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ABSTRACT

Many problems with large-scale labeled training data have been impressively
solved by deep learning. However, Unseen Class Categorization (UCC) with
minimal information provided about target classes is the most commonly encoun-
tered setting in industry, which remains a challenging research problem in ma-
chine learning. Previous approaches to UCC either fail to generate a powerful
discriminative feature extractor or fail to learn a flexible classifier that can be eas-
ily adapted to unseen classes. In this paper, we propose to address these issues
through network reparameterization, i.e., reparametrizing the learnable weights
of a network as a function of other variables, by which we decouple the feature
extraction part and the classification part of a deep classification model to suit
the special setting of UCC, securing both strong discriminability and excellent
adaptability. Extensive experiments for UCC on several widely-used benchmark
datasets in the settings of zero-shot and few-shot learning demonstrate that, our
method with network reparameterization achieves state-of-the-art performance.

1 INTRODUCTION

The rich and accessible labeled data has fueled the revolutionary successes of deep learning in
various tasks, e.g., visual recognition (He et al. (2016)), object detection (Ren et al. (2015)), machine
translation (Bahdanau et al. (2014)), etc. However, requiring numerous annotated data severely
limits the applicability of deep learning algorithms to Unseen Class Categorization (UCC) for which
we only have access to a limited amount of information, which is frequently encountered in industrial
applications. Recently, an increasing number of approaches have been proposed to solve UCC with
the help of either attribute descriptions (zero-shot learning (ZSL)) (Kodirov et al. (2017); Zhang
et al. (2017)) or one/a few labeled samples for each class (few-shot learning (FSL)) (Snell et al.
(2017); Xian et al. (2018)).

Previous approaches to UCC mainly have the following characteristics and limitations: (i) To ob-
tain powerful discriminative feature representation, they often train a deep classification model em-
ploying state-of-the-art multi-class classification techniques. However, such models are hard to
be adapted to new classes with limited supervision information due to the high volume of model
parameters and the gradual updating scheme. (ii) To ensure the consistency of training and test
settings and adaptability to new classes, previous methods often train a deep model in an episode
fashion (Vinyals et al. (2016)), sometimes along with some specially designed meta-learning updat-
ing rules (Finn et al. (2017)). With episode-based training, the model acquires adaptability to new
tasks after many training episodes using the knowledge it grasps during the training. However, the
episode-based training strategy severely limits the model’s capability of extracting discriminative
features, because it does not fully exploit the diversity and variance of all classes within the training
dataset. The trained model treats the classes in each episode as new classes and attempts to separate
them. Therefore, it does not have memory of the competing information of these classes against all
the other ones in the whole dataset beyond the current episode. Due to the neglect of this global
(dataset-wise rather than episode-wise) discriminative information, the feature extraction capability
of the model is suppressed, thus limiting the UCC performance.

To address these issues, we propose to secure both powerful discriminability of feature ex-
traction and strong adaptability of model classification through network reparameterization, i.e.,
reparametrizing the learnable weights of a network as a function of other variables. We decouple
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the feature extraction module and the classification module of a deep classification model, learn the
former as a standard multi-class classification task to obtain a discriminative feature extractor, and
learn the latter employing a light deep neural network that generates generic classification weights
for unseen classes given limited exemplar information. We train the classification weight generator
by following the episode-based training scheme to secure the adaptability. Our method can be flexi-
bly applied to both ZSL and FSL, where the exemplar information about unseen classes are provided
in the form of either the semantic attributes or one/a few labeled samples. Extensive experiments
show that our proposed method achieves state-of-the-art performance on widely-used benchmark
datasets for both tasks.

2 RELATED WORK

With regard to the form of the exemplar information provided about unseen classes, UCC can be
classified as zero-shot learning and few-shot learning.

2.1 ZERO-SHOT LEARNING

ZSL requires recognizing unseen classes based on their semantic descriptions. It is approached by
finding an embedding space where visual samples and semantic descriptions of a class are interacted
so that the semantic description of an unseen class can be queried by its visual samples. Since the
embedding space is often of high dimension, finding the best match of a given vector among many
candidates shall inevitably encounter the hubness problem (Radovanović et al. (2010)), i.e., some
candidates will be biased to be the best matches for many of the queries. Depending on the chosen
embedding space, the severeness of this problem varies. Some approaches select the semantic space
as the embedding space and project visual features to the semantic space (Lampert et al. (2014);
Frome et al. (2013). Projecting the visual features into a often much lower-dimensional semantic
space shrinks the variance of the projected data points and thus aggravates the hubness problem.
Alternatively, some methods project both visual and semantic features into a common intermediate
space (Akata et al. (2015); Sung et al. (2018); Zhang & Saligrama (2015)). However, due to lacking
training samples from unseen classes, these methods are prone to classify test samples into seen
classes (Romera-Paredes & Torr (2015)) (for the generalized ZSL setting, seen classes are included
when testing). Recently, Zhang et al. (2017) proposed to choose the visual space as the embedding
space and learned a mapping from the semantic space to visual space. Benefiting from the abundant
data diversity in visual space, this method can mitigate the hubness problem at some extent. How-
ever, the limitation of this method is that it strives only to learn a mapping from semantic space to
visual space such that the visual samples of a class coincide with the associated semantic descrip-
tion; it however neglects the separation information among visual features of different classes. Our
method avoids this problem. We formulate bridging the semantic space and the visual space as a
visual feature classification problem conditioned on the semantic features. We learn a deep neural
network that generates classification weights for the visual features when fed with the correspond-
ing semantic features. By nature of a classification problem, both intra-class compactness (visual
features of the same classes are assigned with the same label) and inter-class separability (visual
features of different classes are assigned with different labels) are exploited, hence resulting in a
better mapping.

2.2 FEW-SHOT LEARNING

FSL aims to recognize unseen classes when provided with one/a few labeled samples of these
classes. A number of methods address it from the perspective of deep metric learning by learn-
ing deep embedding models that output discriminative feature for any given images (Ren et al.
(2018); Vinyals et al. (2016); Snell et al. (2017); Triantafillou et al. (2017); Sung et al. (2018)). The
difference lies in the loss functions used. More common approaches are based on meta-learning,
also called learning to learn, which is to learn an algorithm (meta-learner) that outputs a model (the
learner) that can be applied on a new task when given some information (meta-data) about the new
task. Following this line, approaches such as META-LSTM (Ravi & Larochelle (2017)), MAML
(Finn et al. (2017)), Meta-SGD (Li et al. (2017)), DEML+Meta-SGD (Li et al. (2017)), Meta-Learn
LSTM (Ravi & Larochelle (2017)), Meta-Networks (Munkhdalai & Yu (2017)), and REPTILE
(Nichol et al. (2018)) aim to optimize the meta-learned classifiers to be easily fine-tuned on new
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Figure 1: Frameworks for zero-shot (Left) and few-shot (Right) classification.

few-shot tasks using the small-scale support set provided. The common limitation of the above
methods is that they adopt the episode-based training scheme to secure adaptability to new classes,
which however compromises the capability of discriminative feature extraction due to the forgetting
of global (dataset-wise) competing information of among classes beyond individual episodes. Per-
haps closest to our approach, Gidaris & Komodakis (2018) proposed the DFSVL algorithm which
approaches FSL also in virtue of classification weight generation. The major limitation of DFSVL is
that it obtains classification weights for unseen classes simply as a mixture of feature embeddings of
support images of novel classes and attended pretrained weights of base (seen) classes, which is too
weak to bridge feature embeddings and classification weights. Besides, it cannot bridge information
across different domains (due to dimension inconsistency) so that is not applicable for ZSL. We in-
stead learn a network to generate classification weights directly from feature embeddings of support
images; it is more powerful and flexible to solve both ZSL and FSL within the same framework.

3 METHOD

We focus on Unseen Class Categorization (UCC), which is to recognize objects of unseen classes
given only minimal information (a few labeled samples or the attributes) about the classes. Formally,
suppose we have three sets of data D = {Dt,Ds,Du}, where Dt = {Xt,Yt} is the training set and
Du = {Xu,Yu} the test set, with Xt and Xu being the images, Yt and Yu the corresponding labels.
There is no overlap between training classes and testing classes, i.e., Yt ∩Yt = ∅. The goal of UCC
is to learn transferable information fromDt that can be used to classify unseen classes fromDu, with
the help of supporting information from Ds. For ZSL, Ds = At ∪ Au is the union of the semantic
attribute vectors At for seen classes Yt and Au for unseen classes Yu. For FSL, Ds contains one/a
few images and their labels for each class from Du, i.e., Ds = {Xs,Ys}, with Ys ⊆ Yu.

3.1 A NETWORK REPARAMETERIZATION FRAMEWORK FOR UCC

Our main contribution in this paper is the proposed framework that can address both ZSL and FSL
with minimal changes. Figure 1 diagrams our framework. Instead of jointly learning the feature
extraction network weights and classification weights, which results in a heavy model that is hard to
be adjusted for novel classes with limited supervision information, we reparametrize the learnable
weights of a classification model as the combination of learnable parameters of a feature extraction
model and a weight generation model. In other words, we decouple the feature extraction network fθ
and the classification weight W of a standard classification network. We train fθ as a standard multi-
class classification task and learn another network gφ to generate the classification weight W. Since
fθ is trained as a standard multi-class classification task to distinguish all classes within the training
set, it is supposed to be able to generate more discriminative feature representations for images of
unseen classes than that generated by a model trained in episode-based fashion where the model is
train to distinguish several classes within mini-batches. Meanwhile, we train gφ in episode-based
fashion by constantly sampling new classes and minimizing the classification loss (cross entropy
loss on top of Softmax outputs) using the weights generated by gφ. After training, whenever some
new classes come, along with supporting information in the form of either attribute vectors (ZLS)
or a few-labeled samples (FSL), gφ is supposed to be able to generate generic classification weights
that can effectively classify query images that belong to these new classes. Thanks to this network
reparameterization strategy, we are able to get a powerful and flexible UCC model.

We adopt the cosine similarity based cross entropy loss to train the weight generator gφ. Traditional
multi-layer neural networks use dot product between the output vector of previous layer and the
incoming weight vector as the input to activation function. Luo et al. (2017) recently showed that
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replacing the dot product with cosine similarity can bound and reduce the variance of the neurons
and thus result in models of better generalization. Gidaris & Komodakis (2018) further showed that
using the cosine similarity instead of dot product for calculating classification score in the last fully-
connected layer of deep neural network brings benefit for classification, with some minor revisions.
We adopt this technique to train our weight generator gφ. The classification score of a sample (ex,
y) is calculated as

p(y = n|ex) =
exp(s cos(wy, ex))∑N
j=1 exp(s cos(wj , ex))

, (1)

ex = fθ(x), (2)
wj = gφ(aj), for ZSL, (3)

wj = gφ(
1

Nf

Nf∑
i=1

fθ(xi,j)), for FSL, (4)

where s is a learnable scalar controlling the peakiness of the probability distribution generated by
the softmax operator (Gidaris & Komodakis (2018)), wj is the classification weight for class j
generated by neural network gφ taking supporting information of the class as input, x is the input
image, aj is the attribute vector for class j for ZSL, xi,j is the i-th input image of class j for FSL,
j = 1, ..., Nf , and Nf is the number of shots for FSL.

In a typical UCC task T , the loss function is calculated as

L(θ, φ) =
∑

(x,y)∈T

[
− s cos(wy, fθ(x)) + log(

N∑
j=1

exp(s cos(wj , fθ(x))))
]
+ λ‖φ‖2, (5)

where λ is a hyper-parameter weighting the l2-norm regularization of the learnable parameters of
neural network gφ.

3.1.1 ZERO-SHOT LEARNING

For ZSL, we are provided with semantic class attributes S = At ∪ Au as the assistance for UCC.
The basic assumption for existing ZSL algorithms is that the visual-attribute relationship learned
from seen classes in a certain embedding space is class-invariant and can be applied to unseen
classes. With this assumption, existing methods either project visual features to semantic space or
reversely project semantic features to visual space, or alternatively project both visual and semantic
features to an intermediate space. In any case, the coincidence of visual and semantic features of
a class is utilized to learn the visual-attribute relationship. Zhang et al. (2017) recently showed
that it is advantageous to select the visual space as the embedding space because the abundance of
data diversity in the visual space can significantly mitigate the so-called “hubness” problem. Their
objective function is as follows:

L(θ, φ) = 1

N

N∑
i=1

‖fθ(xi)− hψ(ayi)‖2 + λ‖ψ‖2, (6)

where fθ is a feature extraction model which outputs a representation vector fθ(xi) using image xi
as input. hψ is a mapping function which projects attribute vector ayi of class yi to the embedding
space where fθ(xi) lies. Through minimizing the least square embedding loss, the visual-attribute
relationship can be established. With this relationship, in the testing stage, the attributes Au of
unseen classes are mapped to the visual feature embedding space in which the visual feature of an
images of any unseen class can find the best class attribute through nearest neighbor searching.

One can observe that this method learns the visual-attribute relationship by only utilizing the coinci-
dence of the visual samples of a class with the associated semantic description. It however neglects
to explore the inter-class separation of different classes, which shall be crucial to further avoid the
hubness problem. To remedy this, we reformulate the learning of visual-attribute relationship from
a regression problem to a visual feature classification problem. We directly learn a network gφ that
outputs the classification weights for classifying visual features and use the cross-entropy loss on
top of Softmax outputs to guide learning gφ. Through this reformulation, both intra-class compact-
ness and inter-class separability are elegantly exploited for learning the visual-attribute relationship:
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Algorithm 1. Network reparam. for ZSL
Input: Training set Dt = {Xt,Yt}, attribute

set of training classes At.
Output: Feature extraction network fθ and

classification weight generation
network gφ.

1. Train fθ as a standard multi-class
classification task

while not done do
2. Randomly sample from Dt and At

a ZSL task T = {Bv,Ba}, where
Bv = {{xi,j}Nz

i=1, yj}
Mz
j=1 and Ba = {aj}Mz

j=1

3. Calculate loss according to Eq. 5
4. Update gφ through back-propagation.

end while

Algorithm 2. Network reparam. for FSL
Input: Training set Dt = {Xt,Yt}
Output: Feature extraction network fθ and

classification weight generation
network gφ.

1. Train fθ as a standard multi-class
classification task

while not done do
2. Randomly sample from Dt a FSL task
T = {Bs,Bq}, where
Bs = {{xi,j}

Nf

i=1, yj}
Mf

j=1

and Bq = {{xk,j}
Qf

k=1, yj}
Mf

j=1

3. Calculate loss according to Eq. 5
4. Update gφ through back-propagation.

end while

Visual features of the same classes should be assigned with the same label (compactness), while
visual features of different classes are assigned with different labels (separability).

We follow the network reparameterization scheme by decoupling the feature extraction module fθ
and the classification weight module which is generated by gφ. The feature extraction module fθ
is trained as a standard multi-class classification task to enable us to obtain a discriminative feature
representation for any given image. To learn gφ, we adopt the episode based training scheme by
continuously exposing gφ with new (randomly sampled) ZSL tasks so as to secure good performance
when new real tasks arrive in the testing stage. More specifically, we keep randomly sampling from
Dt = {Xt,Yt} and At ZSL tasks and feeding them to the network. Each task consists of Mz

classes and the associated Mz attribute vectors. For each class, we randomly sample Nz images.
With a batch of MzNz images Bv and Mz attribute vectors Ba, we train gφ by minimizing the loss
function defined in Eq. 5. In the testing stage, given attributes of unseen classes Au, or S = At ∪
Au for all (seen and unseen) classes as in generalized ZSL setting, we generate the corresponding
classification weights using gφ. The generated classification weights, integrated with the feature
extraction network fθ serve to classify images of unseen classes. Algorithm 1 outlines the main
steps of our method for ZSL.

3.1.2 FEW-SHOT LEARNING

For FSL, one/a few labeled samples Ds = {Xs,Ys} for each unseen class are provided to help
recognize objects of these classes. Our novel categorization framework can be easily extended from
ZSL to FSL, simply by replacing the semantic attribute vectors with feature embedding vectors as
the input to the classification weight generation network gφ. To train gφ, we keep randomly sampling
FSL tasks from Dt = {Xt,Yt}, each of which consists of a support set and a query set. Images in
the both sets are from the same classes. The support set consists of Mf classes and Nf images
for each class. With the feature embeddings Be of the MfNf images as input, gφ generates the
classification weights for the Mf classes, which are then used to classify the feature embeddings of
images from the query set. Note that if Nf > 1, i.e., each class has multiple support samples, we
average the embeddings of all images belonging to the same class and feed the averaged embedding
to gφ. Similar to ZSL, we learn the resulting model by optimizing the loss function defined in Eq.
5. Algorithm 2 outlines the main steps for FSL.

One of the most distinct aspects of our method from the existing ones is that we decouple the
feature extraction module and the classifier module of the deep classification model, and train
each module on the most beneficial tasks. We train the feature extraction module as a stan-
dard multi-class classification task. This is motivated by the observation that a simple classi-
fier (e.g., nearest neighbor), when taking as input features obtained by a powerful extractor, can
outperform some sophisticated FSL models that use weaker feature extraction models. For ex-
ample, as shown in Fiugre 2, using nearest neighbor (NN) as the classifier, we can achieve
better one-shot classification accuracy than a recent FSL algorithm PROTO NET (Snell et al.
(2017)), when using features extracted by ResNet18 (He et al. (2016)) trained on the Mini-
Imagenet or CUB datasets. Moreover, if we train ResNet18 on ImageNet where massive data
are available for obtaining a even more powerful feature extractor ResNet18?, we can achieve
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AwA1 AwA2 CUB aPY SUN

#Class #Seen 40 40 150 20 645
#Unseen 10 10 50 12 72

# VisDim 2048 2048 2048 2048 2048
# AttDim 85 85 312 64 102

Table 1: Information of zero-shot classification datasets.

much higher accuracy. (Note that for experiments on Mini-Imagenet, we train ResNet18? not
on the whole ImageNet but on the subset excluding the classes appearing on Mini-Imagenet.)

Mini-Imagenet CUB
0

0.2

0.4

0.6

0.8

1
PROTO NET
ResNet18 + NN
ResNet18* + NN

Figure 2: One-shot classifica-
tion accuracy on two datasets.

The reason for this surprising result is that the episode-based train-
ing scheme of existing FSL methods inherently suppresses obtain-
ing a powerful feature extractor: In each episode, the model is fed
with a new FSL task that is assumed to have no relationship with
the previous ones. The model is trained to separate well the sev-
eral classes within the task. However, since all training tasks are
sampled from the training dataset, one class shall appear in many
tasks. The inter-class separation across the whole dataset is ne-
glected by existing FSL methods. Therefore, there is a dilemma
for existing FSL algorithms: They need to be trained in an episode-
based fashion to ensure flexibility, but which in return compromises
feature discriminability. To avoid this awkward situation, our pro-
posed method decoupling the network and training different compo-
nents in different ways ensures powerful discriminability and strong
adaptability.

4 EXPERIMENTS

We evaluate our framework for both zero-shot learning and few-shot learning tasks.

4.1 ZERO-SHOT LEARNING

Datasets and evaluation settings. We employ the most widely-used zero-shot classification
datasets for performance evaluation, namely, AwA1 (Lampert et al. (2014)), AwA2 (Xian et al.
(2018)), CUB (Wah et al. (2011)), SUN (Patterson & Hays (2012)) and aPY (Farhadi et al. (2009)).
The statistics of the datasets are shown in Table 1. We follow the GBU setting proposed in (Xian
et al. (2018)) and evaluate both the conventional ZSL setting and the generalized ZSL (GZSL) set-
ting. In the conventional ZSL, test samples are restricted to the unseen classes, while in the GZSL,
they may come from either seen classes or unseen classes.

Implementation details. Following (Xian et al. (2018)), we adopt ResNet101 as our feature ex-
traction model fθ which results in a 2048-dimension vector for each input image. For the weight
generation model gφ, we utilize two FC+ReLU layers to map semantic vectors to visual classifi-
cation weights. The dimension of the intermediate hidden layer are 1600 for all the five datasets.
We train gφ with Adam optimizer and a learning rate 10−5 for all datasets by 1,000,000 randomly
sample ZSL tasks. Each task consists of 32 randomly sampled classes, 4 samples for each class, i.e.,
Mz = 32 and Nz = 4. The hyper-parameters λ is chosen as 10−4, 10−3, 10−3, 10−5 and 10−4 for
AwA1, AwA2, CUB, SUN and aPY, respectively. Our model is implemented with PyTorch.

Experimental results. Table 2 shows the experimental results. For the conventional ZSL setting,
our method reaches the best for three out of the five datasets, while being very close to the best for
one of the left two. Remarkably, our method consistently outperforms DEM (Zhang et al. (2017)) for
all the five datasets, which substantiates the benefit of our method of taking consideration of inter-
class separability when learning the mapping from semantic space to visual space. For GZSL setting
where seen classes are also included to be the candidates, our method significantly outperforms all
competing methods, reaching performance gains over the second best even about 30% in the AWA1
dataset. We analyze the reason for our dramatic advantage is that our method considers inter-class
separation during the training stage so that the resultant classification weights for the seen classes
possess good separation property after training. When they are concatenated with the classification
weights generated from semantic descriptions of unseen classes in the testing stage, they shall be
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AwA1 AwA2 CUB aPY SUN
ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL

DAP (Lampert et al. (2014)) 44.1 0.0 46.1 0.0 40.0 1.7 33.8 4.8 39.9 4.2
CONSE (Norouzi et al. (2014)) 45.6 0.4 44.5 0.5 34.3 1.6 26.9 0.0 38.8 6.8
SSE (Zhang & Saligrama (2015)) 60.1 7.0 61.0 8.1 43.9 8.5 34.0 0.2 51.5 2.1
DEVISE (Frome et al. (2013)) 54.2 13.4 59.7 17.1 52.0 23.8 39.8 4.9 56.5 16.9
SJE (Akata et al. (2015)) 65.6 11.3 61.9 8.0 53.9 23.5 32.9 3.7 53.7 14.7
LATEM (Xian et al. (2016)) 55.1 7.3 55.8 11.5 49.3 15.2 35.2 0.1 55.3 14.7
ESZSL (Romera-Paredes & Torr (2015)) 58.2 6.6 58.6 5.9 53.9 12.6 38.3 2.4 54.5 11
ALE (Akata et al. (2015)) 59.9 16.8 62.5 14.0 54.9 23.7 39.7 4.6 58.1 21.8
SYNC (Changpinyo et al. (2016)) 54.0 8.9 46.6 10.0 55.6 11.5 23.9 7.4 56.3 7.9
SAE (Kodirov et al. (2017)) 53.0 1.8 54.1 1.1 33.3 7.8 8.3 0.4 40.3 8.8
DEM (Zhang et al. (2017)) 68.4 32.8 67.1 30.5 51.7 19.6 35.0 11.1 61.9 20.5
RELATION NET (Sung et al. (2018)) 68.2 31.4 64.2 30.0 55.6 38.1 N/A N/A N/A N/A
Ours 70.3 62.6 69.7 54.8 53.6 45.4 39.1 28.4 62.5 36.8

Table 2: Zero-shot classification accuracy. The best results are in bold.
Mini-Imagenet CUB

1-shot 5-shot 1-shot 5-shot
ResNet18 feat. + NN 52.06±0.78% 65.22±0.71% 60.80±0.86% 78.18±0.56%
ResNet18 feat. + PROTO NET classifier 55.80±0.82% 75.74±0.65% 65.06±0.89% 83.19±0.58%
ResNet18 + PROTO NET 51.72±0.43% 67.45±0.32% 42.98±0.47% 55.94±0.40%
Matching NET (Vinyals et al. (2016)) 43.56±0.84% 55.31±0.73% 49.34 59.31
PROTO NET (Snell et al. (2017)) 49.42±0.78% 68.20±0.66% 45.27 56.35
MAML (Finn et al. (2017)) 48.70±1.84% 63.11±0.92% 38.43 59.15
META-SGD (Li et al. (2017)) 50.47±1.87% 64.03±0.94% N/A N/A
META-LSTM (Ravi & Larochelle (2017)) 43.44±0.77% 60.60±0.71% 40.43 49.65
MACO (Hilliard et al. (2018)) 41.09±0.32% 58.32±0.21% 60.76 74.96
DFSVL (Gidaris & Komodakis (2018)) 55.95±0.84% 73.00±0.64% N/A N/A
RELATION NET (Sung et al. (2018)) 57.02±0.92% 71.07±0.69% N/A N/A
Ours 62.95±1.01% 79.17±0.81% 70.46±1.09% 85.21±0.71%

Table 3: Few-shot classification accuracy. The best results are in bold.

quite discriminative to discern that the incoming images do not belong to their classes. From the
perspective of hubness problem, since the classification weights for seen class have good separation
property, the weight vectors are less likely to be clustered in the embedding space, so that the risk is
reduced that some candidates are selected as the nearest neighbors for many query images.

4.2 FEW-SHOT LEARNING

Datasets and evaluation settings. We evaluate few-shot classification on two widely-used datasets,
Mini-ImageNet (Vinyals et al. (2016)) and CUB (Wah et al. (2011)). The Mini-ImageNet dataset has
60,000 images from 100 classes, 600 images for each class. We follow previous methods and use
the splits in Ravi & Larochelle (2017) for evaluation, i.e., 64, 16, 20 classes as training, validation,
and testing sets, respectively. The CUB dataset is a fine-grained dataset of totally 11,788 images
from 200 categories of birds. As the split in Ravi & Larochelle (2017), we use 100, 50, 50 classes
for training, validation, and testing, respectively. For both datasets, we resize images to 224×224 to
meet the requirement of our adopted feature extraction network. Following the previous methods, we
evaluate both 5-way 1-shot and 5-way 5-shot classification tasks where each task instance involves
classifying test images from 5 sampled classes with 1 (1-shot) or 5 (5-shot) randomly sampled
images for each class as the support set. In order to reduce variance we repeat the evaluation task
600 times and report the mean of the accuracy with a 95% confidence interval.

Implementation details. We use ResNet18 as our feature extraction model fθ which results in a
512-dimension vector for each input image after average pooling. We train fθ on the two experi-
mental datasets by following the standard classification learning pipeline: We use Adam optimizer
with an initial learning rate 10−3 which decays to the half every 10 epochs. The model is trained
with 100 epochs. As for gφ, we use two FC+ReLU layers, same as in ZSL. The dimension of the
intermediate hidden layer is 512 for both datasets. We train gφ using Adam optimizer with a learn-
ing rate 10−5 and set the hyper-parameters λ = 10−5 for both datasets. The model is trained with
60000 randomly sampled FSL tasks, each of which consist of 5 classes, with 1 or 5 samples as the
support samples and another 15 as the query samples.
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Figure 3: The Barnes-Hut t-SNE (Van Der Maaten (2014)) of the projections of semantic vectors
in the visual space obtained by DEM (Zhang et al. (2017)) (Left) and our method (Right). Seen and
unseen classes are in orange and blue, respectively.

Experimental results. Table 3 shows the results of the proposed method and the most recent ones.
From the table, we can get some interesting observations. First, the baseline method “ResNet18 +
NN” beats most competing FSL algorithms where various sophisticated strategies are used. Mean-
while, the accuracy of feeding the classifier of PROTO NET with features obtained by ResNet18
(“ResNet18 feat. + PROTO NET classifier”) is much higher than that obtained by training PROTO
NET end to end with ResNet18 as the base model (“ResNet18 + PROTO NET”). These results
support our analysis that the episode-based training scheme adopted by existing FSL approaches
suppresses the discriminability of the feature extraction model. Second, compared with the baseline
methods “ResNet18 feat. + NN” and “ResNet18 feat. + PROTO NET classifier”, which use the same
feature representations as our method, we get obvious improvements. This substantiates the benefit
of the proposed weight generation strategy for FSL. Third, compared with the existing methods, our
method reaches the best in the both datasets for both 1-shot and 5-shot evaluation settings, often by
large margins. This shows the great advantage of our method for handling the FSL problem.

4.3 FURTHER ANALYSIS

As we can see above, our method dramatically outperforms existing methods for the GZSL setting.
The advantage is much more significant than that for the ZSL setting. We have analyzed the reason
is that the classification weights generated from the attributes of seen classes show good separation
property so that the hubness problem is not as severe as that for other methods. The hubness problem
refers that in ZSL, some candidate points are prone to be the nearest neighbors of many query points
when the dimension is high. So, if the candidate points are more evenly distributed in the space,
the less severe of the hubness problem should be. To validate this, we use t-SNE (Van Der Maaten
(2014)) to visualize the classification weight vectors generated from all 200 class semantic vectors
in the CUB dataset. As a comparison, we do the same thing for DEM (Zhang et al. (2017)) which
also learns mapping from semantic space to visual space. The result is shown in Figure 3. We can
observe that the points are more evenly distributed for our method than that for DEM. This further
validates the benefit of our method in avoiding the hubness problem.

5 CONCLUSIONS

In this paper, we propose a flexible framework for unseen class categorization with limited infor-
mation provided about these classes. We secure two key factors, a powerful feature extractor and a
flexible classifier, through network reparameterization. We decouple the feature extraction module
and the classification module of a deep model for UCC. The feature extraction module is learned in
a standard multi-class classification framework and the classification weight vector is generated by a
network from exemplar information of the unseen classes. We train the classification weight gener-
ator in an episode-by-episode fashion to enable it flexibility for new tasks. Applying our framework
for zero-shot learning (ZSL), we achieve much better results especially for the generalized ZSL
setting than the state-of-the-art owing to our incorporation of inter-class separation information for
learning the mapping from semantic space to visual space. For few-shot learning (FSL), we also
achieve remarkable performance gains relative to existing methods due to the flexible scheme that
make it possible a powerful feature extraction model and a flexible weight generation model.
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