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Abstract

Feed-forward neural networks can be understood as a combination of an interme-
diate representation and a linear hypothesis. While most previous works aim to
diversify the representations, we explore the complementary direction by perform-
ing an adaptive and data-dependent regularization motivated by the empirical Bayes
method. Specifically, we propose to construct a matrix-variate normal prior (on
weights) whose covariance matrix has a Kronecker product structure. This struc-
ture is designed to capture the correlations in neurons through backpropagation.
Under the assumption of this Kronecker factorization, the prior encourages neurons
to borrow statistical strength from one another. Hence, it leads to an adaptive
and data-dependent regularization when training networks on small datasets. To
optimize the model, we present an efficient block coordinate descent algorithm
with analytical solutions. Empirically, we demonstrate that the proposed method
helps networks converge to local optima with smaller stable ranks and spectral
norms. These properties suggest better generalizations and we present empirical
results to support this expectation. We also verify the effectiveness of the approach
on multiclass classification and multitask regression problems with various net-
work structures. Our code is publicly available at: https://github.com/
yaohungt/Adaptive-Regularization-Neural-Network.

1 Introduction

Although deep neural networks have been widely applied in various domains [19, 25, 27], usually its
parameters are learned via the principle of maximum likelihood, hence its success crucially hinges
on the availability of large scale datasets. When training rich models on small datasets, explicit
regularization techniques are crucial to alleviate overfitting. Previous works have explored various
regularization [39] and data augmentation [19, 38] techniques to learn diversified representations.
In this paper, we look into an alternative direction by proposing an adaptive and data-dependent
regularization method to encourage neurons of the same layer to share statistical strength through
exploiting correlations between data and gradients. The goal of our method is to prevent overfitting
when training (large) networks on small dataset. Our key insight stems from the famous argument
by Efron [8] in the literature of the empirical Bayes method: It is beneficial to learn from the
experience of others. The empirical Bayes methods provide us a guiding principle to learn model
parameters even if we do not have complete information about prior distribution. From an algorithmic
perspective, we argue that the connection weights of neurons in the same layer (row/column vectors
of the weight matrix) will be correlated with each other through the backpropagation learning. Hence,
by learning the correlations of the weight matrix, a neuron can “borrow statistical strength” from
other neurons in the same layer, which essentially increases the effective sample size during learning.
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As an illustrating example, consider a simple setting where the input x ∈ Rd is fully connected to a
hidden layer h ∈ Rp, which is further fully connected to the single output ŷ ∈ R. Let σ(·) be the
nonlinear activation function, e.g., ReLU [33], W ∈ Rp×d be the connection matrix between the
input layer and the hidden layer, and a ∈ Rp be the vector connecting the output and the hidden layer.
Without loss of generality, ignoring the bias term in each layer, we have: ŷ = aTh,h = σ(Wx).
Consider using the usual `2 loss function `(ŷ, y) = 1

2 |ŷ − y|
2 and take the derivative of `(ŷ, y) w.r.t.

W . We obtain the update formula in backpropagation as W ← W − α(ŷ − y)(a ◦ h′) xT , where
h′ is the component-wise derivative of h w.r.t. its input argument, and α > 0 is the learning rate.
Realize that (a ◦ h′) xT is a rank 1 matrix, and the component of h′ is either 0 or 1. Hence, the
update for each row vector of W is linearly proportional to x. Similar observation also holds for
each column vector of W , so it implies that the row/column vectors of W are correlated with each
other through learning. Although in this example we only discuss a one-hidden-layer network, it is
straightforward to verify that the gradient update formula for general feed-forward networks admits
the same rank one structure. The above observation leads us to the following question:

Can we define a prior distribution over W that captures the correlations through
the learning process for better generalization?

Our Contributions To answer the above question, we develop an adaptive regularization method
for neural nets inspired by the empirical Bayes method. Motivated by the example above, we propose
a matrix-variate normal prior whose covariance matrix admits a Kronecker product structure to
capture the correlations between different neurons. Using tools from convex analysis, we present
an efficient block coordinate descent algorithm with closed-form solutions to optimize the model.
Empirically, we show the proposed method helps the network converge to local optima with smaller
stable ranks and spectral norms, and we verify the effectiveness of the approach on both multiclass
classification and multitask regression problems with various network structures.

2 Preliminary

Notation and Setup We use lowercase letter to represent scalar and lowercase bold letter to denote
vector. Capital letter, e.g., X , is reserved for matrix. Calligraphic letter, such as D, is used to denote
set. We write Tr(A) as the trace of a matrix A, det(A) as the determinant of A and vec(A) as
A’s vectorization by column. [n] is used to represent the set {1, . . . , n} for any integer n. Other
notations will be introduced whenever needed. Suppose we have access to a training set D of n pairs
of data instances (xi, yi), i ∈ [n]. We consider the supervised learning setting where xi ∈ X ⊆ Rd
and yi ∈ Y . Let p(y | x,w) be the conditional distribution of y given x with parameter w. The
parametric form of the conditional distribution is assumed be known. In this paper, we assume the
model parameter w is sampled from a prior distribution p(w | θ) with hyperparameter θ. On the
other hand, given D, the posterior distribution of w is denoted by p(w | D, θ).

The Empirical Bayes Method To compute the predictive distribution, we need access to the value
of the hyperparameter θ. However, complete information about the hyperparameter θ is usually not
available in practice. To this end, empirical Bayes method [1, 9, 10, 12, 36] proposes to estimate θ
from the data directly using the marginal distribution:

θ̂ = arg max
θ

p(D | θ) = arg max
θ

∫
p(D | w) · p(w | θ) dw. (1)

Under specific choice of the likelihood function p(x, y | w) and the prior distribution p(w | θ), e.g.,
conjugate pairs, we can solve the above integral in closed form. In certain cases we can even obtain
an analytic solution of θ̂, which can then be plugged into the prior distribution. At a high level, by
learning the hyperparameter θ in the prior distribution directly from data, the empirical Bayes method
provides us a principled and data-dependent way to obtain an estimator of w. In fact, when both the
prior and the likelihood functions are normal, it has been formally shown that the empirical Bayes
estimators, e.g., the James-Stein estimator [23] and the Efron-Morris estimator [11], dominate the
classic maximum likelihood estimator (MLE) in terms of quadratic loss for every choice of the model
parameter w. At a colloquial level, the success of the empirical Bayes method can be attributed to
the effect of “borrowing statistical strength” [8], which also makes it a powerful tool in multitask
learning [28, 43] and meta-learning [15].
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Figure 1: Illustration for Bayes/ Empirical Bayes, and our proposed adaptive regularization.

3 Learning with Adaptive Regularization

In this section we first propose an adaptive regularization (AdaReg) method, which is inspired by the
empirical Bayes method, for learning neural networks. We then combine our observation in Sec. 1
to develop an efficient adaptive learning algorithm with matrix-variate normal prior. Through our
derivation, we provide several connections and interpretations with other learning paradigms.

3.1 The Proposed Adaptive Regularization

When the likelihood function p(D | w) is implemented as a neural network, the marginalization in (1)
over model parameter w cannot be computed exactly. Nevertheless, instead of performing expensive
Monte-Carlo simulation, we propose to estimate both the model parameter w and the hyperparameter
θ in the prior simultaneously from the joint distribution p(D,w | θ) = p(D | w) · p(w | θ).
Specifically, given an estimate ŵ of the model parameter, by maximizing the joint distribution w.r.t.
θ, we can obtain θ̂ as an approximation of the maximum marginal likelihood estimator. As a result,
we can use θ̂ to further refine the estimate ŵ by maximizing the posterior distribution as follows:

ŵ← max
w

p(w | D) = max
w

p(D | w) · p(w | θ̂). (2)

The maximizer of (2) can in turn be used in an updated joint distribution. Formally, we can define the
following optimization problem that characterizes our Adaptive Regularization (AdaReg) framework:

max
w

max
θ

log p(D | w) + log p(w | θ). (3)

It is worth connecting the optimization problem (3) to the classic maximum a posteriori (MAP)
inference and also discuss their difference. If we drop the inner optimization over the hyperparameter
θ in the prior distribution. Then for any fixed value θ̂, (3) reduces to MAP with the prior defined by
the specific choice of θ̂, and the maximizer ŵ corresponds to the mode of the posterior distribution
given by θ̂. From this perspective, the optimization problem in (3) actually defines a series of MAP
inference problems, and the sequence {ŵj(θ̂j)}j defines a solution path towards the final model
parameter. On the algorithmic side, the optimization problem (3) also suggests a natural block
coordinate descent algorithm where we alternatively optimize over w and θ until the convergence of
the objective function. An illustration of the framework is shown in Fig. 1.

3.2 Neural Network with Matrix-Normal Prior

Inspired by the observation from Sec. 1, we propose to define a matrix-variate normal distribution [16]
over the connection weight matrix W : W ∼MN (0p×d,Σr,Σc), where Σr ∈ Sp++ and Σc ∈ Sd++

are the row and column covariance matrices, respectively.2 Equivalently, one can understand the
matrix-variate normal distribution over W as a multivariate normal distribution with a Kronecker
product covariance structure over vec(W ): vec(W ) ∼ N (0p×d,Σc ⊗ Σr). It is then easy to check
that the marginal prior distributions over the row and column vectors of W are given by:

Wi: ∼ N (0d, [Σr]ii · Σc), W:j ∼ N (0p, [Σc]jj · Σr).

2The probability density function is given by p(W | Σr,Σc) =
exp(−Tr(Σ−1

r WΣ−1
c WT )/2)

(2π)pd/2 det(Σr)d/2 det(Σc)p/2
.
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We point out that the Kronecker product structure of the covariance matrix exactly captures our prior
about the connection matrix W : the fan-in/fan-out of neurons in the same layer (row/column vectors
of W ) are correlated with the same correlation matrix in the prior, and they only differ at the scales.

For illustration purpose, let us consider the simple feed-forward network discussed in Sec. 1. Consider
a reparametrization of the model by defining Ωr := Σ−1

r and Ωc := Σ−1
c to be the corresponding

precision matrices and plug in the prior distribution into the our AdaReg framework (see (3)). After
routine algebraic simplifications, we reach the following concrete optimization problem:

min
W,a

min
Ωr,Ωc

1

2n

∑
i∈[n]

(ŷ(xi;W,a)− yi)2 + λ||Ω1/2
r WΩ1/2

c ||2F − λ
(
d log det(Ωr) + p log det(Ωc)

)
subject to uIp � Ωr � vIp, uId � Ωc � vId (4)

where λ is a constant that only depends on p and d, 0 < u ≤ v and uv = 1. Note that the constraint
is necessary to guarantee the feasible set to be compact so that the optimization problem is well
formulated and a minimum is attainable. 3 It is not hard to show that in general the optimization
problem (4) is not jointly convex in terms of {a,W,Ωr,Ωc}, and this holds even if the activation
function is linear. However, as we will show later, for any fixed a,W , the reparametrization makes
the partial optimization over Ωr and Ωc bi-convex. More importantly, we can derive an efficient
algorithm that finds the optimal Ωr(Ωc) for any fixed a,W,Ωc(Ωr) in O(max{d3, p3}) time with
closed form solutions. This allows us to apply our algorithm to networks of large sizes, where
a typical hidden layer can contain thousands of nodes. Note that this is in contrast to solving a
general semi-definite programming (SDP) problem using black-box algorithm, e.g., the interior-point
method [32], which is computationally intensive and hard to scale to networks with moderate sizes.
Before we delve into the details on solving (4), it is instructive to discuss some of its connections and
differences to other learning paradigms.

Maximum-A-Posteriori Estimation. Essentially, for model parameter W , (4) defines a sequence of
MAP problems where each MAP is indexed by the pair of precision matrices (Ω

(t)
r ,Ω

(t)
c ) at iteration t.

Equivalently, at each stage of the optimization, we can interpret (4) as placing a matrix variate normal
prior on W where the precision matrix in the prior is given by Ω

(t)
r ⊗ Ω

(t)
c . From this perspective, if

we fix Ω
(t)
r = Ip and Ω

(t)
c = Id, ∀t, then (4) naturally reduces to learning with `2 regularization [26].

More generally, for non-diagonal precision matrices, the regularization term for W becomes:

||Ω1/2
r WΩ1/2

c ||2F = ||vec(Ω1/2
r WΩ1/2

c )||22 = ||(Ω1/2
c ⊗ Ω1/2

r ) vec(W )||22,
and this is exactly the Tikhonov regularization [13] imposed on W where the Tikhonov matrix Γ is
given by Γ := Ω

1/2
c ⊗Ω

1/2
r . But instead of manually designing the regularization matrix Γ to improve

the conditioning of the estimation problem, we propose to also learn both precision matrices (so Γ as
well) from data. From an algorithmic perspective, ΓTΓ = Ωc⊗Ωr serves as a preconditioning matrix
w.r.t. model parameter W to reshape the gradient according to the geometry of the data [7, 17, 18].

Volume Minimization. Let us consider the log det(·) function over the positive definite cone. It
is well known that the log-determinant function is concave [3]. Hence for any pair of matrices
A1, A2 ∈ Sm++, the following inequality holds:

log det(A1) ≤ log det(A2) + 〈∇ log det(A2), A1 −A2〉 = log det(A2) + Tr(A−1
2 A1)−m. (5)

Applying the above inequality twice by fixing A1 = WΩcW
T /2d,A2 = Σr and A1 =

WTΩrW/2p,A2 = Σc respectively leads to the following inequalities:

d log det(WΩcW
T /2d) ≤ −d log det(Ωr) +

1

2
Tr(ΩrWΩcW

T )− dp,

p log det(WTΩrW/2p) ≤ −p log det(Ωc) +
1

2
Tr(ΩrWΩcW

T )− dp.

Realize Tr(ΩrWΩcW
T ) = ||Ω1/2

r WΩ
1/2
c ||2F . Summing the above two inequalities leads to:

d log det(WΩcW
T )+p log det(WTΩrW ) ≤ ||Ω1/2

r WΩ1/2
c ||2F−

(
d log det(Ωr)+p log det(Ωc)

)
+c, (6)

where c is a constant that only depends on d and p. Recall that |det(ATA)| computes the squared
volume of the parallelepiped spanned by the column vectors of A. Hence (6) gives us a natural

3The constraint uv = 1 is only for the ease of presentation in the following part and can be readily removed.
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interpretation of the objective function in (4): the regularizer essentially upper bounds the log-volume
of the two parallelpipeds spanned by the row and column vectors of W . But instead of measuring the
volume using standard Euclidean inner product, it also takes into account the local curvatures defined
by Σr and Σc, respectively. For vectors with fixed lengths, the volume of the parallelepiped spanned
by them becomes smaller when they are more linearly correlated, either positively or negatively. At a
colloquial level, this means that the regularizer in (4) forces fan-in/fan-out of neurons at the same
layer to be either positively or negatively correlated with each other, and this corresponds exactly to
the effect of sharing statistical strengths.

3.3 The Algorithm

In this section we describe a block coordinate descent algorithm to optimize the objective function
in (4) and detail how to efficiently solve the matrix optimization subproblems in closed form using
tools from convex analysis. Due to space limit, we defer proofs and detailed derivation to appendix.
Given a pair of constants 0 < u ≤ v, we define the following thresholding function T[u,v](x):

T[u,v](x) := max{u,min{v, x}}. (7)
We summarize our block coordinate descent algorithm to solve (4) in Alg. 1. In each iteration, Alg. 1
takes a first-order algorithm A, e.g., the stochastic gradient descent, to optimize the parameters of the
neural network by backpropagation. It then proceeds to compute the optimal solutions for Ωr and Ωc
using INVTHRESHOLD as a sub-procedure. Alg. 1 terminates when a stationary point is found.

We now proceed to show that the procedure INVTHRESHOLD finds the optimal solution given all the
other variables fixed. Due to the symmetry between Ωr and Ωc in (4), we will only prove this for Ωr,
and similar arguments can be applied to Ωc as well. Fix both W , Ωc and ignore all the terms that do
not depend on Ωr, the sub-problem on optimizing Ωr becomes:

min
Ωr

Tr(ΩrWΩcW
T )− d log det(Ωr), subject to uIp � Ωr � vIp. (8)

It is not hard to show that the optimization problem (9) is convex. Define the constraint set C := {A ∈
Sp++ | uIp � A � vIp} and the indicator function IC(A) = 0 iff A ∈ C else∞. Given the convexity
of (9), we can use the indicator function to first transform (9) into the following unconstrained one:

min
Ωr

Tr(ΩrWΩcW
T )− d log det(Ωr) + IC(Ωr). (9)

Then we can use the first-order optimality condition to characterize the optimal solution:

0 ∈ ∂
(

1

d
Tr(ΩrWΩcW

T )− log det(Ωr) + IC(Ωr)
)

= WΩcW
T /d− Ω−1

r +NC(Ωr),

where NC(A) := {B ∈ Sp | Tr(BT (Z − A)) ≤ 0,∀Z ∈ C} is the normal cone w.r.t. C at A. The
following key lemma characterizes the structure of the normal cone:

Lemma 1. Let Ωr ∈ C, then NC(Ωr) = −NC(Ω−1
r ).

Equivalently, combining Lemma 1 with the optimality condition, we have
WΩcW

T /d− Ω−1
r ∈ NC(Ω−1

r ).

Geometrically, this means that the optimum Ω−1
r is the Euclidean projection of WΩcW

T /d onto C.
Hence in order to solve (9), it suffices if we can solve the following Euclidean projection problem
efficiently, where Ω̃r ∈ Sp is a given real symmetric matrix:

min
Ωr

||Ωr − Ω̃r||2F , subject to uIp � Ωr � vIp. (10)

Perhaps a little bit surprising, we can find the optimal solution to the above Euclidean projection
problem efficiently in closed form:

Theorem 1. Let Ω̃r ∈ Sp with eigendecomposition as Ω̃r = QΛQT and ProjC(·) be the Euclidean
projection operator onto C, then ProjC(Ω̃r) = QT[u,v](Λ)QT .

Corollary 1. Let WΩcW
T be eigendecomposed as Qdiag(r)QT , then the optimal solution to (9) is

given by QT[u,v](d/r)QT .

Similar arguments can be made to derive the solution for Ωc in (4). The final algorithm is very
simple as it only contains one SVD, hence its time complexity is O(max{d3, p3}). Note that the total
number of parameters in the network is at least Ω(dp), hence the algorithm is efficient as it scales
sub-quadratically in terms of number of parameters in the network.
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Algorithm 1 Block Coordinate Descent for Adaptive Regularization

Input: Initial value φ(0) := {a(0),W (0)}, Ω
(0)
r ∈ Sp++ and Ω

(0)
c ∈ Sd++, first-order optimization algorithm A.

1: for t = 1, . . . ,∞ until convergence do
2: Fix Ω

(t−1)
r , Ω

(t−1)
c , optimize φ(t) by backpropagation and algorithm A

3: Ω
(t)
r ← INVTHRESHOLD(W (t)Ω

(t−1)
c W (t)T , d, u, v)

4: Ω
(t)
c ← INVTHRESHOLD(W (t)TΩ

(t)
r W (t), p, u, v)

5: end for
6: procedure INVTHRESHOLD(∆,m, u, v)
7: Compute SVD: Qdiag(r)QT = SVD(∆)
8: Hard thresholding r′ ← T[u,v](m/r)

9: return Qdiag(r′)QT

10: end procedure

4 Experiments

In this section we demonstrate the effectiveness of AdaReg in learning practical deep neural networks
on real-world datasets. We report generalization, optimization as well as stability results.

4.1 Experimental Setup

Multiclass Classification (MNIST & CIFAR10): In this experiment, we show that AdaReg provides
an effective regularization on the network parameters. To this end, we use a convolutional neural
network as our baseline model. To show the effect of regularization, we gradually increase the
training set size. In MNIST we use the step from 60 to 60,000 (11 different experiments) and in
CIFAR10 we consider the step from 5,000 to 50,000 (10 different experiments). For each training
set size, we repeat the experiments for 10 times. The mean along with its standard deviation are
shown as the statistics. Moreover, since both the optimization and generalization of neural networks
are sensitive to the size of minibatches [14, 24], we study two minibatch settings for 256 and 2048,
respectively. In our method, we place a matrix-variate normal prior over the weight matrix of the last
softmax layer, and we use Alg. 1 to optimize both the model weights and two covariance matrices.

Multitask Regression (SARCOS): SARCOS relates to an inverse dynamics problem for a seven
degree-of-freedom (DOF) SARCOS anthropomorphic robot arm [41]. The goal of this task is to
map from a 21-dimensional input space (7 joint positions, 7 joint velocities, 7 joint accelerations) to
the corresponding 7 joint torques. Hence there are 7 tasks and the inputs are shared among all the
tasks. The training set and test set contain 44,484 and 4,449 examples, respectively. Again, we apply
AdaReg on the last layer weight matrix, where each row corresponds to a separate task vector.

We compare AdaReg with classic regularization methods in the literature, including weight decay,
dropout [39], batch normalization (BN) [22] and the DeCov method [6]. We also note that we
fix all the hyperparameters such as learning rate to be the same for all the methods. We report
evaluation metrics on test set as a measure of generalization. To understand how the proposed
adaptive regularization helps in optimization, we visualize the trajectory of the loss function during
training. Lastly, we also present the inferred correlation of the weight matrix for qualitative study.

4.2 Results and Analysis

Multiclass Classification (MNIST & CIFAR10): Results on the multiclass classification for dif-
ferent training sizes are show in Fig. 2. For both MNIST and CIFAR10, we find AdaReg, Weight
Decay, and Dropout are the effective regularization methods, while Batch Normalization and DeCov
vary in different settings. Batch Normalization suffers from large batch size in CIFAR10 (comparing
Fig. 2 (c) and (d)) but is not sensitive to batch size in MNIST (comparing Fig. 2 (a) and (b)). The
performance deterioration in large batch size of Batch Normalization is also observed by [21]. DeCov,
on the other hand, improves the generalization in MNIST with batch size 256 (see Fig. 2 (a)), while
it demonstrates only comparable or even worse performance in other settings. To conclude, as
training set size grows, AdaReg consistently performs better generalization as comparing to other
regularization methods. We also note that AdaReg is not sensitive to the size of minibatches while
most of the methods suffer from large minibatches. In appendix, we show the combination of AdaReg
with other generalization methods can usually lead to even better results.
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Table 1: Explained variance of different methods on 7 regression tasks from the SARCOS dataset.

Method 1st 2nd 3rd 4th 5th 6th 7th

MTL 0.4418 0.3472 0.5222 0.5036 0.6024 0.4727 0.5298
MTL-Dropout 0.4413 0.3271 0.5202 0.5063 0.6036 0.4711 0.5345
MTL-BN 0.4768 0.3770 0.5396 0.5216 0.6117 0.4936 0.5479
MTL-DeCoV 0.4027 0.3137 0.4703 0.4515 0.5229 0.4224 0.4716
MTL-AdaReg 0.4769 0.3969 0.5485 0.5308 0.6202 0.5085 0.5561

(a) MNIST (Batch Size: 256) (b) MNIST (Batch Size: 2048) (c) CIFAR10 (Batch Size: 256) (d) CIFAR10 (Batch Size: 2048) 

AdaReg AdaReg

Figure 2: Generalization performance on MNIST and CIFAR10. AdaReg improves generalization under both
minibatch settings.
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(a) T/B: 600/256
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(b) T/B: 6000/256
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(c) T/B: 600/2048
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(d) T/B: 6000/2048

Figure 3: Optimization trajectory of AdaReg on MNIST with training size/batch size on training and
test sets. AdaReg helps to converge to better local optima. Note the log-scale on y-axis.

Multitask Regression (SARCOS): In this experiment we are interested in investigating whether
AdaReg can lead to better generalization for multiple related regression problems. To do so, we
report the explained variance as a normalized metric, e.g., one minus the ratio between mean squared
error and the variance of different methods in Table 1. The larger the explained variance, the better
the predictive performance. In this case we observe a consistent improvement of AdaReg over other
competitors on all the 7 regression tasks. We would like to emphasize that all the experiments
share exactly the same experimental protocol, including network structure, optimization algorithm,
training iteration, etc, so that the performance differences can only be explained by different ways of
regularizations. For better visualization, we also plot the result in appendix.

Optimization: It has recently been empirically shown that BN helps optimization not by reducing
internal covariate shift, but instead by smoothing the landscape of the loss function [37]. To understand
how AdaReg improves generalization, in Fig. 3, we plot the values of the cross entropy loss function
on both the training and test sets during optimization using Alg. 1. The experiment is performed
in MNIST with batch size 256/2048. In this experiment, we fix the number of outer loop to be 2/5
and each block optimization over network weights contains 50 epochs. Because of the stochastic
optimization over model weights, we can see several unstable peaks in function value around iteration
50 when trained with AdaReg, which corresponds to the transition phase between two consecutive
outer loops with different row/column covariance matrices. In all the cases AdaReg converges to
better local optima of the loss landscape, which lead to better generalization on the test set as well
because they have smaller loss values on the test set when compared with training without AdaReg.

Stable rank and spectral norm: Given a matrix W , the stable rank of W , denoted as srank(W ), is
defined as srank(W ) := ||W ||2F /||W ||22. As its name suggests, the stable rank is more stable than
the rank because it is largely unaffected by tiny singular values. It has recently been shown [34,
Theorem 1] that the generalization error of neural networks crucially depends on both the stable ranks
and the spectral norms of connection matrices in the network. Specifically, it can be shown that the

generalization error is upper bounded by O
(√∏L

j=1 ||Wj ||22
∑L
j=1 srank(Wj)/n

)
, where L is the
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(b) MNIST: S. norm
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(c) CIFAR10: S. rank
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(d) CIFAR10: S. norm

Figure 4: Comparisons of stable ranks (S. rank) and spectral norms (S. norm) from different methods
on MNIST and CIFAR10. x-axis corresponds to the training size.
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(a) CNN, Acc: 89.34
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(b) AdaReg, Acc: 92.50
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(c) CNN, Acc: 98.99
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(d) AdaReg, Acc: 99.19

Figure 5: Correlation matrix of the weight matrix in the softmax layer. The left two correspond to
dataset with training size 600 and the right two with size 60,000. Acc means the test set accuracy.

number of layers in the network. Essentially, this upper bound suggests that smaller spectral norm
(smoother function mapping) and stable rank (skewed spectrum) leads to better generalization.

To understand why AdaReg improves generalization, in Fig. 4, we plot both the stable rank and the
spectral norm of the weight matrix in the last layer of the CNNs used in our MNIST and CIFAR10
experiments. We compare 3 methods: CNN without any regularization, CNN trained with weight
decay and CNN with AdaReg. For each setting we repeat the experiments for 5 times, and we plot
the mean along with its standard deviation. From Fig. 4a and Fig. 4c it is clear that AdaReg leads to a
significant reduction in terms of the stable rank when compared with weight decay, and this effect
is consistent in all the experiments with different training size. Similarly, in Fig. 4b and Fig. 4d we
plot the spectral norm of the weight matrix. Again, both weight decay and AdaReg help reduce the
spectral norm in all settings, but AdaReg plays a more significant role than the usual weight decay.
Combining the experiments with the generalization upper bound introduced above, we can see that
training with AdaReg leads to an estimator of W that has lower stable rank and smaller spectral norm,
which explains why it achieves a better generalization performance.

Furthermore, this observation holds on the SARCOS datasets as well. For the SARCOS dataset, the
weight matrix being regularized is of dimension 100× 7. Again, we compare the results using three
methods: MTL, MTL-WeightDecay and MTL-AdaReg. As can be observed from Table 2, compared
with the weight decay regularization, AdaReg substantially reduces both the stable rank and the
spectral norm of learned weight matrix, which also helps to explain why MTL-AdaReg generalizes
better compared with MTL and MTL-WeightDecay.

Table 2: Stable rank and spectral norm on SARCOS.

MTL MTL-WeightDecay MTL-AdaReg
Stable Rank 4.48 4.83 2.88
Spectral Norm 0.96 0.92 0.70

Correlation Matrix: To verify that AdaReg imposes the effect of “sharing statistical strength”
during training, we visualize the weight matrix of the softmax layer by computing the corresponding
correlation matrix, as shown in Fig. 5. In Fig. 5, darker color means stronger correlation. We conduct
two experiments with training size 600 and 60,000 respectively. As we can observe, training with
AdaReg leads to weight matrix with stronger correlations, and this effect is more evident when the
training set is large. This is consistent with our analysis of sharing statistical strengths. As a sanity
check, from Fig. 5 we can also see that similar digits, e.g., 1 and 7, share a positive correlation while
dissimilar ones, e.g., 1 and 8, share a negative correlation.
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5 Related Work

The Empirical Bayes Method vs Bayesian Neural Networks Despite the name, empirical Bayes
method is in fact a frequentist approach to obtain estimator with favorable properties. On the other
hand, truly Bayesian inference would instead put a posterior distribution over model weights to
characterize the uncertainty during training [2, 20, 30]. However, due to the complexity of nonlinear
neural networks, analytic posterior is not available, hence strong independent assumptions over model
weight have to be made in order to achieve computationally tractable variational solution. Typically,
both the prior and the variational posterior are assumed to fully factorize over model weights. As an
exception, Louizos and Welling [29], Sun et al. [40] seek to learn Bayesian neural nets where they
approximate the intractable posterior distribution using matrix-variate Gaussian distribution. The
prior for weights are still assumed to be known and fixed. As a comparison, we use matrix-variate
Gaussian as the prior distribution and we learn the hyperparameter in the prior from data. Hence our
method does not belong to Bayesian neural nets: we instead use the empirical Bayes principle to
derive adaptive regularization method in order to have better generalization, as done in [4, 35].

Regularization Techniques in Deep Learning Different kinds of regularization approaches
have been studied and designed for neural networks, e.g., weight decay [26], early stopping [5],
Dropout [39] and the more recent DeCov [6] method. BN was proposed to reduce the internal
covariate shift during training, but recently it has been empirically shown to actually smooth the land-
scape of the loss function [37]. As a comparison, we propose AdaReg as an adaptive regularization
method, with the aim to reduce overfitting by allowing neurons to share statistical strengths. From
the optimization perspective, learning the row and column covariance matrices help to converge to
better local optimum that also generalizes better.

Kronecker Factorization in Optimization The Kronecker factorization assumption has also been
applied in the literature of neural networks to approximate the Fisher information matrix in second-
order optimization methods [31, 42]. The main idea here is to approximate the curvature of the loss
function’s landscape, in order to achieve better convergence speed compared with first-order method
while maintaining the tractability of such computation. Different from these work, here in our method
we assume a Kronecker factorization structure on the covariance matrix of the prior distribution, not
the Fisher information matrix of the log-likelihood function. Furthermore, we also derive closed-form
solutions to optimize these factors without any kind of approximations.

6 Conclusion

Inspired by empirical Bayes method, in this paper we propose an adaptive regularization (AdaReg)
with matrix-variate normal prior for model parameters in deep neural networks. The prior encourages
neurons to borrow statistical strength from other neurons during the learning process, and it provides
an effective regularization when training networks on small datasets. To optimize the model, we
design an efficient block coordinate descent algorithm to learn both model weights and the covariance
structures. Empirically, on three datasets we demonstrate that AdaReg improves generalization by
finding better local optima with smaller spectral norms and stable ranks. We believe our work takes
an important step towards exploring the combination of ideas from the empirical Bayes literature
and rich prediction models like deep neural networks. One interesting direction for future work is
to extend the current approach to online setting where we only have access to one training instance
at a time, and to analyze the property of such method in terms of regret analysis with adaptive
optimization methods.
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