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1. Introduction

A long standing challenge in machine learning is the usage of data sets that lack a gold-
standard ground truth. Especially in medical imaging applications, many data set segmen-
tations exhibit a large inter-observer variability (Sørensen et al., 1993) (Williamson et al.,
2018). In this work, we propose the Hypersphere Auto-Encoder (HAE), a novel deep learning
architecture capable of modeling inherent data ambiguity, based on multi-assessor input.

2. Methods

2.1. VLE data set

Volumetric Laser Endomicroscopy (VLE) is a second-generation Optical Coherence Tomogra-
phy (OCT) imaging modality, capable of making a full circumferential scan of the esophageal
wall up to a tissue depth of 3 mm (Gonzalo et al., 2010). However, the lower boundary of
relevant tissue is ambiguous (van der Putten et al., 2019). Since the lower boundaries are
not clearly defined, multiple proposals can greatly benefit the user. The VLE data set was
acquired in a prospective single-center study in which 23 Barrett’s patients with and without
early neoplasia were included. In total, 131 Regions Of Interest (ROI) were extracted from
the patients, where an ROI is defined as a selected section of the entire scan where histology
was proven. The original ROIs have a resolution of 1, 342× 1, 024 pixels, which were resized
to 256× 256 pixels for computational efficiency. An example of a VLE image are shown in
Figure 1a. For the remainder of this work, union of the expert annotations is referred to as
the softspot, while the intersection of all annotations is referred to as the sweetspot.
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2.2. Hypersphere auto-encoder

Model definition The proposed HAE architecture uses U-net (Ronneberger et al., 2015)
as the base model, but is extended with an additional feature mapping layer. In this section,
model Mθ(Y |X, ρ) is discussed, which produces segmentation mask Y conditioned on input
image X and parameter ρ. Model Mθ(Y |X, ρ) is comprised of encoder network qθ(z|X, ρ)
which maps the input to latent variable vector z ∈ RN , and decoder network pθ(Y |z, ρ) which
produces a segmentation mask depending on latent variable z and size factor ρ. Additionally,
the original skip connections from standard U-net are replaced with fully residual connections
to reduce the amount of learnable parameters in the decoder. Finally, we propose dynamic
leaky ReLUs (DLReLU) which can dynamically be changed for each input. DLReLUs are
added before each skip connection in the auto-encoder, thereby propagating size information
to the decoder.

Mask interpolation Since the goal of the proposed algorithm is to condition the output
prediction size on ρ, one of the most important learning aspects is determining a ground
truth that reflects this property. In order to obtain intermittent ground-truth masks, a linear
interpolation is generated between the softspot and the sweetspot by using the distance
transform (Maurer et al., 2003).

Hypersphere loss In order to condition the output prediction on ρ, the HyperSphere
Loss (HSL) is introduced and specified by:

HSL =
1

n

n∑
i=1

(||zi||2 − 1)2, (1)

where n is the batch size, i is the batch index and ||zi||2 is the dot product of zi with itself.
The resulting HSL is minimal when the latent vector z ∈ RN is a point on an N -dimensional
hypersphere S with unity radius. Consequently, z is scaled such that zscaled = z(χ + ρ)
with 0 ≤ ρ ≤ 1 prior to being used as input to the decoder. The offset χ = 0.5 is included
to prevent multiplication by 0, which otherwise would produce a null feature vector while
the output is a non-zero mask. The normalized vector ||zscaled|| is now directly correlated
with the desired output annotation size, where we define that ρ = 0 corresponds to the
sweetspot and ρ = 1 corresponds to the softspot. The total loss of the network is defined by
Loss = DICE + 0.5 ·HSL

Dynamic leaky ReLU A second way to condition the output on ρ is by introducing
the Dynamic Leaky ReLU (DLReLU). The DLReLU is very similar to the original Leaky
Rectified Linear Unit (LReLU) first introduced in (Maas et al., 2013). For a DLReLU,
instead of fixed constant sloped, the negative slope is dependent on size factor ρ It should
be noted that the value of ρ can be different per pass through the network. Hence, this
dynamically changes the network based on ρ. Since 0 ≤ ρ ≤ 1, the slope for negative inputs
will be 0 when the output annotation should correspond to the sweetspot and 0.5 when it
corresponds to the softspot. In this way, the negative values after activation correspond to
the size of the output segmentation.
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Figure 1: (a) VLE inference image. (b) Corresponding softspot. (c) Corresponding sweetspot.
(d) Heatmap generated from inference results with 6 levels. (e) Standard U-net prediction.

3. Results

Figure 1 shows visual results of the hypersphere auto-encoder architecture on VLE data. As
can be seen in Figure 1e, a standard U-net prediction contains no information about the
assessor uncertainty, whereas the prediction heatmap in Figure 1d clearly shows a decrease
in prediction certainty for deeper layers in the tissue where the signal-to-noise ratio degrades.
Additionally, similar to the softspot (Figure 1b) and the sweetspot (Figure 1c), the predicted
heatmap shows no ambiguity near the top layer of the tissue where the boundary is clearly
defined and there is hardly any inter-observer variability. These results highlight that the
network does not simply increase the general size of the prediction depending on the value
of ρ. Instead, the network learns to increase the size of the prediction based on the modeled
uncertainty. Figure 1d clearly shows the decreasing confidence in the heatmap at lower tissue
layers. In clinical practice, this model can assist the physician with informed decision making
based on the modeled multiple expert opinions. In this way, the methodology facilitates
explainable AI to the clinical users.

4. Discussion and Conclusion

Many medical imaging data sets contain ground-truth segmentations with a large inter-
observer variability. Most state-of-the-art segmentation models do not take this drawback into
account and are fully deterministic in nature. To this end, we have proposed the Hypersphere
Auto-Encoder (HAE), which represents an architecture for explicitly incorporating multi-
assessor intervariability for multiple segmentation proposals into the segmentation model. We
have shown that conditioning this model on parameter ρ effectively facilitates the generation
of probability heatmaps that visualize model uncertainty along segmentation boundaries.
Additionally, we provide a proof of concept on a medical data set with ambiguous ground
truth as well as provide improved interpretability of the results.

The output of Mθ(Y |X, ρ) was conditioned on ρ in two ways. First, we proposed dynamic
leaky ReLUs as a way of propagating size information through the negative activations of
the network. Second, a feature-mapping layer was added which scales the length of the
low-dimensional feature vector proportional to the value of ρ. In future work, variational
methods such as in (Kingma and Welling, 2013) can be explored to sample e.g. coarseness
in addition to size. This facilitates the generation of infinite unique region proposals for
even better heatmap generation.
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