of conflicting policies. During execution, the agent eventually reaches one of the
specified goals due to the stochasticity of the environment. The right grid shows the actual reward
function and the generated policy for the specification o1 ≥ .8∧ o3 ≤ .6. This behavior requires the
agent to stay near the road while avoiding the four rightmost grid columns. Notice that the agent’s
policy focuses on remaining on the road when to the left of the 4 rightmost columns, otherwise the
agent is only concerned with avoiding those columns.

4.2 WARM-START TRAINING RESULTS

While the results in Figure 3 show impressive generalization to never-before-seen tasks, performance
is not quite optimal. This begs the question: can the parameters learned when training on a variety
of tasks be fine-tuned on a single task? Here, we test this by training a single policy agent initialized
with parameters taken from one of our curriculum agent at 100,000 timesteps. We compare to the
baseline DQN agent (which is always trained on a single task). The middle plot in Figure 3 shows
this warm start agent compared to the baseline agents. The graph demonstrates that our agent trained
to generalize over specifications has the ability to specialize to individual specifications much faster
than a baseline agent with traditional, randomly initialized parameters.

4.3 LINEAR AGENT COMPARISON

Our agent learns a the non-linear scalarization function defined by the semantics of the propositional
logic defined in Section 3.1. Most of the specifications that can be expressed in this language are
not easily represented by linear weights. However, specifications that only use soft maximization
constraints and logical and connectives can be expressed as weight vectors that contain only ones
and zeros. For example, o1→ (1 0 0) and o2 ∧ o3→ (0 1 1). We use this method to compare our
agent trained on logical specifications to agents from recent related work trained on linear weights.
We compare the performance of each of these agents throughout training on the seven possible
combinations of objectives according to the method just described. The linear agent uses the same
parameters, architecture, and training algorithm as the logical agent but replaces sampled logical
specifications with sampled weight vectors. We sample weight vectors from a Dirichlet distribution
(α = 1) following the method of Abels et al. (2018) who also utilize UVFAs for training their multi-
objective agent. The right plot in Figure 3 shows the results of this experiment. Our linear agent was
able to learn to satisfy the linear objectives with a speed and level of performance that mirrors the
linear agent. These results indicate that our agent does not lose performance on traditional linearly
weighted objectives while learning to satisfy more complex non-linear combinations of objectives.
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Figure 5: This figure provides several visualizations of encoded specifications. The top sequence
of images are heat maps of the predicted state value from our Q-Network. The images interpolate
between −o3 and o3 in specification encoding space showing that our agent learns smooth pol-
icy transitions between specifications. The bottom right image is a T-SNE visualization of 1,600
specification encodings. The encodings are organized into 8 buckets of 200 semantically equiva-
lent specifications. The bottom left image shows the predicted state values for four semantically
equivalent specifications: A) −o3 B) (−o3) C) ((−o3)) D) ((−o3 ∨ −o3))

4.4 SPECIFICATION ENCODING VISUALIZATIONS

Although our agent demonstrates impressive performance across a large number of specifications,
we would like to be assured that the agent is actually learning the semantics of logical specifications
and correctly estimating Q-values for specifications across states. The results of Figure 4 begin
to demonstrate this by visualizing the learned policy for several logical specifications. We further
demonstrate our agent’s ability to learn semantics and implement policies across states and spec-
ifications through a number of experiments, the results of which are found in Figure 5. The top
sequence of images in the figure contains heat maps of our agent’s predicted values over environ-
ment states. The heat maps interpolate between the specifications −o3 and o3 from left to right by
moving between the encodings of each in specification encoding space. Value clearly shifts from
left to right as expected. Interestingly, traces of the first objective can be seen during the transition
when the agent in not preferring left nor right.

The bottom right graph in the figure plots a T-SNE visualization of 1,600 encodings of logical
specifications. These specifications are organized into 8 buckets of 200 semantically equivalent
specifications. For example, the specifications o1 ∧ o2 ∧ o3 would be found in the same bucket as
o1 ∧ (o3 ∧ o2) or (o1 ∧ o1) ∧ (o2 ∧ o3). We generate 200 unique specifications using the method
described in Section 4.1 for each of the specifications listed in Figure 5’s T-SNE visualization.
The plot indicates that our agent is indeed consistently learning the semantics of various language
specifications.

Finally, the bottom left grid in Figure 5 shows the state value heat maps for four semantically equiva-
lent specifications−o3, (−o3), ((−o3)), and ((−o3∨−o3)) labeled as A, B, C, and D respectively.
The heat maps show that our agent finds similar state values (and thus policies) for semantically
equivalent logcial specifications in addition to placing them close together in specification encoding
space.

4.5 NAVIGATION ENVIRONMENT VARIATIONS

To test our agent on a variety of environments with various numbers of objectives we designed
modified navigation environments. We scaled the environment to 5x5 and 20x20 grids as outlined in
Figure 6 along with the 12x12 version described previously. We train on these modified navigation
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Figure 6: Visualizations of the small and large environments for all six objectives. Again, darker
cells correspond to higher rewards for all cases but objective two. The medium environment, de-
picted in Figure 2, is also used with the additional objectives four, five, and six that follow the pattern
shown here.

Figure 7: Agent performance compared to baselines for 3 different sized environments with 2, 4, and
6 objectives. The small, medium, and large environments are 5x5, 12x12, and 20x20 respectively.
The medium environment is identical to the one described in the previous section, and the others
are variations of it. The objectives are added in the following order: 1) stay on the road, 2) avoid
hazards, 3) move right, 4) move up, 5) move towards the horizontal center, and 6) move towards the
vertical center.
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environments with two, four, and six objectives. The two objective environment includes staying
on the road and avoiding hazards. The four objective environment adds moving to the right and
moving up. The six objective environment adds moving towards the center row and moving towards
the center column. With the latter four objectives, behavior specifications can include moving to
arbitrary locations in the grid.

Figure 7 shows plots for the nine resulting combinations of environment size and objective count. In
these experiments we use predefined sets of 40,000, 60,000, and 80,000 specifications with an 80:20
training-testing split for the two, four, and six objective versions respectively. We randomly sampled
20% of the specifications to form test sets and show that our agent again generalizes to never-before-
seen behavior specifications over various environment sizes and objective counts. We found that
increased environment size and objective count increased the generalization difficulty, as indicated
by the increase in disparity between our agent and baseline performance, but our agent still manages
to generalize in these more difficult environments. It is interesting to note that with increased number
of objectives, the difference between non-curriculum and curriculum agents becomes more apparent.

5 CONCLUSIONS AND FUTURE WORK

An ideal decision making agent has the ability to adjust behavior according to the needs and pref-
erences of a user. Preferably, this would be done without retraining. Rather than learning separate
policies for each desired behavior, we have shown that information about state, transitions, and the
interactions between objectives can be captured and shared in a single model.

This work can be framed in many ways: as a non-linear generalization of MORL, or as a gener-
alization of UVFA where value functions generalize across complex tasks specifications, instead
of a single goal state. Either way, our results demonstrate that deep RL agents can successfully
learn about, and generalize across, complex task specifications encoded in complex languages. We
are particularly excited about our zero-shot results: our agents generalize to never-before-seen task
specifications that are complex and nuanced, and are able to perform almost optimally with no task-
specific training. If we allow the agent to train on new tasks, our warm-start experiments suggest
that the parameters we have found serve as an excellent initialization that enables an agent to rapidly
achieve optimal performance on a new task.

We have also shown preliminary evidence that when trying to summarize and utilize complex spec-
ifications, some sort of curriculum-based learning is likely to be necessary. By increasingly com-
plexifying the task specifications, we were generally able to achieve better, more stable, and lower-
variance behavior.

In this work, our MORL agent demonstrates that it is possible to generalize over language defined
specifications and behave well when given completely novel behavior specifications. This is possible
in part through learning semantic representations of language expressions and then generalizing over
those representations, an idea that can be generalized to other languages.

This naturally begs the question: could we encode task specifications using natural language, instead
of a logical language? Previous attempts have been made to combine natural and formal language
with RL. Natural language has been used for advice giving (Kuhlmann et al., 2004), reward shap-
ing (Goyal et al., 2019), and defining reward functions (Fu et al., 2019) in RL tasks. Quantitative
semantics of temporal logics have been used to define reward functions (Aksaray et al., 2016; Li
et al., 2017) and ensure safe exploration (Li & Belta, 2019). More complex languages like these
would allow for more complex behaviors. Finally, in this work, we use a simple language based on
propositional logic to specify desired behavior, but in future work, MORL scalarization functions
may include temporal and other formal logics. Temporal logics would allow for complex sequences
of commands with respect to multiple objectives, becoming much more applicable to real world
scenarios. Natural languages come with additional difficulties due their lack of concrete seman-
tics. However, improvements in natural language representation may also enable the use of natural
language to specify desired behavior in MORL.
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