
Demystifying Neural Network Filter Pruning

Zhuwei Qin1, Fuxun Yu2, Chenchen Liu3 Xiang Chen4

1,2,4Department of Electrical Computer Engineering, George Mason University, Fairfax, VA 22030
3Department of Electrical Computer Engineering, Clarkson University, Potsdam, NY 13699
zqin@gmu.edu1, fyu2@gmu.edu2, chliu@clarkson.edu3, xchen26@gmu.edu4

Abstract

Based on filter magnitude ranking (e.g. `1 norm), conventional filter pruning
methods for Convolutional Neural Networks (CNNs) have been proved with great
effectiveness in computation load reduction. Although effective, these methods are
rarely analyzed in a perspective of filter functionality. In this work, we explore the
filter pruning and the retraining through qualitative filter functionality interpretation.
We find that the filter magnitude based method fails to eliminate the filters with
repetitive functionality. And the retraining phase is actually used to reconstruct the
remained filters for functionality compensation for the wrongly-pruned critical fil-
ters. With a proposed functionality-oriented pruning method, we further testify that,
by precisely addressing the filter functionality redundancy, a CNN can be pruned
without considerable accuracy drop, and the retraining phase is unnecessary.

1 Introduction

The great success of CNN is benefited from its complex algorithm and architecture at a cost of
intensive computation load. Therefore, many CNN filter pruning works have been proposed to
alleviate this issue [1-7]. While these works demonstrated expected performance, most of them are
merely based on quantitative ranking of the filters’ magnitude. However, how the magnitude ranking
really reflect the filters’ functionality and contribution to the classification still remains a lack of
research. Therefore, in this work, we utilized the filter visualization technique to interpret one of the
most representative magnitude ranking based filter pruning method (i.e. `1 norm [1]), as well as the
retraining process in a perspective of filter functionality. From the analysis, we find that:

• The magnitude ranking based filter pruning method fails to select filters with functionality
redundancy, resulting in inevitable accuracy drop;

• Filters suffer from significant functionality changes during retraining phase, which indicates
that the magnitude ranking based filter pruning method may defect certain critical filter
functionality and requires filter reconstruction for compensation;

• With functionality-oriented pruning method, a CNN can actually be pruned without consid-
erable accuracy drop and the retraining phase is relatively unnecessary.

2 Analyzing Magnitude Ranking based Filter Pruning
through Filter Functionality Interpretation

In this section, we utilize a well-established CNN visualization technique [8] – Activation Maximiza-
tion (AM) to interpret the filter functionality. In the CNN visualization analysis, the filter functionality
is usually defined as the feature extraction preference, which can be represented by a synthesized
input image that causes the highest feature map activation for a filter during the convolution process.
Mathematically, the visualization process can be formulated as:

V (F l
i) = arg max

X
Al

i(X), X ← X + η · ∂A
l
i(X)

∂X
, (1)

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

3-
2

5-
2

2-
2

4-
2

1-
2

ℓ 1 RankingFunctionality Repetition in White Box

Retrain Iterations
400 500 600 7000 300

Ori Retrained

Small
Large

……

Cat Deer

(a) Visualized Patterns (b) Pruned Filters (c) Network Retraining

Figure 1: Case study of the `1 based filter pruning on the Conv5_2 of VGG-16 and network retraining
interpretation based on filter functionality.

where Al
i(X) is the activation of filter F l

i from an input image X , η is the gradient ascent step size.
With X initialized as an input image of random noises, each pixel of this input image is iteratively
changed along the ∂Al

i(X)/∂X increment direction to achieve the highest activation. Eventually,
X demonstrates a specific visualized pattern V (F l

i), which contains the filter’s most sensitive input
features with certain semantics, and represents the filter’s functional preference for feature extraction.

For preliminary demonstration, an VGG-16 model trained on the CIFAR-10 dataset is adopted
[1]: (1) Fig. ?? (a) demonstrates filters’ visualized patterns from different layers for functionality
interpretation analysis. From Fig. ?? (a), we find many similar patterns inside each layer (denoted
in red blocks). The filters with similar functionality may repetitively extract the same feature and
introduce significant network redundancy. (2) Fig. ?? (b) demonstrates a case study of a pruned layer
(Conv5_2) based on the magnitude ranking of `1 norm. As shown in the figure, the filters’ visualized
patterns are ranked by the `1 norm in an ascending order, where the pruned filters are marked by red
slashes. We can observe that the `1 norm based pruning preserves all the filters with high magnitudes,
even significant functionality repetition exists among those filters. Therefore, the `1 norm based
pruning fails to address the functionality redundancy in the model.

According to the functionality interpretation, the filters with small magnitudes could also demonstrate
distinct feature extraction preferences, and contribute to the feature extraction integrity and diversity.
The magnitude ranking based pruning method may overlook the significance of small filters and
defect the information retrieval for critical features, resulting in inevitable accuracy drop.

3 Filter Functionality Transition During Retraining Phase

In most neural network pruning works, the retraining phase is a mandatory operation for maintaining
the accuracy performance. However, the iteratively pruning and retraining operation also introduce
computation cost. In this section, we analyze the mechanism and necessity of the retraining phase.

As shown in Fig. ?? (c), we randomly select four filters that have not been pruned by the `1 norm
method. Then we use the visualization to revel the filters’ original functionality and the functionality
transition during different retraining iterations, e.g. every 100 iterations. From Fig. ?? (c), we can
observe that: (1) For most filters, the visualized patterns are dramatically changed by the `1 morn

31

6

25

…

15

…

…

…

…

U
nc

lu
ste

re
d

C
lu

st
er

 L
en

gt
h

Contribution Ranking Retrain Iterations

400 500 600 7000 300
0 10 20 30 40 50

Filter Pruned (%)

M
od

el

0.89

0.91

0.87

La
ye

r

0.61
0.71
0.81

0.51

0.91

A
cc

ur
ac

y

Ori Retrained

Cat Cat

L1
Ours

L1
Ours

(a) Functionality-Oriented Filter Pruning (b) Accuracy Drop (c) Network Retraining

Figure 2: Case study of the filter functionality-oriented filter pruning on the Conv5_1 of VGG-16.

2

based pruning method. For example, the content of the visualized patterns in the first row changes
from a cat to a deer. Such changes indicate that the retraining phase eventually reconstruct the
remaining filters’ functionality to compensate the accuracy drop. (2) During the retraining iterations,
the filters’ functionality construction is gradually implemented, which indicates that a certain amount
of retraining iterations and the corresponding computation cost are inevitable.

Therefore, the nature of retraining process is to dramatically reconstruct the network rather than filter
functionality fine-tuning. Based on the previous analysis, such reconstruction might be introduced
by missing filters with significant functionality but small magnitude, and the remaining filters are
reconstructed for functionality compensation.

4 Functionality-Oriented Filter Pruning

Different from the `1 norm based filter pruning method, we propose a functionality-oriented filter
pruning method, which are expected to precisely reduce the filter functionality redundancy.

Fig. ?? (a) illustrates an intuitive example of our method in the layer Conv5_1: Each row represents
one filter cluster, where the filters with similar functionalities are grouped by applying K-means
analysis to the Euclidean distance of the visualized patterns. The last row shows the filters with
extremely minimal similarity to each other, which are not considered for pruning due to their possible
instinct functionality. As each cluster contain different filter numbers, the filters are sorted by their
contribution index γi, which is evaluated by the back-propagation gradients analysis:

γi =
1

N

N∑
n=1

∥∥∥∥ ∂Z

∂Ai(xn)

∥∥∥∥ , (2)

where the Z and Ai(xn) is the CNN output and filter i’s activation for each test image n respectively.
Given certain filter pruning amount, the relative pruning rate for each cluster can be determined by
cluster’s volume size: the cluster with more repetitive filters will be pruned more aggressively. In
each cluster, the filters with least contribution will be pruned first.

Retrain Iterations
0 20 40 60 80 100120140160180200

0.85

0.88

0.91

0.82

0.79

A
cc
ur
ac
y

L1
Ours

Figure 3: Pruned Model
Accuracy Recovery

The aforementioned method can be applied to each convolutional
layers concurrently to reduce the whole CNN functionality redun-
dancy. Fig. ?? (b) shows the layer-wise (Conv5_1) and model-wise
CNN accuracy drop under different pruning ratio respectively. We
can see that our method has a slower accuracy drop compared with
the `1 norm based pruning method in both layer-wise and model-
wise pruning. In the Fig. ?? (c), the retraining process of our method
is also qualitatively evaluated. We can observed that, regardless
the retraining iterations, the remained filters’ functionality remain
unchanged. For example, the content of visualized pattern in the
first row is still a cat at iteration 700, while the filter functionality is
even clearer after retraining. That explains why our pruning method has less accuracy drop.

Meanwhile, we also quantitatively evaluate the retraining phase’s effectiveness with the proposed
method. As shown in Fig. ??, the red line represents the pruned model accuracy recovery based
on our proposed method whereas the blue line represents the `1 norm based pruning method. We
can see that the model pruned by our method demonstrates much less impact on the accuracy.
And the accuracy change is mainly introduced by filter fine-tuning, which also takes much less
iteration numbers. Therefore, with more interpretable and accurate repetitive filter identification and
functionality-oriented pruning, the costly retraining phase becomes less necessary.

5 Conclusion

In this work, we interpret the magnitude filter pruning including retraining phase in a perspective
of filter functionality. We show that the filter magnitude pruning method fails to choose filters with
functional redundancy. By further analyzing the functionality transition of remaining filters in the
retraining phase, we revealed that the magnitude based pruning actually partially destructs original
neural network’s functionality composition. The nature of retraining phase is dramatically network
reconstruction rather than recover the filter functionality. By contrast, our proposed functionality-
oriented method demonstrated consistent filter functionality during retraining phase, indicating less
harm to original network functional composition.

3

References

[1] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. (2017) Pruning Filters for Efficient
ConvNets. in Proceedings of the International Conference on Learning Representations (ICLR), pp.
1-13.

[2] J.-H. Luo, J. Wu, and W. Lin. (2017) ThiNet: A Filter Level Pruning Method for Deep Neural
Network Compression. in Proceedings of the International Conference on Computer Vision (ICCV),
pp. 5058-5066.

[3] Y. He, X. Zhang, and J. Sun. (2017) Channel Pruning for Accelerating Very Deep Neural Networks.
in Proceedings of the International Conference on Computer Vision (ICCV), pp. 1389-1397.

[4] H. Hu, R. Peng, YW. Tai, and CK. Tang. (2016) Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures. arXiv:1607.03250.

[5] S. Han, H. Mao, and W. J. Dally. (2014) Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv:1510.00149.

[6] M. Jaderberg, A. Vedaldi, and A. Zisserman. (2014) Speeding up convolutional neural networks
with low rank expansions. arXiv:1405.3866.

[7] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. (2016) Learning structured sparsity in deep neural
networks. in Proceedings of the Advances in Neural Information Processing Systems (NIPS), pp.
2074-2082.

[8] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. (2015) Understanding neural networks
through deep visualization. arXiv:1506.06579.

4

