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Abstract

Since the introduction of Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAE), the literature on generative modelling has witnessed an
overwhelming resurgence. The impressive, yet elusive empirical performance of
GANs has lead to the rise of many GAN-VAE hybrids, with the hopes of GAN
level performance and additional benefits of VAE, such as an encoder for feature
reduction, which is not offered by GANs. Recently, the Wasserstein Autoencoder
(WAE) was proposed, achieving performance similar to that of GANs, yet it is still
unclear whether the two are fundamentally different or can be further improved
into a unified model. In this work, we study the f -GAN and WAE models and
make two main discoveries. First, we find that the f -GAN and WAE objectives
partake in a primal-dual relationship and are equivalent under some assumptions,
which then allows us to explicate the success of WAE. Second, the equivalence
result allows us to, for the first time, prove generalization bounds for Autoencoder
models, which is a pertinent problem when it comes to theoretical analyses of
generative models. Furthermore, we show that the WAE objective is related
to other statistical quantities such as the f -divergence and in particular, upper
bounded by the Wasserstein distance, which then allows us to tap into existing
efficient (regularized) optimal transport solvers. Our findings thus present the first
primal-dual relationship between GANs and Autoencoder models, comment on
generalization abilities and make a step towards unifying these models.

1 Introduction

Implicit probabilistic models [1] are defined to be the pushforward of a simple distribution PZ
over a latent space Z through a map G : Z → X, where X is the space of the input data. Such
models allow easy sampling, but the computation of the corresponding probability density function is
intractable. The goal of these methods is to match G#PZ to a target distribution PX by minimizing
D(PX , G#PZ), for some discrepancy D(·, ·) between distributions. An overwhelming number
of methods have emerged after the introduction of Generative Adversarial Networks [2, 3] and
Variational Autoencoders [4] (GANs and VAEs), which have established two distinct paradigms:
Adversarial (networks) training and Autoencoders respectively. Adversarial training involves a set of
functions D, referred to as discriminators, with an objective of the form

D(PX , G#PZ) = max
d∈D
{Ex∼PX [a(d(x))]− Ex∼G#PZ [b(d(x))]} , (1)

for some functions a : R→ R and b : R→ R. Autoencoder methods are concerned with finding a
function E : X→ Z, referred to as an encoder, whose goal is to reverse G, and learn a feature space
with the objective

D(PX , G#PZ) = min
E
{R(G,E) + Ω(E)} , (2)
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where R(G,E) is the reconstruction loss and acts to ensure G and E reverse each other and Ω(E) is
a regularization term. Much work on Autoencoder methods has focused upon the choice of Ω.

In practice, the two methods demonstrate contrasting abilities in their strengths and limitations, which
have resulted in differing directions of progress. Indeed, there is a lack of theoretical understanding
of how these frameworks are parametrized and it is not clear whether the methods are fundamentally
different. For example, Adversarial training based methods have empirically demonstrated high
performance when it comes to producing realistic looking samples from PX . However, GANs often
have problems in convergence and stability of training [5]. Autoencoders, on the other hand, deal
with a more well behaved objective and learn an encoder in the process, making them useful for
feature representation. However in practice, Autoencoder based methods have reported shortfalls,
such as producing blurry samples for image based datasets [6]. This has motivated researchers
to adapt Autoencoder models by borrowing elements from Adversarial networks in the hopes of
GAN level performance whilst learning an encoder. Examples include replacing Ω with Adversarial
objectives [7, 8] or replacing the reconstruction loss with an adversarial objective [9, 10]. Recently,
the Wasserstein Autoencoder (WAE) [6] has been shown to subsume these two methods with an
Adversarial based Ω, and has demonstrated performance similar to that of Adversarial methods.

Understanding the connection between the two paradigms is important for not only the practical
purposes outlined above but for the inheritance of theoretical analyses from one another. For example,
when it comes to directions of progress, Adversarial training methods now have theoretical guarantees
on generalization performance [11], however no such theoretical results have been obtained to date
for autoencoders. Indeed, generalization performance is a pressing concern, since both techniques
implicitly assume the samples represent the target distribution [12] and eventually leads to memorizing
training data.

In this work, we study the two paradigms and in particular focus on the f -GANs [3] for Adversarial
training and Wasserstein Autoencoders (WAE) for Autoencoders, which generalize the original GAN
and VAE models respectively. We prove that the f -GAN objective with Lipschitz (with respect to a
metric c) discriminators is equivalent to the WAE objective with cost c. In particular, we show that
the WAE objective is an upper bound; schematically we get

f -GAN ≤WAE

and discuss the tightness of this bound. Our result is a generalization of the Kantorovich-Rubinstein
duality and thus suggests a primal-dual relationship between Adversarial and Autoencoder methods.
Consequently we show, to the best of our knowledge, the first generalization bounds for autoencoders.
Furthermore, using this equivalence, we show that the WAE objective is related to key statistical
quantities such as the f -divergence and Wasserstein distance, which allows us to tap into efficient
(regularized) OT solvers.

The main contributions can be summarized as the following:

. (Theorem 8) Establishes an equivalence between Adversarial training and Wasserstein Autoencoders,
showing conditions under which the f -GAN and WAE coincide. This further justifies the similar
performance of WAE to GAN based methods. When the conditions are not met, we have an inequality,
which allows us to comment on the behavior of the methods.

. (Theorem 9, 10 and 14) Show that the WAE objective is related to other statistical quantities such
as f -divergence and Wasserstein distance.

. (Theorem 13) Provide generalization bounds for WAE. In particular, this focuses on the empirical
variant of the WAE objective, which allows the use of Optimal Transport (OT) solvers as they are
concerned with discrete distributions. This allows one to employ efficient (regularized) OT solvers
for the estimation of WAE, f -GANs and the generalization bounds.

2 Preliminaries

2.1 Notation

We will use X to denote the input space (a Polish space), typically taken to be a Euclidean space. We
use Z to denote the latent space, also taken to be Euclidean. We use N∗ to denote the natural numbers
without 0: N \ {0}. We denote by P the set of probability measures over X, and elements of this set
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will be referred to as distributions. If P ∈P(X) happens to be absolutely continuous with respect
to the Lebesgue measure then we will use dP/dλ to refer to the density function (Radon-Nikodym
derivative with respect to the Lebesgue measure). For any T ∈ F (X,Z), for any measure µ ∈P(X),
the pushforward measure of µ through T denoted T#µ ∈P(Z) is such that T#µ(A) = µ(T−1(A))
for any measurable setA ⊂ Z. The set F (X,R) refers to all measurable functions from X into the set
R. We will use functions to represent conditional distributions over a space Z conditioned on elements
X, for example P ∈ F (X,P(Z)) so that for any x ∈ X, P (x) = P (·|x) ∈ P(Z). For any P ∈
P(X), the support of P is supp(P ) = {x ∈ X : if x ∈ Nx open =⇒ P (Nx) > 0}. In any metric
space (X, c), for any set S ⊆ X, we define the diameter of S to be diamc(S) = supx,x′∈S c(x, x

′).
Given a metric c over X, for any f ∈ F (X,R), Lipc(f) denotes the Lipschitz constant of f with
respect to c and Hc = {g ∈ F (X,R) : Lipc(g) ≤ 1}. For some set S ⊆ R, 1S corresponds to the
convex indicator function, ie. 1S(x) = 0 if x ∈ S and 1S(x) = ∞ otherwise. For any x ∈ X,
δx : X→ {0, 1} corresponds to the characteristic function, with δx(0) = 1 if x = 0 and δx(0) = 0
if x 6= 0.

2.2 Background

2.2.1 Probability Discrepancies

Probability discrepancies are central to the objective of finding the best fitting model. We introduce
some key discrepancies and their notation, which will appear later.

Definition 1 (f -Divergence) For a convex function f : R → (−∞,∞] with f(1) = 0, for any
P,Q ∈P(X) with P absolutely continuous with respect to Q, the f -Divergence between P and Q is

Df (P,Q) :=

∫
X

f

(
dP

dQ

)
dQ,

with Df (P,Q) =∞ if P is note absolutely continuous with respect to Q.

An example of a method to compute the f -divergence is to first compute dP/dQ and estimate the
integral empirically using samples from Q.

Definition 2 (Integral Probability Metric) For a fixed function class F ⊆ F (X,R), the Integral
Probability Metric (IPM) based on F between P,Q ∈P(X) is defined as

IPMF(P,Q) := sup
f∈F

{∫
X

f(x)dP (x)−
∫
X

f(x)dQ(x)

}
.

If we have that −F = F then IPMF forms a metric over P(X) [13]. A particular IPM we will make
use of is Total Variation (TV): TV(P,Q) = IPMV(P,Q) where V = {h ∈ F (X,R) : |h| ≤ 1}. We
also note that when f(x) = |x− 1| then TV = Df and thus TV is both an IPM and an f -divergence.

Definition 3 For any P,Q ∈P(X), define the set of couplings between P and Q to be

Π(P,Q) =

{
π ∈P(X× X) :

∫
X

π(x, y)dx = P,

∫
X

π(x, y)dy = Q

}
.

For a cost c : X× X→ R+, the Wasserstein distance between P and Q is

Wc(P,Q) := inf
π∈Π(P,Q)

{∫
X×X

c(x, y)dπ(x, y)

}
.

The Wasserstein distance can be regarded as an infinite linear program and thus admits a dual form,
and in the case of c being a metric, belongs to the class of IPMs. We summarize this fact the following
lemma [14].

Lemma 4 (Wasserstein Duality) Let (X, c) be a metric space, and suppose Hc is the set of all
1-Lipschitz functions with respect to c. Then for any P,Q ∈P(X), we have

Wc(P,Q) = sup
h∈Hc

{∫
X

h(x)dP (x)−
∫
X

h(x)dQ(x)

}
= IPMHc

(P,Q).
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2.3 Generative Models

In both GAN and VAE models, we have a latent space Z (typically taken to be Rd, with d being
small) and a prior distribution PZ ∈P(Z) (e.g. unit variance Gaussian). We have a function referred
to as the generator G : Z→ X, which induces the generated distribution, denoted by PG ∈P(X),
as the pushforward of PZ through G: PG = G#PZ . The true data distribution will be referred to
as PX ∈P(X). The common goal between the two methods is to find a generator G such that the
samples generated by pushing forward PZ through G (G#PZ) are close to the true data distribution
(PX ). More formally, one can cast this as an optimization problem by finding the best G such that
D(PG, PX) is minimized, where D(·, ·) is some discrepancy between distributions. Both methods
(as we outline below) utilize their own discrepancies between PX and PG, which offer their own
benefits and weaknesses.

2.3.1 Wasserstein Autoencoder

Let E : X → P(Z) denote a probabilistic encoder 1, which maps each point x to a conditional
distribution E(x) ∈P(Z), denoted as the posterior distribution. The pushforward of PX through E:
E#PX , will be referred to as the aggregated posterior.

Definition 5 (Wasserstein Autoencoder [6]) Let c : X × X → R≥0, λ > 0 and Ω : P(Z) ×
P(Z)→ R≥0 with Ω(P, P ) = 0 for all P ∈P(Z). The Wasserstein Autoencoder objective is

WAEc,λ·Ω(PX , G) = inf
E∈F(X,P(Z))

{∫
X

Ez∼E(x)[c(x,G(z))]dPX(x) + λ · Ω(E#PX , PZ)

}
.

We remark that there are various choices of c and λ · Ω. [6] select these by tuning λ and selecting
different measures of discrepancies between probability distortions for Ω.

2.3.2 f -Generative Adversarial Network

Let d : X→ R denote a discriminator function.

Definition 6 (f -GAN [3]) Let f : R→ (−∞,∞] denote a convex function with property f(1) = 0
and D ⊂ F (X,R) a set of discriminators. The f -GAN model minimizes the following objective for
a generator G : Z→ X

GANf (PX , G;D) := sup
d∈D
{Ex∼PX [d(x)]− Ez∼PZ [f∗(d(G(z)))]} , (3)

where f?(x) = supy {x · y − f(y)} is the convex conjugate of f .

There are two knobs in this method, namely D, the set of discriminators, and the convex func-
tion f . The objective in (3) is a variational approximation to Df [3]; if D = F (X,R), then
GANf (PX , G;D) = Df (PX , PG) [15]. In the case of f(x) = x log(x)−(x+1) log(x+1)+2 log 2,
we recover the original GAN [2].

3 Related Work

Current attempts at building a taxonomy for generative models have largely been within each paradigm
or the proposal of hybrid methods that borrow elements from the two. We first review major and
relevant advances in each paradigm, and then move on to discuss results that are close to the technical
contributions of our work.

The line of Autoencoders begin with Ω = 0, which is the original autoencoder concerned only with
reconstruction loss. VAE then introduced a non-zero Ω, along with implementing Gaussian encoders
[4]. This was then replaced by an adversarial objective [7], which is sample based and consequently
allows arbitrary encoders. In the spirit of unification, Adversarial Autoencoders (AAE) [8] proposed
Ω to be a discrepancy between the pushforward of the target distribution through the encoder (E#PX )

1We remark that this is not standard notation in the VAE and Variational Inference literature.
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and the prior distribution (PZ ) in the latent space, which was then showed to be equivalent to the VAE
Ω minus a mutual information term [16]. Independently, InfoVAE [17] proposed a similar objective,
which was subsequently shown to be equivalent to adding mutual information. [6] reparametrized the
Wasserstein distance into an Autoencoder objective (WAE) where the Ω term generalizes AAE, and
has reported performance comparable to that of Adversarial methods. Other attempts also include
adjusting the reconstruction loss to be adversarial as well [9, 10]. Another work that focuses on WAE
is the Sinkhorn Autoencoders (SAE) [18], which select Ω to be the Wasserstein distance and show
that the overall objective is an upper bound to the Wasserstein distance between PX and PG.

[19] discussed the two paradigms and their unification by interpretting GANs from the perspective
of variational inference, which allowed a connection to VAE, resulting in a GAN implemented
with importance weighting techniques. While this approach is the closest to our work in forming a
link, their results apply to standard VAE (and not other AE methods such as WAE) and cannot be
extended to all f -GANs. [20] introduced the notion of an Adversarial divergence, which subsumed
mainstream adversarial based methods. This also led to the formal understanding of how the
selected discriminator set D affects the final generator G learned. However, this approach is silent
with regard to Autoencoder based methods. [11] established the tradeoff between the Rademacher
complexity of the discriminator class D and generalization performance of G, with no results present
for Autoencoders. These theoretical advances in Adversarial training methods are inherited by
Autoencoders as a consequence of the equivalence presented in our work.

One key point in the proof of our equivalence is the use of a result that decomposes the GAN
objective into an f -divergence and an IPM for a restricted class of discriminators (which we used for
Lipschitz functions). This decomposition is used in [21] and applied to linear f -GANs, showing that
the adversarial training objective decomposes into a mixture of maximum likelihood and moment
matching. [22] used this decomposition with Lipschitz discriminators like our work, however does
not make any extension or further progress to establish the link to WAE. Indeed, GANs with Lipschitz
discriminators have been independently studied in [23], which suggest that one should enforce
Lipschitz constraints to provide useful gradients.

4 f -Wasserstein Autoencoders

We define a new objective, that will help us in the proof of the main theorems of this paper.

Definition 7 (f -Wasserstein Autoencoder) Let c : X × X → R, λ > 0, f : R → (−∞,∞] be a
convex function (with f(1) = 0), the f -Wasserstein Autoencoder (f -WAE) objective is

W c,λ·f (PX , G) = inf
E∈F(X,P(Z))

{Wc(PX , (G ◦ E)#PX) + λDf (E#PX , PZ)} (4)

In the proof of the main result, we will show that the f -WAE objective is indeed the same as the
WAE objective when using the same cost c and selecting the regularizer to be λ · Ω = Dλf = λDf .
The only difference between this and the standard WAE is the use of Wc(PX , (G ◦ E)#PX) as
the reconstruction loss instead of the standard cost which is an upper bound (Lemma 18), and the
regularizer is chosen to be λ · Ω = Dλf = λDf . We now present the main theorem that captures the
relationship between f -GAN and WAE.

Theorem 8 (f -GAN and WAE equivalence) Suppose (X, c) is a metric space and let Hc denote
the set of all functions from X→ R that are 1-Lipschitz (with respect to c). Let f : R→ (−∞,∞]
be a convex function with f(1) = 0. Then for all λ > 0,

GANλf (PX , G;Hc) ≤WAEc,λ·Df (PX , G), (5)
with equality if G is invertible.

Proof (This is a sketch, see Section A.1 for full proof). The proof begins by proving certain
properties of Hc (Lemma 16), allowing us to use the dual form of restricted GANs (Theorem 15),

GANf (PX , G;Hc) = inf
P ′∈P(X)

{
Df (P ′, PG) + sup

h∈Hc

{EPX [h]− EP ′ [h]}
}

= inf
P ′∈P(X)

{Df (P ′, PG) +Wc(P
′, PX)} . (6)
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The key is to reparametrize (6) by optimizing over couplings. By rewriting P ′ = (G ◦E)#PX for
some E ∈ F (X,P(Z)) and rewriting (6) as an optimization over E (Lemma 20), we obtain

inf
P ′∈P(X)

{Df (P ′, PG) +Wc(P
′, PX)}

= inf
E∈F(X,P(Z))

{Df ((G ◦ E)#PX , PG) +Wc((G ◦ E)#PX , PX)} (7)

We then have

Df ((G ◦ E)#PX , PG) = Df (G#(E#PX), G#PZ)
(∗)
≤ Df (E#PX , PZ),

with equality in (∗) ifG is invertible (Lemma 17). A weaker condition is required if f is differentiable,
namely if G is invertible with respect to f ′ ◦ d(E#PX)/dPZ in the sense that

G(z) = G(z′) =⇒ f ′ ◦ (d(E#PX)/dPZ)(z) = f ′ ◦ (d(E#PX)/dPZ)(z′), (8)

noting that an invertible G trivially satisfies this requirement. Letting f ← λf , we have Df (·, ·)←
λDf (·, ·), and so from Equation 7, we have

GANλf (PX , G;Hc)
(∗)
≤ inf

E∈F(X,P(Z))
{λDf (E#PX , PZ) +Wc((G ◦ E)#PX , PX)}

= W c,λ·f (PX , G)

≤ inf
E∈F(X,P(Z))

{
λDf (E#PX , PZ) +

∫
X

Ez∼E(x)[c(x,G(z))]dPX(x)

}
= WAEc,λ·Df (PX , G),

where the final inequality follows from the fact that Wc(P,Q) ≤
∫
X
Ez∼E(x)[c(x,G(z))]dPX(x)

(Lemma 18). Using the fact that W ≥WAE (Lemma 19) completes the proof.

When G is invertible, we remark that PG can still be expressive and capable of modelling complex
distributions in WAE and GAN models. For example, if G is implemented with feedforward
neural networks, and G is invertible then PG can model deformed exponential families [24], which
encompasses a large class appearing in statistical physics and information geometry [25, 26]. There
exists many invertible activation functions under whichG will be invertible. Furthermore, in the proof
of the Theorem it is clear that W and WAE are the same objective (from Lemma 18 and Lemma 19).
When using f = 1{1} (f(x) = 0 if x = 1 and f(x) = ∞ otherwise), and noting that f?(x) = x,
meaning that Theorem 8 (with λ = 1) reduces to

sup
h∈Hc

{Ex∼PX [h(x)]− Ex∼PG [h(x)]} = GANf (PX , G;Hc)

≤W c,f (PX , PG)

= inf
E∈F(X,P(Z)):E#PX=PZ

{Wc(PX , (G ◦ E)#PX)}

= inf
E∈F(X,P(Z)):E#PX=PZ

{Wc(PX , G#PZ}

= Wc(PX , PG),

which is the standard primal-dual relation between Wasserstein distances as in Lemma 4. Hence,
Theorem 8 can be viewed as a generalization of this primal-dual relationship, where Autoencoder
and Adversarial objectives represent primal and dual forms respectively.

We note that the left hand of Equation (5) does not explicitly engage the prior space Z as much as
the right hand side in the sense that one can set Z = X, G = Id (which is invertible) and PZ = PG
and indeed results in the exact same f -GAN objective since G#PZ = Id#PG = PG, yet the
equivalent f -WAE objective (from Theorem 8) will be different. This makes the Theorem versatile
in reparametrizations, which we exploit in the proof of Theorem 10. We now consider weighting
the reconstruction along with the regularization term in W (which is equivalent to weighting WAE),
which simply amounts to re-weighting the cost since for any γ > 0,

W γ·c,λ·f (PX , G) = inf
E∈F(X,P(Z))

{γWc((G ◦ E)#PX , PX) + λDf (E#PX , PZ)} .

6



The idea of weighting the regularization term by λ was introduced by [27] and furthermore studied
empirically, showing that the choice of λ influences learning disentanglement in the latent space.
[28]. We show that if λ = 1 and γ is larger than some γ∗ then W will become an f -divergence
(Theorem 9). On the other hand if we fix γ = 1 and take λ is larger than some λ∗, then W becomes
the Wasserstein distance and in particular, equality holds in (5) (Theorem 10). We show explicitly
how high γ and λ need to be for such equalities to occur. This is surprising since f -divergence and
Wasserstein distance are quite different distortions.

We begin with the f -divergence case. Consider f : R → (−∞,∞] convex, differentiable and
f(1) = 0 and assume that PX is absolutely continuous with respect to PG, so thatDf (PX , PG) <∞.

Theorem 9 Set c(x, y) = δx−y and let f : R → (−∞,∞] be a convex function (with f(1) = 0)

and differentiable. Let γ∗ = supx,x′∈X

∣∣∣f ′ (dPXdPG

)
− f ′(dPXdPG

)(x′)
∣∣∣ and suppose PG is absolutely

continuous with respect to PX and that G is invertible, then we have for all γ ≥ γ∗

W γ·c,f (PX , G) = Df (PX , PG).

(Proof in Appendix, Section A.3). It is important to note that Wc(PX , PG) = TV(PX , PG) when
c(x, y) = δx−y and so Theorem 9 tells us that the objective with a weighted total variation reconstruc-
tion loss with a f -divergence prior regularization amounts to the f -divergence. It was shown that in
[24] that when G is an invertible feedforward neural network then Df (PX , PG) is a Bregman diver-
gence (a well regarded quantity in information geometry) between the parametrizations of the network
for a fixed choice of activation function of G, which depends on f . Hence, a practioner should design
G with such activation function when using f -WAE under the above setting (c(x, y) = δx−y and
γ = γ∗) with G being invertible, so that the information theoretic divergence (Df ) between the
distributions becomes an information geometric divergence involving the network parameters.

We now show that if λ is selected higher than λ∗ := supP ′∈P(X) (Wc(P
′, PG)/Df (P ′, PG)), then

W becomes Wc and furthermore we have equality between f -GAN, f -WAE and WAE.

Theorem 10 Let c : X × X → R be a metric. For any f : R → (−∞,∞] convex function (with
f(1) = 0), we have for all λ ≥ λ∗

GANλf (PX , G;Hc) = W c,λ·f (PX , G) = WAEc,λ·Df (PX , G) = Wc(PX , PG).

(Proof in Appendix, Section A.4). Note that Theorem 10 holds for any f (satisfying properties of
the Theorem) and so one can estimate the Wasserstein distance using any f as long as λ is scaled
to λ∗. In order to understand how high λ∗ can be,there are two extremes in which the supremum
may be unbounded. The first case is when P ′ is taken far from PG so that Wc(P

′, PG) increases,
however one should note that in the case when ∆ = maxx,x′∈X c(x, x

′) <∞ then Wc ∈ [0,∆] and
so Wc will be finite whereas Df (P ′, PG) can possibly diverge to∞, making λ∗ → 0. The other
case is when P ′ is made close to PG, in which case 1

Df (P ′,PG) → ∞ however Wc(P
′, PG) → 0

so the quantity λ∗ can still be small in this case, depending on the rate of decrease between Wc

and Df . Now suppose that f(x) = |x− 1| and c(x, y) = δx−y, in which case Df = Wc and thus
λ∗ = 1. In this case, Theorem 10 reduces to the standard result [29] regarding the equivalence
between Wasserstein distance and f -divergence intersecting at the variational divergence under these
conditions.

5 Generalization bounds

We present generalization bounds using machinery developed in [30] with the following definitions.

Definition 11 (Covering Numbers) For a set S ⊆ X, we denoteNη(S) to be the η-covering number
of S, which is the smallest m ∈ N∗ such that there exists closed balls B1, . . . , Bm of radius η
with S ⊆

⋃m
i=1Bi. For any P ∈ P(X), the (η, τ)-dimension is dη(P, τ) :=

logNη(P,τ)
− log η , where

Nη(P, τ) := inf {Nη(S) : P (S) ≥ 1− τ} .
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Definition 12 (1-Upper Wasserstein Dimension) The 1-Upper Wasserstein dimension of any P ∈
P(X) is d∗(P ) := inf

{
s ∈ (2,∞) : lim supη→0 dη(P, η

s
s−2 ) ≤ s

}
.

We make an assumption of PX and PG having bounded support to achieve the following bounds. For
any P ∈P(X) in a metric space (X, c), we use define ∆P,c = diamc(supp(P )).

Theorem 13 Let (X, c) be a metric space and suppose ∆ := max {∆c,PX ,∆c,PG} <∞. For any
n ∈ N∗, let P̂X and P̂G denote the empirical distribution with n samples drawn i.i.d from PX and
PG respectively. Let sX > d∗(PX) and sG > d∗(PG). For all f : R→ (−∞,∞] convex functions,
f(1) = 0, λ > 0 and δ ∈ (0, 1), then with probability at least 1− δ, we have

GANλf (PX , G;Hc) ≤W c,λ·f (P̂X , PG) +O

(
n−1/sX + ∆

√
1

n
ln

(
1

δ

))
, (9)

and if f(x) = |x− 1| is chosen then

GANλf (PX , G;Hc) ≤W c,λ·f (P̂X , P̂G) +O

(
n−1/sX + n−1/sG + ∆

√
1

n
ln

(
1

δ

))
. (10)

(Proof in Appendix, Section A.2). First note that there is no requirement on G to be invertible and no
restriction on λ. Second, there are the quantities sX ,sG and ∆ that are influenced by the distributions
PX and PG. It is interesting to note that d∗ is related to fractal dimensions [31] and thus relates the
convergence of GANs to statistical geometry. If G is invertible in the above then the left hand side
of both bounds becomes W c,λ·f (PX , G) by Theorem 8. In general, P̂X and P̂G will not share the
same support, in which case Df (P̂X , P̂G) = ∞ – This would lead one to suspect the same from
W c,λ·f (P̂X , P̂G), however this is not the case since

W c,λ·f (P̂X , P̂G) ≤ inf
E∈F(X,P(X))

{
Wc((G ◦ E)#PX , PX) + λDf (E#P̂X , P̂Z)

}
,

and so E ∈ F (X,P(Z)) would be selected such that E#P̂X shares the support of P̂Z , resulting in
a bounded value. We now show the relationship between W and Wc.

Theorem 14 For any c : X×X→ R, λ > 0 and f : R→ (−∞,∞] convex function (with f(1) = 0)
we have W c,λ·f (PX , G) ≤Wc(PX , PG)

(Proof in Appendix, Section A.5). This suggests that in order to minimize W , one can minimize Wc.
Indeed, majority of the solvers are concerned with discrete distributions, which is exactly what is
present on the right hand side of the generalization bounds: W c,λ·f (P̂X , P̂G)

6 Discussion and Conclusion

This work is the first to prove a generalized primal-dual betweenship between GANs and Autoen-
coders. Our result elucidated the close performance between WAE and f -GANs. Furthermore, we
explored the effect of weighting the reconstruction and regularization on the WAE objective, showing
relationships to both f -divergences and Wasserstein metrics along with the impact on the duality
relationship. This equivalence allowed us to prove generalization results, which to the best of our
knowledge, are the first bounds given for Autoencoder models. The results imply that we can employ
efficient (regularized) OT solvers to approximate upper bounds on the generalization bounds, which
involve discrete distributions and thus are natural for such solvers.

The consequences of unifying two paradigms are plentiful, generalization bounds being an example.
One line of extending and continuing the presented work is to explore the use of a general cost
c (as opposed to a metric), invoking the generalized Wasserstein dual in the goal of forming a
generalized GAN. Our paper provides a basis to unify Adversarial Networks and Autoencoders
through a primal-dual relationship, and opens doors for the further unification of related models.
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