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ABSTRACT

Despite deep neural networks have demonstrated extraordinary power in various
applications, their superior performances are at expense of high storage and com-
putational costs. Consequently, the acceleration and compression of neural net-
works have attracted much attention recently. Knowledge Transfer (KT), which
aims at training a smaller student network by transferring knowledge from a larger
teacher model, is one of the popular solutions. In this paper, we propose a novel
knowledge transfer method by treating it as a distribution matching problem. Par-
ticularly, we match the distributions of neuron selectivity patterns between teacher
and student networks. To achieve this goal, we devise a new KT loss function by
minimizing the Maximum Mean Discrepancy (MMD) metric between these dis-
tributions. Combined with the original loss function, our method can significantly
improve the performance of student networks. We validate the effectiveness of
our method across several datasets, and further combine it with other KT methods
to explore the best possible results. Last but not least, we fine-tune the model
to other tasks such as object detection. The results are also encouraging, which
confirm the transferability of the learned features.

1 INTRODUCTION

In recent years, deep neural networks have renewed the state-of-the-art performance in various fields
such as computer vision and neural language processing. Generally speaking, given enough data,
deeper and wider networks would achieve better performances than the shallow ones. However,
these larger and larger networks also bring in high computational and memory costs. It is still a
great burden to deploy these state-of-the-art models into real-time applications.

This problem motivates the researches on acceleration and compression of neural networks. In the
last few years, extensive work have been proposed in this field. These attempts can be roughly cate-
gorized into three types: network pruning (LeCun et al. (1990); Han et al. (2015); Molchanov et al.
(2017); He et al. (2017); Luo et al. (2017); Li et al. (2017a)), network quantization (Courbariaux
et al. (2016); Rastegari et al. (2016)) and knowledge transfer (KT) (Bucila et al. (2006); Hinton et al.
(2014); Romero et al. (2015); Sergey & Nikos (2017); Hyun Lee et al. (2018); Wang et al. (2016);
Luo et al. (2016)). Network pruning iteratively prunes the neurons or weights of low importance
based on certain criteria, while network quantization tries to reduce the precision of the weights or
features. Nevertheless, it is worth noting that most of these approaches (except neuron pruning) are
not able to fully exploit modern GPU and deep learning frameworks. Their accelerations need spe-
cific hardwares or implementations. In contrast, KT based methods directly train a smaller student
network, which accelerates the original networks in terms of wall time without bells and whistles.

To the best of our knowledge, the earliest work of KT could be dated to Bucila et al. (2006). They
trained a compressed model with pseudo-data labeled by an ensemble of strong classifiers. However,
their work is limited to shallow models. Until recently, Hinton et al. brought it back by introducing
Knowledge Distillation (KD) (Hinton et al. (2014)). The basic idea of KD is to distill knowledge
from a large teacher model into a small one by learning the class distributions provided by the
teacher via softened softmax. Despite its simplicity, KD demonstrates promising results in various
image classification tasks. However, KD can only be applied in classification tasks with softmax
loss function. Some subsequent works (Romero et al. (2015); Sergey & Nikos (2017); Wang et al.
(2016)) tried to tackle this issue by transferring intermediate representations of teacher model.
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Figure 1: The architecture for our Neuron Selectivity Transfer: the student network is not only
trained from ground-truth labels, but also mimics the distribution of the activations from interme-
diate layers in the teacher network. Each dot or triangle in the figure denotes its corresponding
activation map of a filter.

In this work, we explore a new type of knowledge in teacher models, and transfer it to student
models. Specifically, we make use of the selectivity knowledge of neurons. The intuition behind
this model is rather straightforward: Each neuron essentially extracts a certain pattern related to the
task at hand from raw input. Thus, if a neuron is activated in certain regions or samples, that implies
these regions or samples share some common properties that may relate to the task. Such clustering
knowledge is valuable for the student network since it provides an explanation to the final prediction
of the teacher model. As a result, we propose to align the distribution of neuron selectivity pattern
between student models and teacher models. The illustration of our method for knowledge transfer
is depicted in Fig. 1. The student network is trained to align the distribution of activations of its
intermediate layer with that of the teacher. Maximum Mean Discrepancy (MMD) is used as the loss
function to measure the discrepancy between teacher and student features. We test our method on
CIFAR-10, CIFAR-100 and ImageNet datasets and show that our Neuron Selectivity Transfer (NST)
improves the student’s performance notably.

To summarize, the contributions of this work are as follows:

• We provide a novel view of knowledge transfer problem and propose a new method named
Neuron Selectivity Transfer (NST) for network acceleration and compression.

• We test our method across several datasets and provide evidence that our Neuron Selectivity
Transfer achieves higher performances than students significantly.

• We show that our proposed method can be combined with other knowledge transfer method
to explore the best model acceleration and compression results.

• We demonstrate knowledge transfer help learn better features and other computer vision
tasks such as object detection can benefit from it.

2 RELATED WORKS

Deep network compression and acceleration Many works have been proposed to reduce the model
size and computation cost by network compression and acceleration. In the early development of
neural network, network pruning (LeCun et al. (1990); Hassibi & Stork (1993)) was proposed to
pursuit a balance between accuracy and storage. Recently, Han et al. (2015) brought it back to mod-
ern deep structures. Their main idea is weights with small magnitude are unimportant and can be
removed. However, this strategy only yields sparse weights and needs specific implementations for
acceleration. To pursue efficient inference speed-up without dedicated libraries, researches on net-
work pruning are undergoing a transition from connection pruning to filter pruning. Several works
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(Molchanov et al. (2017); Li et al. (2017a)) evaluate the importance of neurons by different selection
criteria while others (Mariet & Sra (2016); Luo et al. (2017); Wen et al. (2016); Alvarez & Salzmann
(2016); He et al. (2017); Liu et al. (2017); Huang & Wang (2018); Ye et al. (2018)) formulate pruning
as a subset selection or sparse optimization problem. Beyond pruning, quantization (Courbariaux
et al. (2016); Rastegari et al. (2016)) and low-rank approximation (Jaderberg et al. (2014); Denton
et al. (2014); Zhang et al. (2015)) are also widely studied. Note that these acceleration methods are
complementary to KT, which can be combined with our method for further improvement.

Knowledge transfer for deep learning Knowledge Distill (KD) (Hinton et al. (2014)) is the pio-
neering work to apply knowledge transfer to deep neural networks. In KD, the knowledge is defined
as softened outputs of the teacher network. Compared with one-hot labels, softened outputs provide
extra supervisions of intra-class and inter-class similarities learned by teacher. The one-hot labels
aim to project the samples in each class into one single point in the label space, while the softened
labels project the samples into a continuous distribution. On one hand, softened labels could rep-
resent each sample by class distribution, thus captures intra-class variation; on the other hand, the
inter-class similarities can be compared relatively among different classes in the soft target. For-
mally, the soft target of a network T can be defined by pτT = softmax(aT

τ ), where a is the vector
of teacher logits (pre-softmax activations) and τ is a temperature. By increasing τ , such inter-class
similarity is retained by driving the prediction away from 0 and 1. The student network is then
trained by the combination of softened softmax and original softmax. However, its drawback is also
obvious: Its effectiveness only limits to softmax loss function, and relies on the number of classes.
For example, in a binary classification problem, KD could hardly improve the performance since
almost no additional supervision could be provided.

Subsequent works (Romero et al. (2015); Wang et al. (2016); Sergey & Nikos (2017)) tried to tackle
the drawbacks of KD by transferring intermediate features. Lately, Romero et al. (2015) proposed
FitNet to compress networks from wide and shallow to thin and deep. In order to learn from the
intermediate representations of teacher network, FitNet makes the student mimic the full feature
maps of the teacher. However, such assumptions are too strict since the capacities of teacher and
student may differ greatly. In certain circumstances, FitNet may adversely affect the performance
and convergence. Recently, Sergey & Nikos (2017) proposed Attention Transfer (AT) to relax the
assumption of FitNet: They transfer the attention maps which are summaries of the full activations.
As discussed later, their work can be seen as a special case in our framework. Yim et al. (2017)
defined a novel type of knowledge, Flow of Solution Procedure (FSP) for knowledge transfer, which
computes the Gram matrix of features from two different layers. They claimed that this FSP matrix
could reflect the flow of how teachers solve a problem. More recently, Hyun Lee et al. (2018)
adopted singular value decomposition to compress the knowledge data from teacher for smaller
memory and lower computation.

Domain adaptation belongs to the field of transfer learning (Ben-David et al. (2010)). In its mostly
popular setting, the goal of domain adaptation is to improve the testing performance on an unlabeled
target domain while the model is trained on a related yet different source domain. Since there is
no labels available on the target domain, the core of domain adaptation is to measure and reduce
the discrepancy between the distributions of these two domains. In the literature, Maximum Mean
Discrepancy (MMD) is a widely used criterion, which compares distributions in the Reproducing
Kernel Hilbert Space (RKHS) (Gretton et al. (2012)). Several works have adopted MMD to solve the
domain shift problem. In (Huang et al. (2007); Gretton et al. (2009); Gong et al. (2013)), examples
in the source domain are re-weighted or selected so as to minimize the MMD between the source and
target distributions. Other works like Baktashmotlagh et al. (2013) measured MMD in an explicit
low-dimensional latent space. As for applications in deep learning model, (Long et al. (2015); Tzeng
et al. (2014)) used MMD to regularize the learned features in source domain and target domain.

Note that, domain adaptation is not limited to the traditional supervised learning problem. For
example, recently Li et al. (2017b) casted neural style transfer (Gatys et al. (2016)) as a domain
adaptation problem. They demonstrated that neural style transfer is essentially equivalent to match
the feature distributions of content image and style image. Gatys et al. (2016) is a special case
with second order polynomial kernel MMD. In this paper, we explore the use of MMD for a novel
application – knowledge transfer.
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(a) Monkey (b) Magnetic Hill

Figure 2: Neuron activation heat map of two selected images.

3 BACKGROUND

In this section, we will start with the notations to be used in the sequel, then followed by a brief
review of MMD which is at the core of our approach.

3.1 NOTATIONS

First, we assume the neural network to be compressed is a Convolutional Neural Network (CNN)
and refer the teacher network as T and the student network as S. Let’s denote the output feature
map of a layer in CNN by F ∈ RC×HW with C channels and spatial dimensions H×W . For better
illustration, we denote each row of F (i.e. feature map of each channel) as fk· ∈ RHW and each
column of F (i.e. all activations in one position) as f ·k ∈ RC . Let FT and FS be the feature maps
from certain layers of the teacher and student network, respectively. Without loss of generality, we
assume FT and FS have the same spatial dimensions. The feature maps can be interpolated if their
dimensions do not match.

3.2 MAXIMUM MEAN DISCREPANCY

In this subsection, we review the Maximum Mean Discrepancy (MMD), which can be regarded as a
distance metric for probability distributions based on the data samples sampled from them (Gretton
et al. (2012)). Suppose we are given two sets of samples X = {xi}Ni=1 and Y = {yj}Mj=1 sampled
from distributions p and q, respectively. Then the squared MMD distance between p and q can be
formulated as:

LMMD2(X ,Y) = ‖ 1
N

N∑
i=1

φ(xi)− 1

M

M∑
j=1

φ(yj)‖22, (1)

where φ(·) is a explicit mapping function. By further expanding it and applying the kernel trick, Eq.
1 can be reformulated as:

LMMD2(X ,Y) = 1

N2

N∑
i=1

N∑
i′=1

k(xi,xi
′
) +

1

M2

M∑
j=1

M∑
j′=1

k(yi,yi
′
)− 2

MN

N∑
i=1

M∑
j=1

k(xi,yj), (2)

where k(·, ·) is a kernel function which projects the sample vectors into a higher or infinite dimen-
sional feature space.

Since the MMD loss is 0 if and only if p = q when the feature space corresponds to a universal
RKHS, minimizing MMD is equivalent to minimizing the distance between p and q (Gretton et al.
(2012)).

4 NEURON SELECTIVITY TRANSFER

In this section, we present our Neuron Selectivity Transfer (NST) method. We will start with an intu-
itive example to explain our motivation, and then present the formal definition and some discussions
about our proposed method.
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4.1 MOTIVATION

Fig. 2 shows two images blended with the heat map of one selected neuron in VGG16 Conv5 3.
It is easy to see these two neurons have strong selectivities: The neuron in the left image is sensi-
tive to monkey face, while the neuron in the right image activates on the characters strongly. Such
activations actually imply the selectivities of neurons, namely what kind of inputs can fire the neu-
ron. In other words, the regions with high activations from a neuron may share some task related
similarities, even though these similarities may not intuitive for human interpretation. In order to
capture these similarities, there should be also neurons mimic these activation patterns in student
networks. These observations guide us to define a new type of knowledge in teacher networks:
neuron selectivities or called co-activations, and then transfer it to student networks.

What is wrong with directly matching the feature maps? A natural question to ask is why
cannot we align the feature maps of teachers and students directly? This is just what Romero et al.
(2015) did. Considering the activation of each spatial position as one feature, then the flattened
activation map of each filter is an sample the space of neuron selectivities of dimension HW . This
sample distribution reflects how a CNN interpret an input image: where does the CNN focus on?
which type of activation pattern does the CNN emphasize more? As for distribution matching, it is
not a good choice to directly match the samples from it, since it ignores the sample density in the
space. Consequently, we resort to more advanced distribution alignment method as explained below.

4.2 FORMULATION

Following the notation in Sec. 3.1, each feature map fk· represents the selectivity knowledge of a
specific neuron. Then we can define Neuron Selectivity Transfer loss as:

LNST(WS) = H(ytrue,pS) +
λ

2
LMMD2(FT ,FS), (3)

whereH refers to the standard cross-entropy loss, and ytrue represents true label and pS is the output
probability of the student network.

The MMD loss can be expanded as:

LMMD2(FT ,FS) =
1

CT
2

CT∑
i=1

CT∑
i′=1

k(
f i·T
‖f i·T ‖2

,
f i
′·
T

‖f i′·T ‖2
) +

1

CS
2

CS∑
j=1

CS∑
j′=1

k(
f j·S
‖f j·S ‖2

,
f j
′·
S

‖f j′·S ‖2
)

− 2

CTCS

CT∑
i=1

CS∑
j=1

k(
f i·T
‖f i·T ‖2

,
f j·S
‖f j·S ‖2

).

(4)

Note we replace fk· with its l2-normalized version fk·

‖fk·‖2 to ensure each sample has the same scale.
Minimizing the MMD loss is equivalent to transferring neuron selectivity knowledge from teacher
to student.

Choice of Kernels In this paper, we focus on the following three specific kernels for our NST
method, including:

• Linear Kernel: k(x,y) = x>y

• Polynomial Kernel: k(x,y) = (x>y + c)d

• Gaussian Kernel: k(x,y) = exp(−‖x−y‖
2
2

2σ2 )

For polynomial kernel, we set d = 2, and c = 0. For Gaussian kernel, the σ2 is set as the mean of
squared distance of the pairs.

4.3 DISCUSSION

In this subsection, we discuss NST with linear and polynomial kernel in detail. Specifically, we
show the intuitive explanations behind the math and their relationships with existing methods.
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(a) CIFAR10
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(b) CIFAR10
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(c) CIFAR100
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(d) CIFAR100

Figure 3: Different knowledge transfer methods on CIFAR10 and CIFAR100. Test errors are in
bold, while train errors are in dashed lines. Our NST improves final accuracy observably with a fast
convergence speed. Best view in color.

4.3.1 LINEAR KERNEL

In the case of linear kernel, Eq. 4 can be reformulated as:

LMMD2
L
(FT ,FS) = ‖

1

CT

CT∑
i=1

f i·T
‖f i·T ‖2

− 1

CS

CS∑
j=1

f j·S
‖f j·S ‖2

‖22. (5)

Interestingly, we find the activation-based Attention Transfer (AT) in Sergey & Nikos (2017) define
their transfer loss as:

LAT(FT ,FS) = ‖A(FT )−A(FS)‖22, (6)

where A(F) is an attention mapping. Specifically, one of the attention mapping function in Sergey
& Nikos (2017) is the normalized sum of absolute values mapping, which is defined as:

Aabssum(F) =

∑C
k=1 |fk·|

‖
∑C
k=1 |fk·|‖2

, (7)

and the loss function of AT can be reformulated as:

LAT(FT ,FS) = ‖
∑CT

i=1 |f i·T |
‖
∑CT

i=1 |f i·T |‖2
−

∑CS

j=1 |f
j·
S |

‖
∑CS

j=1 |f
j·
S |‖2

‖22. (8)

For the activation maps after ReLU layer, which are already non-negative, Eq. 5 is equivalent to
Eq. 8 except the form of normalization. They both represent where the neurons have high responses,
namely the “attention” of the teacher network. Thus, Sergey & Nikos (2017) is a special case in our
framework.

4.3.2 POLYNOMIAL KERNEL

Slightly modifying the explanation of second order polynomial kernel MMD matching in Li et al.
(2017b), NST with second order polynomial kernel with c = 0 can be treated as matching the Gram
matrix of two vectorized feature maps:

LMMD2
P
(FT ,FS) = ‖GS −GT ‖2F , (9)

where G ∈ RHW×HW is the Gram matrix, with each item gij as:

gij = (f ·i)T f ·j , (10)

where each item gij in the Gram matrix roughly represents the similarity of region i and j (For
simplicity, the feature maps FT and FS are normalized as we mentioned in Sec. 4.2). It guides
the student network to learn better internal representation by explaining such task driven region
similarities in the embedding space. It greatly enriches the supervision signal for student networks.
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5 EXPERIMENTS

In the following sections, we evaluate our NST on several standard datasets, including CIFAR-10,
CIFAR-100 (Krizhevsky & Hinton (2009)) and ImageNet LSVRC 2012 (Russakovsky et al. (2015)).
On CIFAR datasets, an extremely deep network, ResNet-1001 (He et al. (2016b)) is used as teacher
model, and a simplified version of Inception-BN (Ioffe & Szegedy (2015))1 is adopted as student
model. On ImageNet LSVRC 2012, we adopt a pre-activation version of ResNet-101 (He et al.
(2016b)) and original Inception-BN as teacher model and student model, respectively.

To further validate the effectiveness of our method, we compare our NST with several state-of-the-
art knowledge transfer methods, including KD (Hinton et al. (2014)), FitNet (Romero et al. (2015))
and AT (Sergey & Nikos (2017)). For KD, we set the temperature for softened softmax to 4 and
λ = 16, following Hinton et al. (2014). For FitNet and AT, the value of λ is set to 102 and 103

following Sergey & Nikos (2017). The mapping function of AT adopted in our reimplementation
is square sum, which performs best in the experiments of Sergey & Nikos (2017). As for our NST,
we set λ = 5 × 101, 5 × 101 and 102 for linear, polynomial and Gaussian kernel, respectively. All
the experiments are conducted in MXNet (Chen et al. (2015)). We will make our implementation
publicly available if the paper is accepted.

5.1 CIFAR

We start with the CIFAR dataset to evaluate our method. CIFAR-10 and CIFAR-100 datasets consist
of 50K training images and 10K testing images with 10 and 100 classes, respectively. For data
augmentation, we take a 32 × 32 random crop from a zero-padded 40 × 40 image or its flipping
following He et al. (2016a). The weight decay is set to 10−4. For optimization, we use SGD with a
mini-batch size of 128 on a single GPU. We train the network 400 epochs. The learning rate starts
from 0.2 and is divided by 10 at 200 and 300 epochs.

For AT, FitNet and our NST, we add a single transfer loss between the convolutional layer output
of “in5b” in Inception-BN and the output of last group residual block in ResNet-1001. We also try
to add multiple transfer losses in different layers and find that the improvement over single loss is
minor for these methods.

Table 1 summarizes our experiment results. Our NST achieves higher accuracy than the original
student network, which demonstrates the effectiveness of feature maps distribution matching. The
choice of kernel influences the performance of NST. In our experiments, polynomial kernel yields
better result than both linear and Gaussian kernels. Comparing with other knowledge transfer meth-
ods, our NST is also competitive. In CIFAR-10, all these transfer methods achieve higher accuracy
than the original student network. Among them, our NST with polynomial kernel performs the best.
In CIFAR-100, KD achieves the best performance. This is consistent with our explanation that KD
would perform better in the classification task with more classes since more classes provide more
accurate information about intra-class variation in the softened softmax target. We also try to com-

Table 1: CIFAR results of individual transfer methods.
Method Model CIFAR-10 CIFAR-100
Student Inception-BN 5.80 25.63
KD (Hinton et al. (2014)) Inception-BN 4.47 22.18
FitNet (Romero et al. (2015)) Inception-BN 4.75 23.48
AT (Sergey & Nikos (2017)) Inception-BN 4.64 24.31
NST (linear) Inception-BN 4.87 24.28
NST (poly) Inception-BN 4.39 23.46
NST (Gaussian) Inception-BN 4.48 23.85
Teacher ResNet-1001 4.04 20.50

bine different transfer methods to explore the best possible results. Table 2 shows the results of
KD+FitNet, KD+NST and KD+FitNet+NST. Not surprisingly, matching both final predictions and
intermediate representations improve over individual transfers. Particularly, KD combined with our

1https://tinyurl.com/inception-bn-small
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Table 2: CIFAR results of combined transfer methods. NST* represents NST with polynomial
kernel.

Method Model CIFAR-10 CIFAR-100
KD+FitNet Inception-BN 4.54 22.29
KD+NST* Inception-BN 4.21 21.48
KD+FitNet+NST* Inception-BN 4.54 22.25

NST performs best in these three settings. To be specific, we improve the performance of student
network by about 1.6% and 4.2% absolutely, and reduce the relative error by 27.6% and 16.4%,
respectively. The training and testing curves of all the experiments can be found in Fig. 3. All the
transfer methods converge faster than student network. Among them, KD+NST is the fastest.

5.2 IMAGENET LSVRC 2012

In this section, we conduct large-scale experiments on the ImageNet LSVRC 2012 classification
task. The dataset consists of 1.28M training images and another 50K validation images. We optimize
the network using Nesterov Accelerated Gradient (NAG) with a mini-batch size of 512 on 8 GPUs
(64 per GPU). The weight decay is 10−4 and the momentum is 0.9 for NAG. For data augmentation
and weight initialization, we follow the publicly available implementation of “fb.resnet” 2. We train
the network for 100 epochs. The initial learning rate is set to 0.1, and then divided by 10 at the
30, 60 and 90 epoch, respectively. We report both top-1 and top-5 validation errors on the standard
single test center-crop setting. According to previous section, we only evaluate the best setting in our
method – NST with second order polynomial kernel. The value of λ is set to 5× 101. Other settings
are the same as CIFAR experiments. All the results of our ImageNet experiments can be found in
Table 3 and Fig. 4. Our method achieves 0.9% top-1 and 0.5% top-5 improvements compared with
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Figure 4: Top-1 validation error of different
knowledge transfer methods on ImageNet. Best
view in color.

Before Matching After Matching

Figure 5: t-SNE (Maaten & Hinton (2008)) visual-
ization shows that our NST Transfer reduces the dis-
tance between teacher and student activations distri-
bution.

the student network. Interestingly, different from Sergey & Nikos (2017), we also find that in our
experiments both KD and FitNet improve the convergence and accuracy of Inception-BN. This may
be caused by the choice of weak teacher network (ResNet-34) in Sergey & Nikos (2017). Among all
the methods, KD performs the best. When combined with KD, our NST achieves the best accuracy,
which improves top-1 and top-5 accuracy by 1.4% and 1%, respectively. These results further verify
the effectiveness of our proposed NST in large scale application and its complementarity with other
state-of-the-art knowledge transfer methods.

5.3 PASCAL VOC 2007 DETECTION

“Network engineering” plays an increasingly important role in visual recognition. Researchers fo-
cus on designing better network architectures to learn better representations. Several works have

2https://github.com/facebook/fb.resnet.torch
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Table 3: ImageNet validation error (single crop) of multiple transfer methods. NST* represents NST
with polynomial kernel.

Method Model Top-1 Top-5
Student Inception-BN 25.74 8.07
KD (Hinton et al. (2014)) Inception-BN 24.56 7.35
FitNet (Romero et al. (2015)) Inception-BN 25.30 7.93
AT (Sergey & Nikos (2017)) Inception-BN 25.10 7.61
NST* Inception-BN 24.82 7.58
KD+FitNet Inception-BN 24.48 7.27
KD+AT Inception-BN 24.64 7.26
KD+NST* Inception-BN 24.34 7.11
Teacher ResNet-101 22.68 6.58

Table 4: Detection results on the PASCAL VOC 2007 test set. The baseline is the standard Faster
R-CNN system with Inception-BN model.

Method mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Baseline 75.6 77.2 79.2 75.0 62.2 61.7 83.7 84.9 87.0 60.5 81.6 66.9 86.5 86.9 78.7 78.8 49.2 78.2 78.2 81.7 74.9
KD 76.0 75.7 79.4 75.7 66.1 60.1 85.4 84.3 86.8 60.1 84.0 65.7 84.4 87.0 81.6 79.0 48.8 76.8 79.5 83.4 75.4

FitNet 76.6 75.5 82.8 77.7 67.2 58.7 84.8 85.9 86.7 61.1 81.6 70.1 85.3 86.0 81.4 79.0 51.8 78.1 78.8 85.2 74.1
AT 76.5 74.9 83.0 77.8 67.3 61.7 85.2 85.2 87.4 60.5 83.0 69.4 85.0 86.7 81.8 79.1 49.0 78.1 78.6 82.5 74.4

NST* 76.8 75.7 81.5 75.4 67.3 61.1 86.1 85.0 86.9 61.0 82.7 71.5 86.5 86.8 84.3 79.0 51.5 77.4 77.6 84.4 75.2
KD+NST* 77.2 75.7 84.2 77.2 67.6 63.5 86.4 85.7 88.7 61.0 83.1 69.7 85.4 85.2 83.8 79.2 51.9 76.0 78.4 82.9 77.1

demonstrated that the improvement of feature learning in image classification could be successfully
transferred to other recognition tasks (He et al. (2016a); Xie et al. (2017); Chen et al. (2017)), such
as object detection and semantic segmentation. However, can the gain from knowledge transfer in
image classification task be transferred to other high level vision tasks? We provide a preliminary
investigation in object detection task.

Our evaluation is based on the Faster-RCNN (Ren et al. (2015)) system on PASCAL VOC 2007
dataset. Following the settings in Ren et al. (2015), we train the models on the union set of VOC
2007 trainval and VOC 2012 trainval, and evaluate them on the test set. Since our goal is to validate
the effectiveness of base models, we make comparisons by only varying the pre-trained ImageNet
classification models, while keeping other parts unchanged. The backbone network is Inception-
BN with different KT methods. We extract features from the “4b” layer whose stride is 16 pixels.
Standard evaluation metrics Average Precision (AP) and mean AP (mAP) are reported for evaluation.

Table 5.3 summarizes the detection results. All the models with KT achieve higher mAP than the
baseline. Comparing with other transfer techniques, our NST improves most with 1.2 higher mAP.
Combined with KD, the KD+NST yields 1.6 gain. These results demonstrate that KT could ben-
efit object detection task without any modifications and extra computations to the original student
model in testing. Consequently, they are powerful tools to improve performance in a wide range of
applications for practitioners. Interestingly, though KD performs best in large-scale image classifi-
cation task, feature map based mimicking methods, including FitNet, AT and our NST have greater
advantages over it in object detection task. We owe it to the importance of spatial information in
object detection. KD totally ignores it while other methods exploit it in certain extent.

6 DISCUSSION

In this section, we first analyze the strengths and weaknesses of several closely related works based
on the results from our experiment, and then discuss some possible extenstions of the proposed NST
method.
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6.1 ANALYSIS OF DIFFERENT TRANSFER METHODS

In Fig. 5, we visualize the distributions of student and teacher networks’ activations before and after
our NST transfer in the CIFAR100 experiment using Maaten & Hinton (2008). Each dot in the
figure denotes an activation pattern of a neuron. As expected, MMD loss significantly reduces the
discrepancy between teacher and student distributions, which makes the student network act more
like the teacher network.

KD (Hinton et al. (2014)) achieves its best performance when there are a large number of classes. In
that case, softened softmax can depict each data sample in the embedded label space more accurate
than the case that the number of class is small. However, the drawback of KD is that it is fully based
on softmax loss, which limits its applications in broader applications such as regression and ranking.
Other compared methods do not have to meet such constraints.

As for FitNet (Romero et al. (2015)), we find that its assumption is too strict in the sense that
it forces the student network to match the full activations of teacher model as mentioned before.
As we discussed in 4.1, directly matching samples ignores the density in the space. In certain
circumstances, the training of FitNet will be influenced by noise seriously, which makes it hard to
converge.

6.2 BEYOND MAXIMUM MEAN DISCREPANCY

We propose a novel view of knowledge transfer by treating it as a distribution matching problem.
Although we select MMD as our distribution matching method, other matching methods can also
be incorporated into our framework. If we can formulate the distribution into a parametric form,
simple moment matching can be used to align distribution. For more complex cases, drawing the
idea of Generative Adversarial Network (GAN) (Goodfellow et al. (2014)) to solve this problem is
an interesting direction to pursue. The goal of GAN is to train a generator network G that generates
samples from a specific data distribution. During the training, a discriminator network D is used to
distinguish that whether a sample comes from the real data or generated by G. In our framework,
the student network can be seen as a generator. D is trained to distinguish whether features are gen-
erated by the student network or teacher. if G successfully confuses D, then the domain discrepancy
is minimized. Similar ideas have already been exploited in domain adaptation area (Tzeng et al.
(2017)), we believe it can also be used in our application.

7 CONCLUSIONS

In this paper, we propose a novel method for knowledge transfer by casting it as a distribution
alignment problem. We utilize an unexplored type of knowledge – neuron selectivity. It represents
the task related preference of each neuron in the CNN. In detail, we match the distributions of
spatial neuron activations between teacher and student networks by minimizing the MMD distance
between them. Through this technique, we successfully improve the performance of small student
networks. In our experiments, we show the effectiveness of our NST method on various datasets, and
demonstrate that NST is complementary to other existing methods: Specifically, further combination
of them yields the new state-of-the-art results. Furthermore, we analyze the generalizability of
knowledge transfer methods to other tasks. The results are quite promising, thus further confirm
that knowledge transfer methods could indeed learn better feature representations. They can be
successfully transferred to other high level vision tasks, such as object detection task.

We believe our novel view will facilitate the further design of knowledge transfer methods. In
our future work, we plan to explore more applications of our NST methods, especially in various
regression problems, such as super-resolution and optical flow prediction, etc.
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