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ABSTRACT

Neural networks are vulnerable to adversarially-constructed perturbations of their
inputs. Most research so far has considered perturbations of a fixed magnitude under
some lp norm. Although studying these attacks is valuable, there has been increasing
interest in the construction of—and robustness to—unrestricted attacks, which are
not constrained to a small and rather artificial subset of all possible adversarial inputs.
We introduce a novel algorithm for generating such unrestricted adversarial inputs
which, unlike prior work, is adaptive: it is able to tune its attacks to the classifier
being targeted. It also offers a 400–2,000× speedup over the existing state of the art.
We demonstrate our approach by generating unrestricted adversarial inputs that fool
classifiers robust to perturbation-based attacks. We also show that, by virtue of being
adaptive and unrestricted, our attack is able to defeat adversarial training against it.

1 INTRODUCTION

Despite their dramatic successes in other respects, neural networks are well-known to not be adver-
sarially robust. Szegedy et al. (2014) discovered that neural networks are vulnerable to what they
termed adversarial inputs: by adding carefully-chosen perturbations to correctly-classified inputs, the
accuracy of any neural network could be almost arbitrarily decreased. Since then, the machine learning
community has rightly focused a great deal of research effort on this phenomenon. Many early efforts
to train more robust models initially appeared promising, but have since been shown to be vulnerable to
new algorithms for constructing adversarial perturbations (Xu et al., 2019; Athalye et al., 2018). As a re-
sult, more attention has been given to methods that provide formal guarantees about performance in the
presence of adversarial perturbations (Liu et al., 2019), with the state of the art now providing non-trivial
guarantees for the MNIST test set (Wong & Kolter, 2018; Croce et al., 2018; Wang et al., 2018).

However, almost all of this work has focused exclusively on adversarial perturbations whose magnitude
is constrained by an lp norm. There is a growing acknowledgement that this threat model is somewhat
contrived: such examples are not a realistic security concern and also occupy a vanishingly small
fraction of the set of potential adversarial inputs. Therefore, there is a burgeoning interest in adversarial
attacks that are unrestricted, in the sense that they do not necessarily derive from a perturbation of
a natural input (Brown et al., 2018; Song et al., 2018b).

The main contribution of this paper is a novel and general method to generate unrestricted adversarial
inputs. In short, the training procedure for generative adversarial networks (GANs) is modified so
that the generator network is rewarded for producing data that are both realistic and deceive a fixed
target network. Our approach has four advantages over prior work:

1. Our method is adaptive in that it adjusts itself to best attack the specific network being
targeted. For instance, adversarial training is ineffective against our approach.

2. Our method is efficient (offering a 400–2000× speedup over prior work).

3. Our method can easily be applied to any existing conditional GAN codebase and checkpoints,
regardless of architecture, training procedure, or application domain.

4. Our method therefore demonstrably scales to ImageNet.
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2 BACKGROUND: GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a class of generative machine
learning models involving the simultaneous training of two neural networks: a generator g and a
discriminator d. Specifically, given a dataset D of samples drawn from a probability distribution
pD, the generator g learns to transform random noise z drawn from a simple distribution pz into an
approximation of pD. The discriminator network d learns to predict whether a given example x is
drawn from the data distribution pD or was generated by g. The generator and the discriminator are
adversarial because they train simultaneously, with each being rewarded for out-performing the other.

GANs’ training behaviours are notoriously temperamental, and many modifications to the original al-
gorithm have been proposed (Goodfellow, 2017). The Wasserstein GAN variant (Arjovsky et al., 2017)
aims to provide a more reliable gradient by designing the discriminator (renamed ‘critic’) to approxi-
mate the Wasserstein distance between the distribution generated by gθ and the data distribution pD. An
additional ‘gradient penalty’ loss termLgp can be added to implement the constraint that the function
be 1-Lipschitz continuous (Gulrajani et al., 2017). The loss functions for this Wasserstein GAN with
gradient penalty (WGAN-GP) are: Lg=Ez∼pz [−d(g(z))] and Ld=−Lg+Ex∼pD [−d(x)]+λLgp ;
where the gradient penalty Lgp = Ex̃∼pI [(‖∇x̃dφ(x̃)‖2 − 1)2], where pI denotes the distribution
sampling uniformly from the linear interpolations between generated samples and examples from pD.

The original proposal for a conditional generative adversarial network (CGAN) learns to generate
samples from a conditional distribution (Mirza & Osindero, 2014) by simply passing the intended label
y for the generated image to both the generator and the discriminator. An extension of this approach
is the auxiliary classifier generative adversarial network (ACGAN) (Odena et al., 2017), in which the
discriminator is modified to also predict the label y for the input data. Both the generators are trained
to maximise the log-likelihood of the correct label in addition to optimising their usual objective.

3 GENERATING UNRESTRICTED ADVERSARIAL INPUTS

Suppose we have a trained target classifier network f : X→R|Y | that attempts to approximate an
oracle function o : O→Y (whereO⊆X is the oracle’s domain) by outputting a confidence f(x)c∈R
for each class c ∈ Y . As Song et al. (2018b) do, we define an unrestricted adversarial example to
be any input x∈O such that the classifier’s prediction is incorrect: argmaxcf(x)c 6= o(x). Unlike
Song et al., we consider the domain of the oracle to be any input with a recognisable class, not just
realistic inputs. Gilmer et al. (2018) offer a number motivations for why unrealistic but recongisable
adversarial examples could be interesting, including security concerns and improving models’ abilities
to generalize. Nevertheless, we do carefully evaluate how realistic our results are in Section 4.1.

Unrestricted adversarial examples are a superset of conventional perturbation-based adversarial
examples (which are restricted to lie within a fixed distance of some correctly-classified input from
a test dataset). While providing a vastly larger space of candidates, a difficulty arises in determining
that the classification is incorrect; we can no longer rely on the oracle-provided labels from the test
dataset. We leverage generative models to solve this problem.

3.1 OUR PROCEDURE

We begin by taking any conditional GAN, with generator loss lordinary; the use of a conditional GAN
allows us to determine the correct label y of our generated unrestricted adversarial examples. We
then introduce loss terms which incentivise the generator g to create adversarial examples for a
classifier f . A targeted attack for desired true label y and target label t 6= y should output an image
which humans would regard to have label y yet is classified as t by the classifier. We introduce a
loss term, ltargeted, which is minimised when the conditional generator output g(z,y) is classified in
this way: ltargeted=maxc 6=tf(g(z,y))c−f(g(z,y))t. For an untargeted attack, we use a loss term that
is minimised for any misclassification of the example: luntargeted =f(g(z,y))y−maxc6=yf(g(z,y))c.
Note that these new terms assume that the true labels of the generated data g(z,y) do indeed match
the intended labels y, an assumption empirically validated in Section 4.1.

Our procedure is to alter the generator’s training objective so as to minimise both lordinary and l(un)targeted
simultaneously, thereby training the generator to output data which are both realistic and also fool
the target network. Section 3.3 provides further details.
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(a) Beginning from a randomly-initialised GAN.
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(b) Adversarially finetuning a pretrained GAN.

Figure 1: Projecting normalised gradient vectors from lordinary and l(un)targeted onto one another.

3.2 CHALLENGE: CONFLICTING GRADIENTS

Intuition suggests that the gradient from lordinary may be pointing in a different direction to the gradient
from l(un)targeted, since making an image adversarial seems likely to make it less realistic, not more.
A simple experiment suffices to verify this intuition. We compute the cosine similarity between
the gradients of our two loss terms at each step, i.e. ∇lordinary·∇l(un)targeted

‖∇lordinary‖‖∇l(un)targeted‖ . Figure 1a shows that
this projection tends towards −1; for reference, if the gradient vectors were selected uniformly at
random, the magnitude of this projection would very rarely exceed 0.001. In other words, as training
progresses, the gradients from these terms tend towards pointing in opposite directions. This makes
joint optimisation using a gradient descent approach challenging.

3.3 STRATEGIES TO OVERCOME TRAINING CHALLENGES

We empirically evaluate the effect of each technique described below in our ablative experiments
reported in Section 4.4.

Realistic pretraining It is widely accepted that real image data occupy a relatively low-dimensional
and contiguous manifold (Goodfellow et al., 2016, p. 160). Conversely, we know that adversarial
examples pervade the full input space: it appears that there is an adversarial example nearby nearly
any point in the input space. Therefore, a generator that is pretrained using only lordinary before
adversarially finetuning by introducing our additional loss term is more successful than using both
loss terms from a random initialisation. By beginning our search in regions of realistic examples, we’re
more likely to find adversarial examples that are sufficiently realistic. Besides the generated images
being subjectively better, Figure 1b shows that the gradients conflict to a much lesser extent. Note
that any existing conditional GAN architecture, pretrained checkpoint and training algorithm could
be used here, allowing our method to leverage the significant advances being made in this area.

Amalgamation of loss terms Rather than naïvely summing lordinary and l(un)targeted, we use the
following per-example loss term:

lfinetune=s(lordinary)·s(l(un)targeted−κ),where s(l)=
{
1+exp(l) if l≤ 0,
2+l otherwise.

Here, κ is a hyperparameter similar to that in the Carlini & Wagner (2017) attack: it controls the
confidence of the generated adversarial examples. If the difference between the desired logit and the
next-greatest logit is less than κ, the generator is linearly rewarded for improving this gap (gaining
confidence); beyond a difference of κ (once an example is ‘good enough’), the reward exponentially
decreases. We use κ=0 for our experiments as we do not require strong misclassifications.

Stochastic loss selection The gradients from the two loss terms are in conflict, and in practice the
l(un)targeted gradient dominates. The proportion of misclassified generated inputs rises quickly to almost
100%, but the generated images were noticeably unrealistic, meaning their correct label may change.
To address this, we introduce the ‘attack rate’ µ. During adversarial finetuning, the finetuning loss
term is used at each step only with probability µ; with probability 1−µ, the pretraining loss (lordinary
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Figure 2: Randomly-selected images generated
by a GAN finetuned to attack Wong & Kolter’s
(2018) classifier, which is robust to perturbations.
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Figure 3: Selected successful targeted unre-
stricted adversarial examples on ImageNet, gener-
ated by a BigGAN (Brock et al., 2019) finetuned
to attack ResNet-152 (He et al., 2016).

only) is used. As desired, this new hyperparameter allows the success rate of the generated unrestricted
adversarial examples to be traded off with their realism.

4 EXPERIMENTAL EVALUATION

Our method aims to generate unrestricted adversarial inputs in a way that adapts to the targeted
classifier. We therefore conducted experiments to check whether the generated examples were in fact
unrestricted, adversarial, and adapted to the classifier. We then address some questions regarding the
performance and generality of our approach, including realism.

The MNIST dataset (LeCun et al., 1998) is the main focus of the experimental evaluation, because
this is the most challenging domain for the generation of realistic adversarial inputs. State-of-the-art
classifiers perform very well, with around 0.2% test error (Kowsari et al., 2018; Wan et al., 2013). In
particular, attempts to create robust classifiers have also been most successful on this dataset, perhaps
due to its simplicity (Shafahi et al., 2018). We target five pretrained classifiers provably robust to
adversarial perturbations: there is guaranteed to be no adversarial input within a distance ε of p% of
test inputs under the l∞ norm. All five are the current state-of-the-art in this domain, trained by Wong
& Kolter (2018), and Wang et al. (2018). See Appendix C for details.

In our experiments, we combine three well-established generator architectures: a Wasserstein GAN
with gradient penalty (WGAN-GP) (Gulrajani et al., 2017), a conditional GAN (Mirza & Osindero,
2014) and an auxiliary classifier GAN (Odena et al., 2017). Full details are given in Appendix E.

A GAN was adversarially finetuned for each of the 10 target labels, and for the untargeted case. Once
trained, the generators were used to produce examples for all intended true labels, which were then
filtered so that the classifier label matched the target. Images were generated until 200 filtered examples
were generated or until 100 seconds had elapsed. Interestingly, this led to no adversarial examples with
intended true label ‘0’ and target classification ‘1’, so this case is omitted. Figure 2 and Appendix B
give examples of generated images for which the computed label matches the target classification.

4.1 EFFICACY OF ATTACKS

We claim that our method generates unrestricted adversarial examples, which are somewhat realistic.
We empirically verify each claim in turn.

Since our method does not work by perturbing existing data, only a simple sanity check was required
to verify that the generated images are not close to images in the training set, as could be caused by
over-fitting. We selected ten generated inputs that are visually similar to the training set, and computed
the shortest distances between the images and all images in the training set. The selected images are
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Table 1: Comparison of typical perturbation magnitudes
from the literature and ours.

Metric Nearest
neighbour

seen

Typical perturbation
magnitude

l0 508 <40 (Ruan et al., 2018)
l1 22.8 <5 (Lu et al., 2018)
l2 3.28 ~1.5 (Schott et al., 2018)
l∞ 0.838 ~0.1 (Wong & Kolter, 2018)

Table 2: Ten selected unrestricted adver-
sarial inputs used for Table 1.

Target label
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l

0 96 94 90 85 96 97 99 85 89 95
1 00 66 88 69 97 89 74 91 81 87
2 69 89 82 58 82 70 64 79 49 75
3 43 84 81 68 74 46 82 54 71 53
4 84 67 86 74 75 96 79 82 77 76
5 58 75 70 78 79 52 82 69 81 75
6 82 90 95 73 84 84 86 94 84 82
7 75 75 88 82 76 95 88 92 59 80
8 76 85 91 76 98 97 77 75 91 83
9 77 68 90 84 95 92 88 95 95 90

Mean 70 81 85 81 79 88 78 82 82 76 80

Figure 4: The success rates of the adversarial
attacks by finetuned GANs (the computed label
matches the target label and the true label remains
the same).

Target label
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l

0 40 60 56 34 46 51 40 36 63 51
1 00 37 52 36 51 81 40 53 35 49
2 30 37 43 40 42 35 37 55 32 54
3 39 39 43 34 40 40 42 45 48 40
4 51 50 34 38 37 46 42 41 43 40
5 32 34 32 36 43 42 36 37 55 51
6 51 39 45 36 57 46 45 57 40 46
7 47 48 53 33 42 58 41 52 44 39
8 29 46 47 55 44 48 36 39 42 60
9 38 34 50 49 54 53 53 69 57 67

Mean 40 41 45 44 43 47 47 43 48 45 50

Figure 5: How often adversarial images are not
identified as being generated. If the generated
images were completely realistic, the expected
result would be 90.

given in Table 2. Table 1 shows that they are much further from any training example than would
be the case with a perturbation-based attack.

Next, we evaluate the whether our method is successful in generating adversarial inputs. We need
to check that the true label matches the intended true label for each example, or the generator could
simply be producing images that visually match the target class. To check this we had Amazon’s
MTurk workers classify the generated images. For cost reasons, we only did this targeting Wong and
Kolter’s provably-robust network (Wong & Kolter, 2018). We used a sample size of 100 judges for each
intended true label/target label pair for each experiment. Figure 4 shows the proportion of inputs for
which not only does the label computed by the classifier match the target label, but the human-judged
true label matches the intended true label specified to the generator. The mean number of correct labels
for the untargeted attack is 80%. This can be considered to be the success rate of our attack.

We now investigate if the generated examples are realistic. A set of inputs is realistic with respect
to a dataset if a human cannot reliably identify to which set an example belongs. To check this, we
again used MTurk workers. After familiarising themselves with examples from the training dataset,
each worker had to pick which image out of ten was most likely to have been generated. Figure 5 shows
the proportion of the time that generated images were not identified as such.

For comparison, we repeated these experiments but attacking a non-robust classifier network. The
untargeted success rate was 90% (vs. 80% against the robust classifier), and 60% (vs. 50%) were not
identified as being generated. Similar differences were seen in targeted attacks; see Appendix I.

4.2 ADAPTIVITY TO ADVERSARIAL TRAINING DEFENCES

In our experiments so far we have evaluated our method against pretrained classifiers that are provably
robust to adversarial perturbations. We now investigate whether standard adversarial training (Madry
et al., 2018) against our attack in particular is effective. As our method is adaptive, it is not immediately
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(a) Adversarial training against our
attack, first few training rounds.
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(b) Adversarial training against our
attack, later training rounds.
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(c) Adversarial training against Song
et al. (2018b).
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(d) Online adversarial training performance.
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(e) Attack performance after online
training.

Figure 6: Plots showing attack efficacy in the presence of adversarial training.

clear how to integrate our method into the adversarial training framework. The two obvious possibilities
are finetuning the generator at each step of training, or alternately training the classifier and finetuning
the generator. We explore these below as ‘online’ and ‘offline’ adversarial training, respectively.

Online Adversarial Training We update both the generator and classifier at each training step.
We run adversarial training for over 1.6 million training steps, and Figure 6d shows that even during
training we maintain a roughly 80% attack success rate. Once we have finished training the classifier,
we attack it normally using our method. Despite having been adversarially trained, we are still able
to fool the classifier >99% of the time within 16,000 steps, as shown in Figure 6e.

Offline Adversarial Training Starting with a pretrained GAN and classifier, we iterate ‘training
rounds’ consisting of two phases. First, a GAN is adversarially finetuned (starting from the pretrained
GAN each time) for a fixed period to attack the classifier. Second, 80,000 generated unrestricted
adversarial examples are added to the existing training dataset, and the classifier continues training
until almost 100% accuracy is achieved. Figure 6a shows that, for the first few training rounds,
adversarial finetuning is successful: the proportion of examples generated which fool the classifier
increases to over 80%. Figure 6b shows the same story 30 rounds (and hence hundreds of thousands
of classifier gradient steps) in.

We find that the classifier is able to defend against the kinds of attacks previously produced by the genera-
tor. However, the generator’s opportunity to adversarially finetune again allows it to generate adversarial
examples in a new ‘blindspot’ of the classifier. For more details on these experiments, see Appendix D.

4.3 SCALING TO IMAGENET

To demonstrate the scalability of our method, we apply it to the notoriously large and complex
ImageNet-1K dataset, using the author’s ‘officially unofficial’ published code and checkpoints for
the current state-of-the-art, BigGAN (Brock et al., 2019). In the untargeted case, our method is able
to finetune this BigGAN to fool the classifier >99% of the time within 40 gradient steps (compared
to the 105 taken to train from scratch). Our main focus, though, is on the much more challenging
targeted attack. We found that typically, on the order of 100 gradient steps were required for >10%
of generated examples to be classified (top-1) as the target class. Compared to MNIST, each ImageNet
gradient step takes about 100x longer to compute, but the 100x decrease in the number of gradient
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steps required compensates for this, resulting in a similar compute time overall. Image quality as
measured by Inception Score (Salimans et al., 2016) typically decreased from 70. This is slightly better
than mid-2018 state-of-the-art of 52 (Zhang et al., 2019) or the mid-2017 state-of-the-art of 12 using
WGAN-GP (Shmelkov et al., 2018). We speculate that if the GAN were finetuned for significantly
longer, the gradient from the discriminator would learn to regain some of this lost realism. Figure 3
shows selected samples of generated adversarial examples; Appendix A has a more extensive collection.

4.4 ABLATIVE STUDIES AND BASELINE

No Adversarial Finetuning We evaluate the extent to which adversarial finetuning is effective
by comparing to a GAN which has not been finetuned. As expected, this is much less successful at
producing adversarial examples. The proportion of its outputs which are misclassified matches that of
the test set (around 2% for MNIST), whereas adversarial finetuning can easily increase this proportion
to well over 99%. Furthermore, only 66% of its misclassified outputs had maintained their true class,
as opposed to 80% for an adversarially finetuned GAN. Further results can be found in Appendix K.

Naïve Adversarial Finetuning We investigate the effect of the training strategies described in
Section 3.3 by removing each in turn. We find that without pretraining, our method does eventually
converge, but with much less realistic results. We also find that the attack rate is an effective technique
for trading off adversarial success rate with image realism; without this technique, the attack rate is
in effect set to 1, which again produces less realistic results. Note that unrealistic images affect the
attack’s success rate because the true class of the images is more likely to change. Lastly, we find that
choosing lordinary + l(un)targeted as the generator’s loss results in catastrophic collapse of the training,
likely because l(un)targeted is optimised for too heavily. Full details can be found in Appendix L.

Naïve Baseline Finally we compare our method to a baseline where data is generated using an
ordinary GAN and then adversarially perturbed using projected gradient descent with a norm bound
of ε=0.1 under l∞. With a success rate of under 1% on data which were originally classified correctly,
we find this approach is no better than perturbations on the test set; this is as expected, since the
generator learns the data distribution.

4.5 THREATS TO VALIDITY

The evaluation of the success of the attacks relies on data provided by the MTurk workers. We therefore
employed measures to safeguard the quality of this data, described in Appendix H. We also believe
that our method will generalise to any dataset and domain for which GANs can be trained successfully.
However, this has only been demonstrated on two image classification tasks (albeit dissimilar in
nature). Lastly, intuition suggests that our method will be able to adapt to find unrestricted adversarial
examples for most fixed defence methods, since it is so free to generate inputs without the constraints
that current defence methods rely upon. However, we have only demonstrated it explicitly for the most
popular standard defence; we leave it to future work to find a defence against our adaptive approach.

5 RELATED WORK

5.1 COMPARISON TO THE STATE OF THE ART

We compare our method to that of Song et al. (2018b), the current state of the art in generating
unrestricted adversarial examples. Like ours, this method leverages a pretrained GAN. It differs,
however, in how adversarial examples are then produced. Instead of adversarially finetuning the
generator, it searches for an input to the generator that both deceives the target network and are
confidently correctly classified by the discriminator’s auxiliary classifier (an ACGAN (Odena et al.,
2017) is required in this case). The GAN training is therefore blind to the target network.

Our model achieves similar success rates in generating unrestricted adversarial examples: our success
rate of 80% (cf. Section 4.1) is roughly comparable to that of Song et al. (2018b), 88.8%. For
comparison, we repeated the realism experiments from Section 4.1, with the difference that judges
were asked to identify the one generated image from a choice of two. In this case, Song et al. report that
participants select the generated image as the more realistic 21.8% of the time while for our untargeted
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attack, this figure is 24%; completely realistic image would be chosen 50% of the time. Full results
are given in Appendix J.

Beyond achieving comparable attack success rates, our approach has four significant advantages over
prior work. Firstly: adaptivity. In Section 4.2 we have shown that our model is capable of iteratively
adapting to an adversarially trained classifier. By contrast, Song et al.’s method performs poorly against
adversarial training because the GAN is not trained with respect to a target classifier, remaining fixed
after the attack begins. Therefore, if a classifier learns to be correct in the space their algorithm searches,
it will no longer be able to generate images different enough to be adversarial. Figure 6c shows that
standard adversarial training quickly and effectively defends against Song et al.’s attack, while it fails
against ours. Secondly: efficiency. Once trained, our method requires only a single forward pass to
generate adversarial examples. Song et al. require 100–500 iterations, each with 4 passes: forward
and backward through both the generator and classifier. Our method is therefore 400–2,000×more
efficient. Lastly: scale and versatility. Section 4.3 shows that our model scales to ImageNet, a dataset
with dimensionality 16× greater than the largest Song et al. demonstrate on. Our method has the
further benefit that we can use any pretrained conditional GAN, such as BigGAN (Brock et al., 2019).
Song et al. depend on an auxiliary classifier for larger datasets, which BigGAN does not provide.

5.2 OTHER RELATED WORK

Wang et al. (2019) independently propose a method which is superficially similar to ours: they also train
a GAN to directly generate adversarial examples. Instead of using the ordinary GAN loss to maintain
realism, they use a new loss term. This term, ‖gpretrained(z)−g(z)‖p, penalises the generator g given
input z proportional to the deviation caused by finetuning from the original output. Wang et al.’s choice
of loss term has the unfortunate effect of preventing the generator from generating either unrestricted
adversarial examples or examples which are sure to fall within an lp-norm ball of a realistic input. By
contrast our approach allows for truly unrestricted and adaptive examples. Furthermore: we evaluate
against state-of-the-art provably-robust networks rather than ad-hoc classifiers; we do not assume that
all the true labels remain the same (which is unlikely), and conduct a user study to test this; and we
demonstrate that our approach scales beyond MNIST (to ImageNet).

Sharif et al. (2019) train a network to generate patterned spectacles, which, when added to an image
of a face, cause misclassification. They also adapt this approach to MNIST using an approach quite
similar to ours. However, this only achieves a success rate of 0.83% after filtering to “only the digits
that where likely to be comprehensible by humans” against a classifier which was state-of-the-art in
2017. In contrast, we achieve around 80% accuracy against current state-of-the-art robust classifiers.

A wide range of work trains networks to generate adversarial perturbations (Hayes & Danezis, 2018;
Baluja & Fischer, 2018; Xiao et al., 2018; Song et al., 2018a; Poursaeed et al., 2018). While these
must also balance realism and adversarial success, the key difference is that we generate unrestricted
adversarial examples, allowing attacks to succeed when constrained perturbations provably fail.

Hu et al. (2019) introduce a search for pairs of nearby unrestricted adversarial examples, but unfor-
tunately cannot ensure that their true label is meaningful; if the search starting point is random, it is
overwhelmingly likely not to be. If instead it is a known input, the examples are not unrestricted.

6 CONCLUSION

We have introduced an algorithm which trains a GAN to generate unrestricted adversarial inputs;
we demonstrate that these, as expected, are successful against state-of-the-art classifiers robust to
perturbation attacks. The key novelty in our attack procedure is that it entails the tuning of the weights
of the generator to target a specific network. As a result, it can be considered adaptive: we have shown
that, while prior work is quickly mitigated by standard adversarial training, our attack adapts to find a
new way of fooling the classifier. In addition, once the generator is adversarially finetuned, it becomes
an endless supply of cheap adversarial examples: generation of adversarial examples requires a single
forward pass rather than execution of any optimisation algorithm, resulting in a 400–2000× speedup
over the state of the art. We have also demonstrated that any existing GAN codebase can easily be
used by adapting BigGAN to generate unrestricted adversarial examples for ImageNet.
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A SAMPLES OF IMAGENET UNRESTRICTED ADVERSARIAL EXAMPLES

Randomly-selected successful targeted unrestricted adversarial examples generated using adversarially
finetuned BigGANs (Brock et al., 2019). The targeted classifier is ResNet-152 (He et al., 2016), the
highest-accuracy pretrained classifier packaged with PyTorch. Besides setting our attack rate at 0.1, all
configuration and hyperparameters are as described in the BigGAN ‘officially unofficial’ codebase.1

horned rattlesnake curly-coated
retriever

admiral birdhouse

chest horn lifeboat solar dish

stone wall suspension bridge thresher unicycle

comic book butternut squash cardoon hay

Figure 7: Successful targeted unrestricted adver-
sarial examples for target class ‘tabby cat’.

kite spotted salamander terrapin alligator lizard

green lizard night snake horned rattlesnake centipede

lady bug howler monkey airship combination lock

sombrero corn acorn capitulum

Figure 8: Successful targeted unrestricted adver-
sarial examples for target class ‘slug’.

cock black widow nautilus bittern

bluetick english setter sussex spaniel briard

eskimo dog standard poodle ladle mailbag

paddle wheel custard apple eggnog conker

Figure 9: Successful targeted unrestricted adver-
sarial examples for target class ‘orange’.

cock dhole squirrel monkey balloon

castle garbage truck organ palace

park bench revolver shower curtain stupa

triumphal arch water tower yurt traffic light

Figure 10: Successful targeted unrestricted ad-
versarial examples for target class ‘church’.

1https://github.com/ajbrock/BigGAN-PyTorch
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A.1 COMPARISON TO NO ADVERSARIAL FINETUNING

The results above are not as high-quality as those reported in the BigGAN paper (Brock et al., 2019).
There are two causes of this which need to be disentangled: the effect of adversarial finetuning, and the
limitations of the BigGAN implementation. One limitation is that the checkpoint we use has a much
lower Inception Score than is reported in the paper. Another is that our limited access to expensive
hardware forces us to use a batch size of 15; small batch sizes “lead to inaccurate estimation of the
batch statistics, and reducing batch normalisation’s batch size increases the model error dramatically”
(Wu & He, 2018, p.1).

We therefore provide samples from the BigGAN running on our machine, 15 iterations after the
checkpoint. Figure 11a shows a set of samples taken after 15 iterations of continuing ordinary training;
Figure 11b shows the output of the generator for the same input after 15 iterations of adversarial
finetuning, instead.

To our eyes, the samples in Figure 11a are similar in quality to those in Figure 11b and on the previous
page.

(a) No adversarial finetuning: ordinary train-
ing continues.

(b) With 15 gradient steps of adversarial fine-
tuning.

Figure 11: Samples for fixed inputs to the BigGAN implementation we use, taken 15 gradient steps
after the checkpoint we begin adversarial finetuning from.
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B SAMPLES OF MNIST UNRESTRICTED ADVERSARIAL EXAMPLES

(a) Intended true label ‘0’. (b) Intended true label ‘1’.

(c) Intended true label ‘2’. (d) Intended true label ‘3’.

(e) Intended true label ‘4’. (f) Intended true label ‘5’.

(g) Intended true label ‘6’. (h) Intended true label ‘7’.

(i) Intended true label ‘8’. (j) Intended true label ‘9’.

Figure 12: Examples generated by one adversarially-finetuned GAN to perform an untargeted attack
on Wong & Kolter’s (2018) classifier, which is provably robust to perturbation attacks.
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C TARGETED CLASSIFIERS

All targeted classifiers (other than ‘simple fully-connected’) are provably robust to adversarial
perturbations in the sense that there is guaranteed to be no adversarial input within a distance ε of p%
of test inputs under the l∞ norm.

Table 3: Descriptions of and references to target classifiers used.

Our Name Abbreviation ε p Architecture

Wong & Kolter (2018) W&K 0.1 94.2 2 convolutional layers followed by 2
dense layers

MixTrain (Wang et al., 2018)
Model A

MT-A 0.1 97.1 ‘MNIST_small’: 2 convolutional
layers followed by 1 dense layer

MixTrain (Wang et al., 2018)
Model B

MT-B 0.3 60.1 ‘MNIST_small’: 2 convolutional
layers followed by 1 dense layer

MixTrain (Wang et al., 2018)
Model C

MT-C 0.1 96.4 ‘MNIST_large’: 4 convolutional lay-
ers followed by 2 dense layers

MixTrain (Wang et al., 2018)
Model D

MT-D 0.3 58.4 ‘MNIST_large’: 4 convolutional lay-
ers followed by 2 dense layers

Simple Fully-Connected Simple N/A N/A Three fully-connected layers of size
256, 128 and 32 with LeakyReLU
activations

D ADVERSARIAL TRAINING EXPERIMENT

The classifier trained during adversarial training (both the architecture and hyperparameters) is the
one used in Madry et al. (2017), and in particular from their associated MNIST Adversarial Examples
Challenge.

For the offline experiments with our own model, we first pretrain the generator. We then continue in
‘training rounds’. First, we fine-tune against the classifier for 5000 gradient steps, using the hyperparam-
eters from Table 6, but with an attack rate of 0.4. Next, we produce 80,000 attacked training examples
(using an untargeted attack), which are added to the pool of all examples generated so far. Then, the clas-
sifier is trained on the entirety of the pool of samples 30 times, with a batch size of 128. Once a training
round is completed we start again, resetting the GAN to how it was before the adversarial finetuning.

For the experiments with Song et al.’s (2018b) model, we run 300 training gradient steps for the Madry
et al. classifier, with a batch size of 64. At each step, the training data is produced by Song et al.’s
model. We use their code and the hyperparameters they provide for untargeted attacks in Table 4 of
their appendix.
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E MNIST EXPERIMENTS: ARCHITECTURES AND HYPERPARAMETERS

The WGAN-GP (Gulrajani et al., 2017) and ACGAN (Odena et al., 2017) architectures were the
starting points for the design of these neural networks. Only a small amount of manual hyperparameter
tuning was performed.

The generator is a convolutional neural network, conditioned on class label.

The discriminator network is a combination of a conditional WGAN-GP critic, which learns an approxi-
mation of the Wasserstein distance between the generated and training-set conditional distributions, and
an auxiliary classifier, which predicts the likelihood of the possible values of h(x). We combined these
two architectures in an attempt to strengthen the gradient provided to the generator, helping to generate
data which are both realistic and for which the true (i.e., human-judged) labels match the intended
true labels. The critic is given the true label of the data h(x) to improve its training, but the auxiliary
classifier must not have access to this information since its purpose is to predict it. We therefore split
the discriminator d into three sub-networks. Network d0 : X→Ri effectively preprocesses the input,
passing an intermediate representation to the critic network d1 : Ri×Y →R and the auxiliary classifier
network d2 : Ri→R|Y |. In our experiments, both d1 and d2 were single fully-connected layers of
the appropriate dimension. The loss terms from the WGAN-GP and ACGAN algorithms are simply
summed. The auxiliary classifier helps the training converge, but is not necessary.
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Table 4: Architecture for generator network, g.

Layer Type Kernel Strides Feature Maps Batch Norm. Dropout Activation
Fully-Connected N/A N/A

64
No 0 ReLU

Transposed Convolution 5×5 2×2
32

Yes 0.35 LeakyReLU

Transposed Convolution 5×5 2×2
8

Yes 0.35 LeakyReLU

Transposed Convolution 5×5 2×2
4

Yes 0.35 LeakyReLU

Fully-Connected N/A N/A 784 No 0 Tanh

Table 5: Architecture for discriminator subnetwork, d0.

Layer Type Kernel Strides Feature Maps Batch Norm. Dropout Activation Function
Convolution 3×3 2×2 8 No 0.2 LeakyReLU
Convolution 3×3 1×1 16 No 0.2 LeakyReLU
Convolution 3×3 2×2 32 No 0.2 LeakyReLU
Convolution 3×3 1×1 64 No 0.2 LeakyReLU
Convolution 3×3 2×2 128 No 0.2 LeakyReLU
Convolution 3×3 1×1 256 No 0.2 LeakyReLU

Table 6: Hyperparameters for all networks.

Hyperparameter Value
Attack rate µ=0.1

Learning rate α=0.000005
Adam betas β1=0.6,β2=0.999

Leaky ReLU slope 0.2
Minibatch size 100

Dimensionality of latent space 128
Weight initialisation Normally distributed as described by He et al. (2015)

Coefficient of gradient penalty loss term λ=10
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F VISUAL EFFECT OF ADVERSARIAL FINETUNING

(a) Samples from pretrained generator. (b) After 5,000 iterations of finetuning.

(c) After 10,000 iterations of finetuning. (d) After 20,000 iterations of finetuning.

(e) After 30,000 iterations of finetuning. (f) After 45,000 iterations of finetuning. We ended
finetuning at this stage.

Figure 13: A sequence of images tracking the output of the generator network for one fixed random
sample in latent space as adversarial finetuning takes place. Five samples are given for each intended
true label. The finetuning is an untargeted attack against Wong & Kolter’s (2018) provably-robust
network.
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G TRANSFERABILITY OF ADVERSARIAL EXAMPLES

Perturbation-based adversarial examples typically somewhat generalise between models (Szegedy et al.,
2014; Liu et al., 2017). That is, inputs crafted using white-box access to fool one model often fool a dif-
ferent model. This means that black-box attacks are possible, if the attacker has a different trained model
for the same task. To evaluate whether our method could be used in the same way, we generated about
20,000 untargeted unrestricted adversarial inputs for each target classifier, and measured the misclassifi-
cation rates on this set for the other models. The high variance of the results, shown in Table 7, suggests
that successful transfer may depend more on the networks in question than on our generation algorithm.
Table 7: The percentage of adversarial examples targeting each classifier which are also adversarial for
the others. See Appendix C for descriptions of the classifiers.

To

W&K MT-A MT-B MT-C MT-D Simple

W&K 20.2 18.4 9.0 60.7 16.8
MT-A 19.5 14.1 13.3 55.2 4.7

Fr
om MT-B 5.2 4.8 1.6 57.8 2.6

MT-C 25.8 47.6 13.9 67.8 12.1
MT-D 5.9 7.3 9.4 4.3 1.7
Simple 2.7 2.6 2.6 1.3 48.0

H SAFEGUARDING MTURK DATA QUALITY

The evaluation of our method relies entirely on the quality of the data provided by the MTurk workers.
We therefore took a number of measures to ensure that participants understood the instructions and
completed the tasks diligently:

• Only workers with good track records were permitted to participate.
• The instructions specified that particular answers should be given to specified questions to

prove that the instructions had been read carefully. Approximately 10% of work was rejected
for failing this check.
• For the image labelling tasks, some images with known labels were included to check that the

right labels were being given. Reassuringly, almost no work was rejected for failing this check.
• For the identification of the generated images, a bonus nearly doubling the pay per image

was given for each correctly-identified image, providing an extra incentive to try hard.
• To provide a disincentive to high-speed random clicking, a minimum time spent answering

each question was enforced.
• If more than 1% of questions were left unanswered, we interpreted this as a sign of

carelessness and did not use any of the data from that task.
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I RESULTS FOR NON-ROBUST TARGET NETWORK

These results are targeting a simple convolutional neural network with LeakyReLU activations and
three hidden layers of size 256, 128 and 32, trained until convergence.
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1 00 92 100 92 97 96 88 96 96 93
2 73 86 82 80 87 92 84 87 75 81
3 88 83 87 81 88 81 89 96 90 92
4 84 53 79 69 78 90 90 81 87 85
5 84 89 77 89 88 79 94 88 88 83
6 96 83 92 95 93 95 93 100 96 94
7 93 59 89 95 85 94 80 99 94 92
8 96 86 97 93 98 93 90 92 92 91
9 93 76 96 97 97 91 89 93 89 98

Mean 88 79 89 91 90 91 88 91 92 91 90

Figure 14: The success rates of the adversarial
attacks by finetuned GANs. More precisely, of
generated images for which the computed label
output by the classifier matches the target label,
the percentage which are truly adversarial (in the
sense that the true label of the image matches
the intended true label passed to the generator
network) is reported.
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7 73 47 82 80 72 92 100 92 86 77
8 87 69 81 77 79 65 88 62 81 85
9 90 45 79 75 76 96 00 82 74 84

Mean 70 56 75 72 72 74 73 73 76 78 80

Figure 15: The success rates of the adversarial
attacks by a pretrained but not finetuned GAN.
More precisely, of generated images for which the
computed label output by the classifier matches
the target label, the percentage which are truly
adversarial (in the sense that the true label of the
image matches the intended true label passed to
the generator network) is reported.
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3 64 41 62 43 60 29 51 56 58 50
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5 48 46 44 63 62 60 49 57 61 50
6 76 48 44 46 54 54 38 62 54 58
7 51 32 60 59 54 54 46 61 65 65
8 62 53 62 57 56 56 54 50 67 57
9 47 42 51 60 72 69 54 66 71 67

Mean 57 44 54 55 55 54 52 55 59 61 60

Figure 16: Measures of how realistic the adver-
sarial images generated by finetuned GANs are.
More precisely, the proportion of generated inputs
for which the classified label matches the target
label which were not identified as being gener-
ated when placed amongst nine images from the
training dataset. If the generated images were
completely realistic, the expected result would be
90.
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Figure 17: Measures of how realistic the adversar-
ial images generated by a pretrained but not fine-
tuned GAN are. More precisely, the proportion
of generated inputs for which the classified label
matches the target label which were not identified
as being generated when placed amongst nine im-
ages from the training dataset. If the generated
images were completely realistic, the expected
result would be 90.
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J SIDE-BY-SIDE IMAGE COMPARISON RESULTS

Each figure shows the number of human judgements out of 100 which correctly identified the
unrestricted adversarial input in a side-by-side comparison with an image drawn from the dataset.
If the generated images were completely realistic, the expected result would be 50.
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Figure 18: Results against Wong & Kolter (2018)
generated by adversarially finetuned GANs.
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Figure 19: Results against Wong & Kolter (2018)
generated by a pretrained but not finetuned GAN.
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Figure 20: Results against an ordinary neural net-
work generated by adversarially finetuned GANs.
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Figure 21: Results against an ordinary neural net-
work generated by a pretrained but not finetuned
GAN.
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K ADVERSARIAL FINETUNING ABLATION STUDY

We perform the attack procedure described in Section 4, but using a GAN which has not been
adversarially finetuned. That is, we use the generator to generate many examples, and filter to keep all
those which are misclassified (the untargeted case) or misclassified with a particular label (the ‘targeted’
case, although note that of course the un-finetuned generator has no notion of a target). We then evaluate
the proportion of these filtered examples which correctly maintain their intended true class, a necessary
condition for an adversarial attack. We also report the proportion of these filtered examples which are
not correctly identified by humans judges as being generated (out of a selection of ten).

For instance, consider the result for intended true label 9 and target label 0. We first use the conditional
GAN to produce a set of images that are intended to be 9s. We then filter this set and keep only those
that are classified as 0s by the classifier. Finally, we report below the percentage of these for which
the true label (determined by humans) is indeed a 9 (55%), and the percentage of these which fool
human judges into believing that they are real test data (51%).
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Figure 22: Adversarial success rates for a non-
finetuned generator, as described above.
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Figure 23: Realism rates for adversarial images
produced by a non-finetuned generator, as de-
scribed above. If the generated images were com-
pletely realistic, the expected result would be 90.
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L TRAINING STRATEGIES ABLATION STUDIES

We run several ablation studies for the components described in Section 3.3. We find that while these
strategies are not necessary, they make examples more realistic. This in turn improves the chance
that the true class of an example remains the same, increasing our success rate.

L.1 PRETRAINING

(a) Results after having run as long
as pretraining, 705,000 iterations

(b) Results after having run as long
as Figure 13, 750,000 iterations

(c) Results once training had con-
verged, over 2.5 million iterations

Figure 24: On MNIST we pretrained the GAN for 705,000 iterations, and then finetuned for another
45,000. Here, we show results using the same setup as in Figure 13. We show the results after the
number of iterations equivalent to pretraining, to pretraining and finetuning, and at convergence. The
final results both took longer and are visually less convincing than comparable results in Figure 13.

L.2 NAÏVE LOSS FUNCTION

(a) After 500 adversarial finetun-
ing steps; 40% misclassified.

(b) After 1500 adversarial finetun-
ing steps; 91% ‘misclassified’.

(c) After 10,000 adversarial fine-
tuning steps; all ‘misclassified’.

Figure 25: Adversarial finetuning with naïve generator loss lordinary+luntargeted. As expected, our custom
loss function as described in Section 3.3 significantly improves convergence to generator weights
which continue to generate images realistic enough to maintain their true classes.
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L.3 ATTACK RATE

(a) µ = 0.01; 1% misclassified (b) µ = 0.10; 16% misclassified (c) µ = 0.25; 68% misclassified

(d) µ = 0.50; 94% misclassified (e) µ = 0.75; 98% misclassified (f) µ = 1; >99% misclassified

Figure 26: The effect of attack rateµ on image quality and proportion misclassified, using otherwise the
same setup as in Figure 13. An attack rate of 1 is equivalent to not having the attack rate. As expected,
lower attack rates mean higher visual quality, but a less successful attack.
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