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Abstract

Dense word vectors have proven their values in many downstream NLP tasks over
the past few years. However, the dimensions of such embeddings are not easily
interpretable. Out of the d-dimensions in a word vector, we would not be able to
understand what high or low values mean. Previous approaches addressing this
issue have mainly focused on either training sparse/non-negative constrained word
embeddings, or post-processing standard pre-trained word embeddings. On the
other hand, we analyze conventional word embeddings trained with Singular Value
Decomposition, and reveal similar interpretability. We use a novel eigenvector
analysis method inspired from Random Matrix Theory and show that semanti-
cally coherent groups not only form in the row space, but also the column space.
This allows us to view individual word vector dimensions as human-interpretable
semantic features.

1 Introduction

Understanding words has a fundamental impact on many natural language processing tasks, and has
been modeled with the Distributional Hypothesis [1]. Dense d-dimensional vector representations
of words created from this model are often referred to as word embeddings, and have successfully
captured similarities between words, such as word2vec and GloVe [2, 3]. They have also been applied
to downstream NLP tasks as word representation features, ranging from sentiment analysis to machine
translation [4, 5].

Despite their widespread popularity in usage, the dimensions of these word vectors are difficult to
interpret [6]. Consider wpresident = [0.1,2.4,0.3] as the 3-dimensional vector of “president” from
word2vec. In this 3-dimensional space (or the row space), semantically similar words like “minister”
and “president” are closely located. However, it is unclear what the dimensions represent, as we do not
know the meaning of the 2.4 in wpresident . It is difficult to answer questions like ‘what is the meaning
of high and low values in the columns of W’ and ‘how can we interpret the dimensions of word
vectors’. To address this problem, previous literature focused on the column space by either training
word embeddings with sparse and non-negative constraints [7–9], or post-processing pre-trained
word embeddings [6, 10, 11]. We instead investigate this problem from a random matrix perspective.

In our work, we analyze the eigenvectors of word embeddings obtained with truncated Singular
Value Decomposition (SVD) [12, 13] of the Positive Pointwise Mutual Information (PPMI) matrix
[14]. Moreover, we compare this analysis with the row and column space analysis of Skip Gram
Negative Sampling (SGNS), a model used to train word2vec [15]. From the works of [16] proving
that both SVD and SGNS factorizes and approximates the same matrix, we hypothesize that a study
of the principal eigenvectors of the PPMI matrix reflects the information contained in SGNS.
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Contributions: Without requiring any constraints or post-processing, we show that the dimensions
of word vectors can be interpreted as semantic features. In doing so, we also introduce novel word
embedding analysis methods inspired by the literature of eigenvector analysis techniques from
Random Matrix Theory.

2 Related Work

Recently, there have been several works that have shown similar results in semantic grouping among
the column values. Several of these algorithms proposed to train non-negative sparse interpretable
word vectors [7–9, 17].

Furthermore, [6] also proposed methods to post-process pre-trained word vectors with non-negativity
and sparsity constraints. However, their vectors were optionally binarized, which is difficult to
interpret intensity than real-values. [10] has proposed to overcome these limitations by simply
training a rotation matrix to transform pre-trained word2vec and GloVe, without being sparse or
binary. Finally, [11] post-trained the pre-trained word embeddings with k-sparse autoencoders with
similar constraints to [6].

While these methods were able to successfully achieve interpretability in the column space evaluated
with word intrusion detection tests, they either enforced sparsity and non-negativity constraints, or
required extensive post-processing. Furthermore, they focused less on the analysis and discussion on
the actual meanings of the columns despite their pursuit of interpretable dimensions. Hence, in our
work, we put more emphasis on such implications with conventional algorithms without any extra
constraints or post-processing steps.

3 Methodology

3.1 Notations

We define the Positive Pointwise Mutual Information (PPMI) matrix as MPPMI, the set of unique
words as vocabulary V , and word embedding matrices created from SVD and SGNS as WSVD and
WSGNS. The k-th largest eigenvalue and corresponding eigenvector of MPPMI are denoted as λ k and
uk ∈R|V |, and the k-th column of WSGNS as vk ∈R|V |. The word vectors are denoted wSVD

word or wSVD
word ,

but when context is clear or does not matter, we simply use wword . Note that we often use the term
"eigen" when and "singular" interchangeably because MPPMI is defined as a square matrix.

3.2 Positive Pointwise Mutual Information (PPMI) Matrix

Each entry of a co-occurrence matrix M represents the co-occurrence counts of words wi and c j in all
documents in the corpus. However, raw co-occurrence counts have been known to underperform than
other transformed variants [16]. Pointwise Mutual Information (PMI) [14] instead transforms matrix
by measuring the log ratio between the joint probability of w and c when assuming independence of
the two and not.

PMI(w,c) = log
P̂(w,c)

P̂(w)P̂(c)
= log

#(w,c)|D|
#(w)#̇(c)

The problem of this association measure is when dealing with never observed pairs which result in
PMI(w,c) = log0. To cope with such, Positive Pointwise Mutual Information has been used to map
all negative values to 0 from the intuition that positive associations are often more informative in
downstream NLP tasks [16].

PPMI(w,c) = max(PMI(w,c),0)

3.3 Truncated Singular Value Decomposition (SVD)

Truncated SVD (we will further refer this as simply SVD), which is equivalent to maximum variance
Principal Component Analysis (PCA) and has been popularized by Latent Semantic Analysis (LSA)
[13], factorizes the PPMI matrix as MPPMI = U ·S ·VT and truncates to d dimensions. Following
the works of [18], the word embedding matrix is taken as W = Ud , instead of the more “standard"
eigenvalue weighting W = Ud ·S. We discuss the effect of this in Section 6.2.
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3.4 Skip-Gram with Negative Sampling (SGNS)

Unlike PPMI and SVD which gives exact solutions, the word2vec Skip-Gram model, proposed by
[2], trains two randomly initialized word embedding matrices W and C with a neural network.

P(C j|Wi) = Softmax(Wi ·C j), where Softmax(Wi ·C j) =
eWi·C j

∑k eWi·Ck

The intuition is to basically maximize the dot product between "similar" word and context pairs, and
minimize the dot product between wrong pairs. The Softmax function is simply a generalized version
of the logistic function to multi-class scenario. However, the normalization constant which computes
the exponentials of all context words, is very computationally expensive when the vocabulary size is
large. Hence, [15] proposed Skip Gram with Negative Sampling (SGNS) to simplify the objective
using negative sampling.

3.5 Eigenvector Analysis Methods

We borrow intuitions from the Random Matrix Theory literature to analyze eigenvectors of MPPMI.
We analyze the distributions of eigenvectors, calculate the Inverse Participation Ratios (IPR) to
quantify the ratio of significant elements and measure structural sparsity, and qualitatively interpret
the significant elements.

Distribution of Eigenvector: The empirical distribution of eigenvector elements uk is compared
with a Normal distribution N(µuk ,σ2

uk) to measure normality of the eigenvectors, where µuk ,σ2
uk refer

to the mean and variance of uk. [19] have shown that eigenvectors deviating from Gaussian contain
genuine correlation between stocks, while also revealing a global bias that represented newsbreaks
influencing all stocks. We search for similar patterns in Section 5.1.

Inverse Participation Ratio: The Inverse Participation Ratio (IPR) of uk, denoted as Ik, quantifies
the inverse ratio of significant elements in the eigenvector uk [19–21].

Ik ,
|V |

∑
i=1

[uk
i ]

4,

where uk
i is the i-th element of uk. The intuition of IPR can be illustrated with two extreme cases.

First, if all elements of uk have same values 1/
√
|V |, then Ik is simply 1/|V |, with reciprocal 1/Ik

being |V |. This means that all |V | elements contribute similarly. On the other hand, a one-hot vector
with only one element as one, and the rest as zero, uk will have an IPR value of one (also same for
reciprocal). Hence, the reciprocal, 1/Ik, measures the ratio of significant participants in uk. In short,
the larger the Ik, the smaller the ratio of participation, and the sparser the vector, in turn, reflecting
structural sparsity of uk. Furthermore, as 1/Ik ∈ [1, |V |], dividing this reciprocal with |V | will yield
the sparsity of a given vector uk ∈ R|V |.

Visualization of Top Eigenvector elements: As uk,vk ∈R|V |, we can map each index of the vectors
to a word in the vocabulary V . Hence, we investigate the dimensions and their indices (or words)
with the largest absolute values and search for semantic coherence. Similar approaches with financial
data have shown to group stocks from same industries or nearby regions [19], and with genetic data,
revealed important co-evolving genes in gene co-expression networks [20].

4 Experimental Setup

4.1 Training

English Wikipedia We use the English Wikipedia dump1 cleaned by adapting Matt Mahoney’s Perl
script2, which has also been used by [2]. Removing most of the noisy non-alphanumerics, such as
XML tags, the dataset size effectively reduced from approximately 66GB to 25GB, containing around
3.4B tokens. The vocabulary size is approximately 346K as we only consider words with at least 100
occurrences.

1https://dumps.wikimedia.org/enwiki/20180420/
2At the bottom of http://mattmahoney.net/dc/textdata.html
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(a) u1 (b) u2

(c) u100 (d) u500

Figure 1: Eigenvector distributions of u1, u2, u100, u500 (u1 is the largest eigenvector). Solid curves
are Gaussian.

SGNS and SVD We adapt the code from the hyperwords3 released by [18] to train both WSVD and
WSGNS. Our code is publicly available online4. For WSGNS, we set negative sampling as 5. For both,
we set a context window size of 2 (taking 5 words as context) and embedding dimension d = 500.

5 Results

5.1 Distribution of Eigenvector Elements

From Figure 1, we can see that eigenvectors corresponding to the larger eigenvalues such as u1 or u2

clearly deviate from a Gaussian distribution, and so do u100 and u500, but less. This shows us that the
eigenvectors are not random and contain meaningful correlations. It is expected to see such pattern
because these vectors are the principal eigenvectors.

On a more interesting note, u1 not only significantly deviates from a normal distribution, but also has
only non-zero negative values as its elements, and no other eigenvectors have shown this behavior.
This suggests that this particular eigenvector could represent a common bias that affects all “words",
as it captured the effect of news outbreaks for stock prices in [19]. We revisit the interpretation of
this observation in Section 6.1.

5.2 Inverse Participation Ratio

Figure 2 illustrates the IPR of uk plotted against the corresponding eigenvalue λ k, and vice versa for
vk. From the plot, we can clearly see that the eigenvectors of WSVD have approximately 10x higher
IPR values than those of WSGNS, meaning that the vectors are much sparser for WSVD.

From Figure 2a, we can see that the largest eigenvector has the smallest IPR of 0.000006, and the
reciprocal 1/Ik divided by |V |, yields 48%, while the same for the largest Ik gave around 4.7%. The

3http://bitbucket.org/omerlevy/hyperwords
4https://github.com/HLTCHKUST/eigenvector-analysis
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(a) WSVD (b) WSGNS

Figure 2: Inverse participation ratios. The more red the dots are, more points are concentrated.

u1 u4 u7 u8 u14 u121

lastly molly determinants shyam famille jays
outset sally biochemical sanjeev vrier strikeouts

ostensibly toby intrinsic meera autour halladay
curiously maggie qualitative anupama naissance hitters
actuality valentine elucidated deepa rique buehrle
crucially jenny analytical rajkumar diteur batters

theirs tracy psychological manju octobre pitching
importantly lucy unger uday chambre phillies

thankfully carrie ehrlich chitra lettre rbis
regrettably elliot quantitative vinod campagne astros
ironically susie integrative archana jeune diamondbacks

aforementioned laurie extrinsic bhanu jours homers
paradoxically cooper nagel santosh septembre hitless

oftentimes jill methodologies rajesh enfance orioles
doubtless kitty exogenous ashok plon podsednik

unsurprisingly charlie underneath munna affaire baserunners
connelly shirley translational suman cembre hitter
merrick hannah kuhn komal royaume sox

invariably annie functional subhash propos pettitte
dunning elaine schweitzer usha juin vizquel

Transition First Names Science Indian Names French Baseball

Table 1: Top participants of eigenvectors (dimensions with highest magnitudes) of WSVD form
semantically coherent groups. u14 and u121 are eigenvectors with large IPR value, while the remaining
are corresponding eigenvectors of the largest eigenvalues.

mean value of 1/Ik divided by |V |, across all eigenvectors was 27.5% indicating that there exists
some sparse structure within the eigenvectors of WSVD. On the other hand, Figure 2b shows that
mean for vk was around 36%, meaning that column vectors of WSGNS are generally denser and less
structured. Such discrepancy in structural sparsity motivates us to analyze the eigenvectors of WSVD

in depth.

6 Analysis and Discussion

6.1 Column Space Analysis

Based on the results of previous sections, we further examine the top elements of the eigenvectors by
sorting their absolute values in decreasing order. Table 1 shows interesting results as the significant
dimensions or their corresponding “words" of each eigenvector, in general, form semantically or
syntactically coherent groups. For instance, u14 groups French words together and u121 shows
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u42 u50 u14 u101 u75 u121

stani bandeira famille seon bucharest jays
kne concei vrier hyeon lcescu strikeouts

vukovi nio autour seung ional halladay
kovi jardim naissance seong ntul hitters
vuk velho rique hwang napoca buehrle

kova visconde diteur choi editura batters
popovi pessoa octobre sik iancu pitching

inovi domingos chambre kyung romanian phillies
uro pinheiro lettre kwang mihai rbis

mileti branco campagne jeong institutul astros
novakovi ncio jeune yeong tilor diamondbacks

anovi trindade jours taek traian homers
filipovi carmo septembre gyeong ianu hitless
petrovi cio enfance seok pentru orioles

radi ssimo plon choe tefan podsednik
evi penha affaire ryong muzeul baserunners

knez paulo cembre hee gheorghe hitter
martinovi cavalo royaume gwang bucuresti sox

vuka marinho propos cheol biserica pettitte
veljko neves juin myeong craiova vizquel

Slavic Brazillian French Korean Names Romanian Baseball

Table 2: Top participants of eigenvectors (dimensions with highest magnitudes) of WSVD with largest
IPR values (highest sparsity) in decreasing order.

u53 u337 v447 v229

located vueling garabed itch
near tuifly hagopian negros

connecting eurowings activist sulu
situated tunisair abrahamyan sulawesi
connects fiumicino marash fukuyama
bandeira interjet voices ozu
trindade transavia papazian dimetrodon
penha wizz vardapet occidental
concei easyjet erden paralysis
velho volotea documentaries paths

WSVD WSVD WSGNS WSGNS

Table 3: Top participants of the salient columns of the word vector for “airport.”

baseball related words. Some words from u121 initially seem irrelevant to baseball. However,
“buehrle” is a baseball player, “rbis” stand for “Run Batted Ins”, and “astros” is a baseball team name
from Houston. Meanwhile, the words grouped in u1, the largest eigenvector, could explain the bias
we mentioned in Section 5.1. The significant participants tend to be strong transition words that are
used often for dramatic effects, such as “importantly" or “crucially". Evidently, these words increase
the intensity of the context.

Moreover, while it was originally hypothesized that the largest principal eigenvectors would capture
some semantic relationship, the 121th vector u121 show surprisingly focused and narrow semantic
grouping related to baseball. Further investigation reveals that u121 has one of the highest IPR values,
hence being one of the most sparse vectors. We verify similar trends in other eigenvectors with high
IPR values as shown in Table 2. An interesting pattern arises here, in which the sparser eigenvectors
tend to capture more distinct and rare features such as foreign names or languages, or topics like
baseball.

Furthermore, we compare the column space analysis on WSVD and WSGNS. Consider the word vector
wairport for the word “airport.” We choose the salient dimensions, which are the largest elements,
of wairport , and investigate the significant elements of those chosen dimensions (columns). Table
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(a) Word vectors from WSVD

(b) Word vectors from WSGNS

Figure 3: Comparison of the representations of four baseball related words in WSVD and WSGNS,
where the rows are embedding dimensions. It is clear that WSVD shows similar representations.

3 shows that the columns from WSVD display semantic coherence while those from WSGNS seem
random. u53 groups words that are related to the location of the airports. For example, one could
say “Trindade station connects with the airport.” Similarly, u337 groups famous airline companies
together, while “fiumicino” is a famous airport in Italy.

6.2 Word Embedding Dimensions as Interpretable Features

Sections 5.1 and 5.2 revealed that the eigenvectors contain genuine correlation and structure in the
column space. We further show in Section 6.1 that semantically coherent words form groups of
significant participants in each eigenvector. Now we can answer the questions we asked earlier.

What is the meaning of high and low values in the columns of W? If word vector w from WSVD

has a high absolute value in column k, it means that the word is relevant to the semantic group formed
in uk. For example, the words from Figure 3a have highest values in column k = 121, in which u121

represents a semantic group related to baseball, as shown in Table 1.

How can we interpret the dimensions of word vectors? The answer to this question follows naturally.
As the salient dimensions represent relevant semantic groups, we can view the dimensions of w
as semantic features. This view is in line with the Topic Modeling literature, in which words and
documents are clustered into distinct latent topics. Hence, we can also see the word embedding
dimensions as latent topics that can be interpretable.

It can be easily seen from Figure 3b that similar words do not show any interpretable similarity in
their WSGNS representations, despite being nearest neighbors in the row space. On the other hand, it
is very clear from Figure 3a that similar words have similar representations, or feature vectors. We
thus empirically verify that the dimensions of the row vectors can be viewed as semantic or syntactic
features. Finally, the structural sparsity discovered with the IPR is further confirmed by contrasting
Figures 3a and 3b. It is clearly visible that the the vectors from SVD are much sparser than from
SGNS.

Effect of Eigenvalue Weighting: As mentioned in Section 3, weighting with the eigenvalues
essentially scales each feature column by the corresponding eigenvalues. Such process can be viewed
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as simply incorporating a prior, and does not hurt the interpretability. However, as [18] showed that
eigenvalue weighting decreases the performance of downstream NLP tasks, we can assume that either
the prior is wrong, or too strong. In fact, in many cases, the largest eigenvalues are often order of
magnitude larger than others, which can explain why not weighting the word embeddings with their
corresponding eigenvalues would work better.

7 Conclusion

In this work, we analyzed the eigenvectors, or the column space, of the word embeddings obtained
from the Singular Value Decomposition of PPMI matrix. We revealed that the significant participants
of the eigenvectors form semantically coherent groups, allowing us to view each word vector as
an interpretable feature vector composed of semantic groups. These results can be very useful in
error analysis in downstream NLP tasks, or cherry-picking useful feature dimensions to easily create
compressed and efficient task-specific embeddings. Future work will proceed in this direction on
applying interpretability to practical usage.
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