
Published as a conference paper at ICLR 2019

AN EMPIRICAL STUDY OF
BINARY NEURAL NETWORKS’ OPTIMISATION

Milad Alizadeh, Javier Fernández-Marqués, Nicholas D. Lane & Yarin Gal
Department of Computer Science
University of Oxford

ABSTRACT

Neural networks with deterministic binary weights using the Straight-Through-
Estimator (STE) have been shown to achieve state-of-the-art results, but their
training process is not well-founded. This is due to the discrepancy between
the evaluated function in the forward path, and the weight updates in the back-
propagation, updates which do not correspond to gradients of the forward path.
Efficient convergence and accuracy of binary models often rely on careful fine-
tuning and various ad-hoc techniques. In this work, we empirically identify and
study the effectiveness of the various ad-hoc techniques commonly used in the lit-
erature, providing best-practices for efficient training of binary models. We show
that adapting learning rates using second-moment methods is crucial for the suc-
cessful use of the STE, and that other optimisers can easily get stuck in local
minima. We also find that many of the commonly employed tricks are only ef-
fective towards the end of the training, with these methods making early stages
of the training considerably slower. Our analysis disambiguates necessary from
unnecessary ad-hoc techniques for the training of binary neural networks, paving
the way for future development of solid theoretical foundations for these. Our
newly-found insights further lead to new procedures which make training of ex-
isting binary neural networks notably faster.

1 INTRODUCTION

There is great interest in expanding usage of Deep Neural Networks (DNNs) from running remotely
in the cloud to performing local on-device inference on resource-constrained devices (Sze et al.,
2017; Lane & Warden, 2018). Examples of such devices are mobile phones, wearables, IoT devices,
and robots. This is motivated by privacy implications of sharing data and models with remote ma-
chines, and the appetite to apply DNNs in new environments and scenarios where cloud-inference is
not viable. However, requirements of such devices are very demanding: there are stringent compute,
storage, memory and bandwidth limitations; many applications need to work in real-time; many de-
vices require long battery life for all-day or always-on use; and there is a thermal ceiling to consider
when designing thin and light devices. On the other hand, the quest for more accurate DNNs has
resulted in deeper, more compute-intensive models. This is particularly the case for CNNs. For
instance, while the convolutional layers of AlexNet (Krizhevsky et al., 2012) make up only 4% of
the model parameters, they are accountable for 91% of the computations at inference time (Louizos
et al., 2017).

Compression and efficient implementation of DNNs are therefore more important than ever. There
has been a spate of recent work proposing training and post-training schemes that aim to compress
models without significant loss in their performance. Main examples of these techniques are prun-
ing, weight sharing, low-rank approximation, knowledge distillation and perhaps most importantly
quantisation to lower precisions (Han et al., 2017; Ullrich et al., 2017; Hinton et al., 2015). Quantisa-
tion is widely used in commercial deployments and its trade-offs and performance improvements for
CNNs is well-studied in the literature (Krishnamoorthi, 2018). One appealing training-time quan-
tisation scheme (Courbariaux et al., 2015) pushed it to the extreme, by representing each weight
with a single bit, while maintaining respectable model accuracy. This paved the way for emergence
Binary Neural Networks (BNNs). Courbariaux et al. (2016) and Rastegari et al. (2016) expanded
BNNs by using the sign function as the non-linearity to achieve binary activations in addition to

1

Published as a conference paper at ICLR 2019

binary parameters. With this approach, full-precision MAC operations in convolution layers can
be replaced with cheap XNOR and POPCOUNT binary operations. This results in 58× (Rastegari
et al., 2016) improvement in compute-time in addition to the inherit 32× saving in model size that
comes from replacing 32-bit floating point parameters with binary ones.

However, as we will describe in Section 2, the common optimisation process used in BNNs is still
not fully understood. Moreover, state-of-the-art binary models employ various modifications to con-
ventional training settings in order to squeeze the best performance from the models. Some examples
of these modifications are: applying constraints to weights and gradients, changing typical order of
operations in a convolutional block, scaling learning rates based on Xavier (Glorot & Bengio, 2010)
initialisation values, learning additional parameters for affine transformations of kernels, changing
momentum hyper-parameters in Batch Normalisation (Ioffe & Szegedy, 2015) and the choice of
optimiser, loss function, learning rate and number of training epochs. In the absence of rigorous
mathematical understanding as of yet, it is imperative to empirically study the sensitivity of the op-
timisation process and the performance of BNNs to these settings and tweaks. Such an empirical
understanding of the tools will greatly aid any development of solid mathematical foundations for
the field. To that end, the main contributions of this work are as follows:

• We identify the essential techniques required for successful optimisation of binary mod-
els and show that end-to-end training of binary networks crucially relies on the optimiser
taking advantage of second-moment gradient estimates.

• We show that most of the commonly used tricks in training binary models, such as gradient
and weight clipping, are only required during the final stages of the training to achieve the
best performance. Further, we demonstrate that these tricks lead to much slower conver-
gence in the early stages of optimisation.

• We propose new procedures for training, making optimisation notably faster by delaying
these tricks, or by training a full-precision model first and fine-tune it into a binary model.

• We provide our reference implementations and training-evaluation source code online 1.

2 BACKGROUND

Early quantised models were derived by quantisating full-precision weights of pre-trained models
(Gong et al., 2014). This approach is widely used in real deployments and enjoys advantages such
as the flexibility to apply different levels of quantisation based on the target model size, and not
requiring knowledge of model internals. However, it suffers from a significant loss of accuracy.
Hubara et al. (2017) showed that in order to maintain model performance, quantisation must be
incorporated as part of the training process. This is done by either performing additional training
steps to fine-tune a quantised model or by directly learning quantised parameters. This is essential
for BNNs where binarising weights of pre-trained models result in significant loss in accuracy.

The first successful binarisation-aware training method was proposed in BinaryConnect by Cour-
bariaux et al. (2015). In their work, the binary weights are not learned directly; instead, full-precision
weights are maintained and learned during the training as proxies for the binary weights. These
proxies are only required during training. During the forward path, binary weights are computed
by applying sign function to their corresponding full-precision proxies. Since the sign function is
not differentiable BinaryConnect employs Straight-Through-Estimator (STE) (Bengio et al., 2013)
for back-propagating gradient estimates to full-precision proxies. The STE estimator simply passes
the gradients along as if the non-differentiable operator was not present. In practice, BinaryConnect
applied two additional restrictions on vanilla STE: (1) Gradient clipping stops gradient flow if the
weight’s magnitude is larger than 1. This effectively means gradients are computed with respect
to hard tanh function. (2) Weight clipping is applied to weights after gradients have been applied
to keep them within a range. To formalise this consider wr to be a full-precision proxy for binary
weight wb. During the forward path (and at the end of the training):

wb = sign(wr)

1https://github.com/mi-lad/studying-binary-neural-networks

2

https://github.com/mi-lad/studying-binary-neural-networks

Published as a conference paper at ICLR 2019

STE with gradient clipping provides an estimate for the gradient of this operation:

∂wb

∂wr
= 1|r|≤1 (1)

In a back-propagation context, we assume the gradient of the cost C at the output (∂C
∂wb

) is available
where in computing it the same STE estimator above has been used wherever required. Eq 1 enables
us to estimate the gradient of the cost at the input (∂C

∂wr
) and update the proxies:

∂C

∂wr
=

∂C

∂wb
1|r|≤1

The estimator passes gradients backwards unchanged when proxies are within the {-1,1} range and
cancels the gradient flow when the proxy weight has got too positive or too negative. Figure 1
depicts how this works for a convolutional kernel in a CNN.

(a)

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

(b)

Figure 1: A convolutional kernel in a Binary Neural Network is binary (left) but its values are derived
from a full-precision proxy learned using the STE estimator (right). At the end of the training, the
proxy kernel is used for one last time to compute final binary values.

There have been several extensions to BinaryConnect’s core idea of using STE estimator in binary
models. BinaryConnect showed slightly better results when STE was used in stochastic binary neu-
rons. BinaryNet (Courbariaux et al., 2016) used binary activations in addition to binary parameters
(as described in Section 1) and made the convolution operation more efficient by using a custom
GPU kernel. XNOR-Net and BWN (Rastegari et al., 2016) managed to scale up BNNs to achieve
competitive results on the much bigger ImageNet (Deng et al., 2009) dataset by learning additional
full-precision scale factors per-layer. DoReFa-Net (Zhou et al., 2016) used STE in the backpropaga-
tion path to quantise gradients and achieve faster training. TernaryNet (Zhu et al., 2016) quantised
parameters to one and a half bits and represented weights using {-1,0,+1}. Having zero allows effi-
cient hardware implementations when kernels are sparse. Lin et al. (2017) achieved state-of-the-art
performance by learning a combination of very few binary kernels in each layer.

3 A SYSTEMATIC STUDY OF EXISTING METHODOLOGIES IN BNNS

There have been several non-empirical attempts to formalise STE and BNNs. Anderson & Berg
(2018) took a high-dimensional geometric point-of-view to justify the existence of binary solutions
irrespective of the optimisation process. Li et al. (2017) provided accuracy guarantees for train-
ing binary models under convexity assumptions. However, STE still has not been shown to find
the solution of any particular loss function. In the meantime, binary models are achieving accept-
able levels of accuracy in practice. Table 1 lists some of the recent binary architectures and their
commonly-used training setup.

In this section, we provide an empirical analysis of the main approaches used in these models and
help the researchers and practitioners navigate this space. We explore two classes of architectures

3

Published as a conference paper at ICLR 2019

Table 1: Recent binary architectures and their training setup. The Reorder column refers to reorder-
ing of blocks in a convolutional layer to make sure pooling layer’s input is full-precision. The 1st

Layer column indicates whether the first layer of the network is binary or kept at full precision.

Network Optimiser STE Clipping Reorder 1st Layer Activation

BinaryConnect Adam Yes Weights & Gradients Yes Binary 32-bits
BinaryNet AdaMax Yes Weights & Gradients Yes FP 1-bit
XNOR-Net Adam Yes Gradients Yes FP 1-bit
BWN Momentum Yes Gradients Yes - 32-bits
DoReFa-Net Adam Yes Gradients Yes FP ≥1-bit
ABC-Net Momentum Yes Gradients Yes Binary ≥1-bit
HBN Adam Yes Gradients Yes FP ≥1-bit
Bulat et al. (2017) RMSprop Yes Gradients Yes FP 1-bit
Cai et al. (2017) Momentum Yes Gradients Yes FP ≥2-bits
Xiang et al. (2017) AdaMax Yes Gradients - FP 1-bit

in our study of binary networks: A CNN inspired by VGG-10 (Simonyan & Zisserman, 2015) on
CIFAR-10 (Krizhevsky & Hinton, 2009) dataset and an MLP with three hidden layers with 2048
units and rectified linear units (ReLUs) for MNIST (LeCun, 1998) dataset. We make use of gradient
and weight clipping and squared hinge loss unless stated otherwise. We use the last 10% of the
training set for validation and report the best accuracy on the test set associated with the highest
validation accuracy achieved during training. The results shown are the average of five runs. We
have not used early stopping or finite time budget in any of the experiments.

The remainder of this section is organised as follows: We first show that the choice of optimiser
matters considerably. We then show the impact of clipping gradients and weights followed by batch
normalisation hyper-parameters on convergence speed and accuracy of BNNs. We finish by testing
the effectiveness of some of the other commonly used tweaks used in training binary models.

3.1 IMPACT OF OPTIMISER

The majority of recent binary models use an adaptive optimiser in their implementations: Bina-
ryConnect uses ADAM (Kingma & Ba, 2015) for CIFAR-10 and vanilla SGD for MNIST (although
in their released source code they used ADAM for both datasets), DoReFa-Net and XNOR-Net use
ADAM in their experiments and ABC-Net (Lin et al., 2017) uses SGD with momentum. In this
section, we show that this is not accidental and investigate how the optimiser type and its associated
hyper-parameters affects the viability of the STE estimator.

For experiments in this section, we looked at optimisers from four classes in order of increasing
complexity: (1) history-free optimisers such as mini-batch SGD that do not take previous jumps
or gradients into account, (2) momentum optimisers that maintain and use a running average of
previous jumps such as Momentum and Nesterov (Sutskever et al., 2013), (3) Adaptive optimisers
that adjust learning rate for each parameter separately such as AdaGrad (Duchi et al., 2011) and
AdaDelta (Zeiler, 2012), and finally, (4) optimisers that combine elements from categories above
such as ADAM which combines momentum with adaptive learning rate.

Table 2 summarises the best accuracies we achieved using different optimisers. We ran experiments
for more epochs than typically required for the datasets (up to 500 epochs depending on the experi-
ment). In each experiment, the relevant hyper-parameters were tuned for best results. We observed
great variance in convergence speed and model performance as a result of optimiser choice that goes
beyond differences seen when training non-binary models. Our first observation is that vanilla SGD
generally fails in optimising binary models using STE. We note that reducing SGD’s stochasticity
(by increasing batch size) improves performance initially. However, it still fails to obtain the best
possible accuracy. SGD momentum and Nesterov optimisers perform better than SGD when they are
carefully fine-tuned. However, they perform significantly slower compared to optimsing non-binary
models and have to be used for many more epochs than normally used for CIFAR-10 and MNIST
datasets. Similar to SGD, increasing momentum rate improves training speed significantly but re-
sults in worse final model accuracy. In Appendix A we include results for the equivalent non-binary
models that show the effect of batch size and momentum are far less substantial.

4

Published as a conference paper at ICLR 2019

A possible hypothesis is that early stages of training binary models require more averaging for the
optimiser to proceed in presence of binarisaton operation. On the other hand, in the late stages of the
training, we rely on noisier sources to increase exploration power of the optimiser. This is reinforced
by our observation that binary models are often trained long after the training or validation accuracy
stop showing improvements. Reducing the learning rate in these epochs does not improve things
either. Yet, the best validations are often found in these epochs. In other words, using early stopping
for training binary models would terminate the training early on and would result in suboptimal
accuracies.

Finally, adaptive optimisers, and specifically ADAM, consistently perform faster and able to achieve
better accuracy levels. We experimented with different hyper-parameters in ADAM optimiser (see
Figure 2c) and found the decay rate for the second moment estimate to play a significant role.

Table 2: Achievable test errors using different optimisers for binary MLP model trained on MNIST
and binary CNN model train on CIFAR-10. The hyper-parameters of each optimiser were fine-tuned
for best results.

SGD Momentum Nesterov AdaGrad AdaDelta RMSProp ADAM

MNIST 4.48% 1.87% 1.86% 1.28% 1.22% 1.21% 1.19%
CIFAR-10 17.98% 12.41% 12.42% 10.87% 10.34 % 10.33% 10.30%

3.2 IMPACT OF GRADIENT AND WEIGHT CLIPPING

The STE variant used in BinaryConnect, XNOR-Net, and most other binary models, is different
from vanilla STE introduced by Bengio et al. (2013). In these models, the STE stops gradient flow to
proxies when the full-precision weights have grown beyond ±1. Additionally, BinaryConnect clips
weights after gradient updates have been applied to keep weights within range. Our experiments
(summarised in Table 3) show that this technique does indeed result in slight improvements in the
accuracy of binary models. We observed 0.07% and 0.54% improvement for MNIST and CIFAR-
10 datasets respectively. Clipping weights does generally help when it is combined with gradient
clipping but is less effective on its own. In our experiments placing these additional constraints had
negligible effects on speed of SGD or Momentum based optimisers. However, ADAM is sensitive
to these constraints. We will revisit clipping in Section 4 where we study them again in terms of
optimising convergence speed.

Table 3: Impact of gradient and/or weight clipping on the final test accuracy of BNNs.

Clipping None (Vanilla STE) Weights Gradients Both

MNIST 1.28% 1.22% 1.17% 1.18%
CIFAR-10 10.79% 10.73% 10.53% 10.38%

3.3 IMPACT OF BATCH NORMALISATION

Batch normalisation (BN) uses mini-batch statistics during training but at inference-time the model
is classifying a single data point. Therefore, each BN layer maintains a running average of mini-
batch statistics to use during inference. The default momentum rate for this running average is
usually large, e.g. 0.99. We noted that some binary models use smaller values for this hyper-
parameter. Binary models are typically trained for more epochs than their non-binary counterpart
and training is continued even when there is not a meaningful improvement in loss or accuracy. This
is consistent with our earlier hypothesis in 3.1. Reducing the momentum rate in BN can help to
cancel the effect of long training. The effect is small but consistent. Table 4 shows how different
values of BN momentum results in different test accuracies. Krishnamoorthi (2018) also observed
that Batch normalisation should be handled differently when training quantised models in order to
achieve better performance.

5

Published as a conference paper at ICLR 2019

0 100 200 300 400 500
Epochs

10 3

10 2

10 1

100

101

102

103

Tr
ai

ni
ng

 E
rro

r

Binary CNN

Batch-size=50
Batch-size=100
Batch-size=150
Batch-size=200

0 100 200 300 400 500
Epochs

10 3

10 2

10 1

100

101

102

103

Tr
ai

ni
ng

 E
rro

r

Binary MLP

Batch-size=50
Batch-size=100
Batch-size=150
Batch-size=200

(a) SGD for Binary CNN and MLP

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

101

102

Tr
ai

ni
ng

 E
rro

r

Binary CNN

Momentum=0.7
Momentum=0.8
Momentum=0.9
Momentum=0.99

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

101

102

Tr
ai

ni
ng

 E
rro

r

Binary MLP
Momentum=0.7
Momentum=0.8
Momentum=0.9
Momentum=0.99

(b) Momentum SGD for Binary CNN and MLP

0 50 100 150 200 250
Epochs

10 3

10 2

10 1

100

101

102

Tr
ai

ni
ng

 C
os

t

Binary CNN (beta1=0.9)
beta2=0.8
beta2=0.9
beta2=0.999

0 50 100 150 200 250
Epochs

10 3

10 2

10 1

100

101

102

Tr
ai

ni
ng

 C
os

t

Binary CNN (beta2=0.999)
beta1=0.0
beta1=0.8
beta1=0.9

(c) ADAM for Binary CNN

Figure 2: Convergence speeds of two binary models trained with different optimisers. We found
ADAM to be consistently faster in training BNNs compared to other optimisers. Figure (c) shows
the effect of various momentum rates for ADAM’s first and second moment estimates on the con-
vergence of BNNs.

Table 4: Impact of momentum rate in Batch Normalisation’s moving average on the final test accu-
racy of BNNs.

Momentum 0.8 0.85 0.9 0.99

MNIST 1.21% 1.19% 1.22% 1.23%
CIFAR-10 10.31% 10.35% 10.53% 10.61%

3.4 IMPACT OF POOLING AND LEARNING RATE

Reordering Pooling Block. As can be seen in Table 1 all binary models change the placement of
pooling operation within a convolutional layer. This change makes sense intuitively. For instance,
applying MaxPooling to a binary vector results in a vector with almost all ones. We have seen two
variants of block reordering and in both cases (see Figure 3), pooling is done immediately after the
convolution operator where the vector is not binary. In our experiments, not making this change
resulted in significant accuracy loss.

Learning Rate Scaling using Xavier. In BinaryConnect Courbariaux et al. (2015) propose scaling
learning rates of each convolutional or fully connected layer by the inverse of Xavier initialisation’s
variance value. The same value is also used as the range in weight clipping after gradient update.

6

Published as a conference paper at ICLR 2019

Co
nv

Ba
tc
hN
or
m

Ac
tiv
at
io
n

Po
ol
in
g

(a)

Po
ol
in
g

Ba
tc
hN
or
m

Po
ol
in
g

Ac
tiv
at
io
n

Co
nv

(b)

Co
nv

Ba
tc
hN
or
m

Co
nv

Ac
tiv
at
io
n

Po
ol
in
g

(c)

Figure 3: Changing the order of pooling operation within a convolutional block is necessary when
training binary models.

0 100 200 300 400 500
Epochs

80

82

84

86

88

90

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Full Precission
Binary
Binary (from full precision)

(a) VGG-10

0 100 200 300 400 500
Epochs

70

75

80

85

90

95

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)
Full Precission
Binary
Binary (from full precision)

(b) ResNet-18

0 10 20 30 40 50 60 70 80
Epochs

10

20

30

40

50

60

70

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Full Precission
Binary
Binary (from full precision)

(c) AlexNet-like on ImageNet

Figure 4: A binary model (red) is initialised from a full precision model (blue) and reaches top
accuracy in a fraction of the epochs that would require to train a binary model (green) end-to-end.

They report noticeable accuracy improvements using these techniques. This modification is inter-
esting because it suggests STE estimator requires an additional dimension. Applying this change
effectively makes the slope of the line between −1 and +1 (see Figure 1b) directly proportional to
the square root of (Fan-In + Fan-Out) of each layer. In our experiments, this approach helped when
used with SGD but we did not see any impact when used with other optimisers. We were able to
replicate accuracy levels reported by BinaryConnect without using this technique.

4 TRAINING BNNS FASTER: EMPIRICAL INSIGHTS PUT INTO PRACTICE

We continue in this section by applying a number of our empirical observations towards optimising
BNNs in a faster and more efficient manner. We believe this demonstrates some of the practical
implications of our results described earlier that are still to be explored.

In this case-study, we consider the well-known observation that training a binary model is often
notably slower than its non-binary counter-part, the reasons for which are not well understood. One
reason typically cited is that binarisation hinders the use of large learning rates – relative to those
adopted in full precision networks. Our experiments show that counter to the conventional wisdom
the STE on its own does not affect the training speed of BNNs considerably. The slowdown is mainly
caused by the commonly applied gradient and weight clipping, as they keep parameters within the
{-1,1} range at all times during training. Figure 5 shows how disabling one or both of these clipping
schemes affects the training curve of a binary CNN. It can be seen that not clipping weights when
learning rates are large can completely halt the optimisation (red curve in Figure 5). On the other
hand, using vanilla STE brings the training speed back on par with the non-binary model. This is
particularly true for ADAM.

However, this faster convergence comes at the price of a loss in accuracy (see Section 3.2). While
weight and gradient clipping help achieve better accuracy, our hypothesis is that they are only re-
quired in the later stages of training where the noise added by clipping weights and gradients in-
creases the exploration of the optimiser. We tested this hypothesis by training a binary model in two
stages: (1) using vanilla STE in the first stage with higher learning rates and (2) turning clippings
back on when the accuracy stops improving by reducing learning rate.

With vanilla STE the gradients are simply passed along to the full-precision proxies and the model
is optimised as if the binarisation operations were not present. This, combined with results above,
prompts the question of whether it is even necessary to apply binarisation from the very beginning
of the training. While it might be conceptually attractive to train binary models end-to-end, we are

7

Published as a conference paper at ICLR 2019

0 25 50 75 100 125 150 175 200
Epochs

10 2

10 1

100

101

102

Tr
ai

ni
ng

 E
rro

r

Clipping weights
Clipping gradients
No clipping
Clipping gradients and weights

Figure 5: Impact of gradient and weight clipping on convergence speed of binary VGG-10 with
large learning rates (0.1).

still learning full-precision structures during training. One can define and train an equivalent non-
binary model where the binarisation operations are removed. This is useful because in many cases
this model is already available. This pre-trained model can then be used to initialise the values of
full-precision proxies in the binary model. The model can then be trained using STE and gradient
clipping. Our experiments (see Figure 4) show that this works equally well in terms of accuracy but
converges considerably faster for ResNet-18 (He et al., 2016) and VGG-10 architectures than if we
had trained these binary models end-to-end. Mishra & Marr (2018) reported similar results.

There is a significant loss in accuracy when this model is binarised for the first time. This can be
seen in the starting point of the Binary (from full precision) curves in Figure 4. This shows once
again why we cannot simply binarise a pre-trained non-binary model and expect it to work well.
However, we noted that the number of training steps required to recover the accuracy is very small.
This result is encouraging because it turns the problem of learning binary models into a fine-tuning
stage that can be applied to available pre-trained models.

It is important to note that while we can quickly get to the point where training and validation accu-
racies stagnate, there is a small gap between the achieved accuracy and the best possible one. This
gap can only be filled by continuing training for many epochs. This difference is often consistent
with the gap we observe between (a) the best test accuracy when training for many epochs and (b)
the first epoch where validations accuracy stops improving. This reinforces our earlier hypothesis
in Section 3.1 that suggests the last mile of model performance has little dependence on the STE’s
capability and mostly relies on a stochastic exploration of the parameter space.

Table 5: Training binary models using pre-trained full-precision models for CIFAR-10 (ResNet-18
and VGG-10) and ImageNet (AlexNet-like) datasets.

Binarisation Best Validation Accuracy Test Accuracy

Binary ResNet-18 end-to-end 94.40% (in epoch 457) 91.16%
from full-precision 93.60% (in epoch 17) 91.18%

Binary VGG-10 end-to-end 89.76% (in epoch 391) 89.18%
from full-precision 90.16% (in epoch 24) 89.32%

Binary AlexNet-like end-to-end 51.98% (in epoch 88) —
from full-precision 51.85% (in epoch 30) —

5 CONCLUSION AND BEST-PRACTICES

In this work, we study the landscape of binary neural networks and evaluate the impact of various
techniques on the accuracy and convergence performance of binary models. We show that training
binary models are harder and slower than the equivalent non-binary model. Our empirical study
suggests that while the limit of STE’s capability can be achieved easily, finding the best set of
weights requires longer training. For efficient training of Binary models we recommend: (1) using

8

Published as a conference paper at ICLR 2019

ADAM for optimising the objective, (2) not using early stopping, (3) splitting the training into two
stages, (4) removing gradient and weight clipping in the first stage and (5) reducing the averaging
rate in Batch Normalisation layers in the second stage.

ACKNOWLEDGMENTS

This work was supported by grants from EPSRC and ARM.

REFERENCES

Alexander G. Anderson and Cory P. Berg. The high-dimensional geometry of binary neural net-
works. In International Conference on Learning Representations, 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Adrian Bulat et al. Binarized convolutional landmark localizers for human pose estimation and face
alignment with limited resources. In International Conference on Computer Vision, 2017.

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision by
half-wave gaussian quantization. In CVPR, 2017.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing
systems, pp. 3123–3131, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training neural networks with weights and activations constrained to+ 1 or-1.
arXiv preprint arXiv:1602.02830, 2016.

Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li Fei-fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. The Jour-
nal of Machine Learning Research, 18(1):6869–6898, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Inter-
national Conference on Machine Learning-Volume 37, pp. 448–456. JMLR. org, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

9

Published as a conference paper at ICLR 2019

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

N. D. Lane and P. Warden. The deep (learning) transformation of mobile and embedded computing.
Computer, 51(5):12–16, May 2018.

Yann LeCun. The ”MNIST” database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein. Training
quantized nets: A deeper understanding. In Advances in Neural Information Processing Systems,
pp. 5811–5821, 2017.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. In
Advances in Neural Information Processing Systems, pp. 345–353, 2017.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 30, pp. 3288–3298. Curran Asso-
ciates, Inc., 2017.

Asit Mishra and Debbie Marr. Apprentice: Using knowledge distillation techniques to improve low-
precision network accuracy. In International Conference on Learning Representations, 2018.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525–542. Springer, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In International Conference on Learning Representations, 2015.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147, 2013.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compres-
sion. In International Conference on Learning Representations, 2017.

Xu Xiang, Yanmin Qian, and Kai Yu. Binary deep neural networks for speech recognition. In Proc.
Interspeech 2017, pp. 533–537, 2017.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. DoReFa-
Net: Training low bitwidth convolutional neural networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. CoRR,
abs/1612.01064, 2016.

10

Published as a conference paper at ICLR 2019

A IMPACT OF OPTIMISERS IN NON-BINARY MODELS

0 100 200 300 400 500
Epochs

10 3

10 2

10 1

100

101

102

103
Tr

ai
ni

ng
 E

rro
r

Full-precision CNN
Batch-size=50
Batch-size=100
Batch-size=150
Batch-size=200

0 100 200 300 400 500
Epochs

10 3

10 2

10 1

100

101

102

103

Tr
ai

ni
ng

 E
rro

r

Full-precision MLP
Batch-size=50
Batch-size=100
Batch-size=150
Batch-size=200

(a) SGD for Non-Binary CNN and MLP

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

101

102

Tr
ai

ni
ng

 E
rro

r

Full-precision CNN
Momentum=0.7
Momentum=0.8
Momentum=0.9
Momentum=0.99

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

101

102

Tr
ai

ni
ng

 E
rro

r

Full-precision MLP
Momentum=0.7
Momentum=0.8
Momentum=0.9
Momentum=0.99

(b) Momentum SGD for Non-Binary CNN and MLP

0 50 100 150 200 250
Epochs

10 3

10 2

10 1

100

101

102

Tr
ai

ni
ng

 C
os

t

Full-precision CNN (beta1=0.9)

beta2=0.8
beta2=0.9
beta2=0.999

0 50 100 150 200 250
Epochs

10 3

10 2

10 1

100

101

102

Tr
ai

ni
ng

 C
os

t

Full-precision CNN (beta2=0.999)

beta1=0.0
beta1=0.8
beta1=0.9

(c) ADAM for Non-Binary CNN

Convergence speeds of two full-precision models trained with different optimisers.

11

	Introduction
	Background
	A Systematic Study of Existing Methodologies in BNNs
	Impact of Optimiser
	Impact of Gradient and Weight Clipping
	Impact of Batch Normalisation
	Impact of Pooling and Learning Rate

	Training BNNs Faster: Empirical Insights put into Practice
	Conclusion and Best-Practices
	Impact of Optimisers in Non-Binary Models

