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ABSTRACT

Turing complete computation and reasoning are often regarded as necessary pre-
cursors to general intelligence. There has been a significant body of work studying
neural networks that mimic general computation, but these networks fail to general-
ize to data distributions that are outside of their training set. We study this problem
through the lens of fundamental computer science problems: sorting and graph
processing. We modify the masking mechanism of a transformer in order to allow
them to implement rudimentary functions with strong generalization. We call this
model the Neural Execution Engine, and show that it learns, through supervision,
to numerically compute the basic subroutines comprising these algorithms with
near perfect accuracy. Moreover, it retains this level of accuracy while generalizing
to unseen data and long sequences outside of the training distribution.

1 INTRODUCTION

Neural networks are universal function approximators (Hornik et al., 1989), meaning that provided
enough data and perfect optimization they should be able to learn arbitrarily complicated functions. In
recent years, there have been proposals of neural network architectures that are designed to implement
general programs (Graves et al., 2014; Kaiser & Sutskever, 2016; Graves et al., 2016; Kurach et al.,
2016), often inspired by concepts found in conventional computer systems, like pointers (Vinyals
et al., 2015). However, these neural networks still have difficulty learning complex programs from
input/output pairs, in the sense of strong generalization. That is, generalizing to data distributions that
do not necessarily correspond to the training distribution, such as longer sequences and new values.

We hypothesize that much of this difficulty stems from a lack of prior structure, and given enough
structure in the form of supervision over intermediate program states, we can train networks to
faithfully implement different algorithms. We take several basic algorithms (selection sort, merge
sort, Dijkstra’s algorithm for shortest paths) and express them in terms of a series of subroutines, as a
software engineer would. Each subroutine represents a simple function, and can be composed with
others to express the algorithm. In this way, we train neural networks to perform relatively simple
tasks in a supervised manner, and obtain complex behaviors through composition.

Although each subroutine represents a simple task compared to the full algorithm, this is nevertheless
a challenging learning domain for several reasons. First, each subroutine still requires the network to
learn a function in such a way that it can strongly generalize outside of its training distribution. Next,
as the goal is to learn general computation, the network will operate on raw numbers: taking as input
numbers, or distributions over sets of numbers that it may not have even seen in training. Lastly, each
subroutine must be performed accurately enough so that composition results in accurate inference
over long runs of the program.

Our main contribution is to show that while a model trained on a complex task in an end-to-end
fashion may generalize well on in-distribution test data, this does not necessarily lead to strong
generalization. However, the same underlying architecture can be made to strongly generalize by
introducing minor modifications and more supervision. This provides a starting point for gradually
reducing the amount of required supervision and increasing the sizes of the learned subroutines in
order to work towards end-to-end learning of complex algorithms with neural networks. Specifically,
we leverage the transformer (Vaswani et al., 2017) to learn the subroutines underlying several common
yet sophisticated algorithms from input/output execution traces. Our model uses binary number
representations for data values, and separates the notion of control (which part of the input to consider)
from execution (what to compute) via a conditional masking mechanism. We show that with this,
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transformers can learn effective representations for accurately performing fundamental numeric
tasks like comparison and addition, and that allowing the transformer to modulate its own mask in
subsequent subroutine calls allows it to generalize to runs of the program that greatly exceed the
length of the traces it was trained on, resulting in near perfect performance on larger tasks. We refer
to these networks over subroutines as neural execution engines (NEEs).

2 BACKGROUND

2.1 TRANSFORMERS

Transformers are a family of models that represent the current state-of-the-art in sequence learn-
ing (Vaswani et al., 2017; Devlin et al., 2018; Radford et al., 2019). In contrast to recurrent networks
that process inputs sequentially, transformers process an entire sequence simultaneously using a
self-attention mechanism that allows each input token to attend to every other token in the sequence
when computing its transformation. This mechanism occurs within an attention block, and several
blocks are stacked to form both an encoder to embed an input sequence, and a decoder to produce
an output sequence. Here, we will formalize some of the components of the vanilla transformer
architecture so that we can outline our modifications in subsequent sections.

Given input token sequences x1; x2; : : : ; xL 1 2 X and output token sequences y1; y2; : : : ; yL 2 2 Y ,
where xi ; yj 2 Z+ , a transformer learns a mapping X ! Y . First, the tokens are individually
embedded to form x̂i ; ŷj 2 Rd . The main module of the transformer architecture is the self-attention
layer, which outputs a transformation of each vector as a convex combination of values, modulated
by the affinity of the vector to every other vector in the sequence. Note that for this paper, we do
not use positional encodings (which we found to hurt performance in our tasks), and single-headed
attention. Self-attention layers are followed by a position-wise feed-forward neural network layer,
forming a self-attention block. These blocks are composed to form the encoder and decoder of the
transformer, with the outputs of the encoder being used as queries and keys for the decoder. More
details can be found in Vaswani et al. (2017).

An important component for our purposes is the self-attention mask. This is used to prevent certain
positions from propagating information to other positions. Typically this is used for decoding, to
ensure that the model can only condition on past outputs during sequential generation. In our case,
we will consider masking in the encoder as an explicit way for the model to condition on the part of
the sequence that it needs at a given point in its computation.

2.2 THE SORTING TASK

We use sorting to frame our exploration into the capability of neural networks to mimic general
execution. Sorting is a useful abstraction to examine because it is clearly defined at a high level: the
sorting task involves mapping a list of unsorted numbers to its sorted counterpart. Generalization
(performance on unseen sequences) is clearly distinct from strong generalization(performance
on sequences that are longer that the training distribution). Additionally, there are many different
algorithms that computer scientists traditionally use to implement sorting. This provides a rich
domain of interest in which we can use supervision to learn different sorting algorithms.

2.3 NUMBER REPRESENTATIONS

An essential component of general computation is manipulating numbers (Von Neumann, 1993).
Given that our goal is strong generalization, it is also necessary for the number system that we use
to work in large ranges and generalize outside of its training domain (as it is not tractable to train
the network on all integers). Neural networks generally use either categorical, one-hot, or integer
number representations. Prior work has found that scalar numbers have difficulty representing large
ranges (Trask et al., 2018) and that binary numbers are a useful representation that generalize outside
of their training domain (Kaiser & Sutskever, 2016; Shi et al., 2019), assuming each bit is toggled
during training. Binary is a hierarchical format, where each bit extends the training range of the string
exponentially, leading to a small bit string that can represent massive number ranges. In this paper,
we focus on unsigned integers using the binary representation.

3 NEURAL EXECUTION ENGINES

Simply stated, a neural execution engine (NEE) is a transformer that takes as input binary numbers
and an encoding mask, and outputs either data values, a pointer, or both. The pointer can optionally
be used to modify the mask the next time the NEE is invoked. This architecture is reminiscent of
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graph attention networks (GATs) (Veličković et al., 2017), where the graph is used to dictate the
encoder mask. An NEE is essentially a GAT that can modify its own graph. In this section, we will
describe the specifics behind how we apply this mechanism, before demonstrating its performance on
several algorithmic tasks in subsequent sections.

3.1 METHODOLOGY

We now describe the key components of the NEE mechanism.

Bitwise Embeddings. As input to an NEE, we embed binary vectors using a linear projection. This
is equivalent to defining a learnable vector for each bit position, and then summing these vectors
elementwise, modulated by the value of their corresponding bit. That is, given an embedding vector
vi for each bit i , for an n-bit input vector x, we would compute x̂ =

P n
i =1 x i vi . For example,

emb(1001) = v0+v3.

Two important tokens for our purposes are start s and ende. These are commonly used in natural
language data to denote the start and end of a sequence. We use s as input to the decoder, and e
to denote the end of an input sequence. As we are dealing with numerical computation, we find it
convenient to set s = 0 and to have the model learn an embedding vector for e such that e = 1 . That
is, the model will learn e > x for all x 6= e and that e+ x = e.

Conditional Masking. The encoder of a transformer takes as input both a set of values and a mask,
which is used to force the encoder to ignore certain inputs. In the NEE mechanism, we use the output
pointer of the decoder to modify the mask for a subsequent call of the encoder. In this way, the inputs
represent a memory state, and the mask represents a set of pointers into the memory. NEE effectively
learns where to focus its attention for performing computation.

A mask M is a binary matrix, where a value of 0 indicates that the input should be considered, and 1
indicates that it should be ignored. The encoder mask is used to zero out attention weights of ignored
input numbers. Given a binary vector b, a mask is obtained by broadcasting b along the sequence
length dimension and other higher dimensions. The value bi = 0 would indicate that the i th input
should be considered, and bi = 1 would indicate that the i th input should be ignored. We will refer to
b as the mask vector.

Given an input mask vector b, we need to compute the updated mask vector b̂ to serve as the next
input mask. As most entries of the mask do not change with each iteration, we output only the
information required to update the mask. Practically, this means a one-hot encoding o representing
the position of interest to mask out. We then compute the updated mask b̂ using a bitwise XOR
function, b̂ = XOR(b; o). This is sufficient for the subroutines considered in this paper, but the
transformer can output arbitrary masks, and future work will focus on allowing the network to make
more complex updates.

Using this mechanism, we can train NEE to mimic the behavior of a variety of subroutines by training
it on execution traces using teacher forcing (Williams & Zipser, 1989). At inference, we simply
choose the argmax of the pointer output head.

Encoding Independent Inputs. We will show examples where the function must operate on a
sequence of inputs, but where subsets of the inputs can be treated independently. Specifically, an
elementwise sum or min between pairs of numbers. For transformers, this can be done by an explicit
reshapeoperation that turns the sequence into a mini-batch, enabling parallel processing on the entire
batch. A subsequent reshape can turn the output back into a sequence.

Encoding Dependent Inputs. When we receive a sequence of inputs where subsequences are
dependent, we concatenate the subsequences and delineate them using the e token. For example,
if we had two subsequences [a; b] and [c; d], we would input [a; b; e; c; d; e]. For the corresponding
mask, we could give [0; 0; 1; 0; 0; 1] to consider all tokens, or [0; 1; 1; 0; 1; 1] if we intend to iterate
over the subsequences in order. If required, NEE will output a pointer, and we can use this to update
the mask as needed. This mechanism will be useful in merge sort, where a fundamental subroutine is
merging two sorted lists into a single sorted list.

Decoding. Decoding in a NEE involves giving the start token s to the decoder and using it to compute
attention blocks over the encoder outputs. In this case, we only consider outputting a single value
and/or pointer, as opposed to a sequence.
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4 LEARNING TO SORT
As we mentioned in Section 2, we use sorting to frame our exploration into the capability of neural
networks to mimic general execution.

4.1 A SEQUENCE TOSEQUENCEV IEW

Figure 1: Seq2Seq sorting performance of transformer variants trained
on sequences of up to length 8.

We �rst study how well the vanilla
transformer (Section 2.1) learns to
sort. We model it in a conven-
tional seq2seq fashion (Sutskever
et al., 2014) with input examples
of unsorted sequences (length� L )
of n-bit binary numbers (L=8 and
n=8) and output examples of the
correctly sorted sequence. The in-
puts to the encoder and decoder are
sequences of bitwise embedded vec-
tors (Section 2.3). The decoder uses
a greedy decoding strategy. The
outputs of the decoder are one-hot256-dimensional vectors representing the unnormalized log-
probabilities of the output numbers. We �nd that randomly generated numbers are easier to sort than
numbers that differ in a small number(e.g., 1 vs. 2, 53 vs. 54). Thus, we include both examples
in the training distribution (70% random numbers, 30% numbers with small differences).1 The
performance of this vanilla transformer, evaluated as achieving an exact content and positional match
to the correct output example, is shown in Figure 1 (where the test distribution consists of 60%
random numbers and 40% numbers with small differences).

To increase performance, we make a number of modi�cations to better tune the encoder to process
binary numbers. These modi�cations are driven by the unsatisfactory performance of the vanilla
transformer in distinguishing close numbers (Appendix A.2, Figure 11c). To aid in the ability of the
number to learn numerical similarity in carry-out cases when many bits �ip (32 vs. 31, 64 vs. 63), we
use bitwise embeddings and replace the dot product self-attention with a symmetric feed-forward
self-attention (Figure 11c). To help handle small differences in general, we use shared instead of
independent linear projections of queries, keys and values. To aid in reconstructing small numerical
differences, we scale up the residual connection strength by a factor of1:5. These modi�cations over
the original transformer model are shown in the Appendix (Figure 10b).

Figure 1 shows the sorting performance of �ve models: (1) the model with all the modi�cations
mentioned above, (2) the model with all modi�cations but with non-symmetric attention, (3) the
model with all modi�cations but with dot-product attention (instead of symmetric feed-forward self-
attention), (4) the vanilla transformer model with bitwise embedding, and (5) the vanilla transformer
model with one-hot embedding (which is default in NLP). The results of more variants and data
mixes are shown in the Appendix (Figure 11). We observe that while the transformer variants all have
reasonably high performance in sorting lists of numbers that are� 8 elements long from input/output
examples, the models fail to generalize to longer sequences, and performance sharply drops as the
sequence length increases.

Figure 2: Visualizing the decoder attention weights of
sorting transformers. Attention is over each row. The at-
tention in the seq2seq transformer saturates as the output
sequence length increases, while NEE maintains sharp
attention weights.

To understand why performance degrades as the
test sequences get longer, we plot the attention
matrix of the last layer in the decoder (Figure
2a). The model accurately attends to the �rst
few numbers in the sequence (distinct dots in
the chart) but the attention distribution becomes
“fuzzy” as the sequence length increases beyond
8 numbers, often resulting in the same num-
ber being repeatedly predicted. Next, we seek
to investigate the following question: Can we
retain high attention resolution (and correspond-
ing model accuracy) by restricting the model to
only observe the �rst scenario repeatedly?

1Throughout this work, the preponderance of errors are that regenerated numbers are off by small differences.
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4.2 SUBROUTINE LEVEL TRACES: SELECTION SORT

Using this insight, we break the problem up into pieces and increase the amount of supervision
provided during training. Instead of learning to perform the entire computation from only input/output
examples, we pick a simple sorting algorithm to emulate (selection sort in Figure 3) and train the
transformer to learn one action that can be composed in a loop to solve the task—much as a
programmer would while writing code. Our guide for selecting these subroutines to train an NEE
on is to determine the largest source code function to learn, where the output of the function is
data-dependent. That is, static parameters (like theXORor reshape in Section 4.3) are not learned.
For the case of selection sort, the task is to �nd the minimum of the current list.

Figure 3: Selection sort code translated to NEE architecture. The colored
box (find min ) is learned from input/output examples, but one potential
code implementation is shown.

Since the transformer had dif-
�culty clearly attending to val-
ues beyond the training sequence
length, we restrict the locations
in the unsorted sequence where
the transformer could possibly
attend in every iteration. This
is accomplished by producing a
conditional mask to mask out
the data elements that have al-
ready been appended to the
sorted list and feeding that
mask back into the transformer
(shown on the right side of Fig-
ure 3). This modi�cation sepa-
rates the control from the com-
putation (which elements should
be considered) from the computation itself (�nd the minimum value of the list). This allows the
transformer to learn output logits of much larger magnitude, resulting in sharper attention, as shown
in Figure 2b. Our experimental results consequently demonstrate strong generalization, perfectly
sorting sequences of up to length 100, as shown in Figure 12a (Appendix A.2).

4.3 RECURSIVESUBROUTINES: MERGESORT

Given the success of an NEE repeatedly performing an action (�nding the minimum of a list) in order
to implement selection sort, we explore how well the approach generalizes to other sorting algorithms.
As a programmer could write smaller subroutines to accomplish the sorting task in many different
ways, NEEs should be able mimic these subroutines from execution level traces. We therefore select a
very different sorting algorithm for study, merge sort. The code for one implementation of merge-sort
is shown in Figure 4.

Figure 4: Merge sort code translated to NEE architecture.

This code is broadly broken up
into two subroutines, data decom-
position (merge sort ) and an
action (merge ). Every call to
merge sort divides the list in
half until there is one element left,
which by de�nition is already sorted.
Then,merge unrolls the recursive
tree, combining every 2 elements
(then every 4, 8, etc.) until the list is
fully sorted. Recursive algorithms
like merge sort generally consist of
these two steps (the “recursive case”
and the “base case”).

The recursive case is commonly based around data movement, and we use a reshape() operation to
divide or combine lists every time and emulate thestart andmid pointers in the application (this
is a static parameter). It is possible to use the learned mask of the transformer to learn the recursive
decomposition serially (e.g., have the mask shift between the �rst pair of numbers, then the second
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pair, etc.), but the reshape function allows us to teach the transformer to swap all pairs of data for
every level in the tree in parallel.

More concretely, the transformer in Figure 4 implements the computation described in Figure 5. The
mask controls which numbers are seen by the encoder (1 meaning masked). Every timestep, the
model outputs the smallest number from the unmasked numbers and the position of the currently
selected number. This is used to produce the next mask with aSHIFT and aXOR. We do not learn
these operations since they are static and don't depend on data. The model stops when it outputs
an end token. Figure 5 shows the computation for one leaf of the recursive decomposition, but the
reshape allows the transformer to compute on all leaf nodes at a given level in the tree in parallel.
Given this model, Figure 6 demonstrates that the NEE is able to learn merge sort with perfect
strong generalization over long sequences (up to length 100). The NEE was trained to perform the
computation underlying merge sort on sequences of length� 8.

Figure 5: NEE merge sort trace.

Figure 6: NEE merge sort:
strong generalization over long
sequences. Training involved se-
quences of length� 8.

5 COMPOSABLESUBROUTINES: SHORTESTPATH

While both merge sort and selection sort demonstrated that an NEE can compose subroutines
repeatedly to sort a list with perfect accuracy, programmers often need to compose multiple different
subroutines to achieve larger goals. In this section, we study whether multiple NEEs can be composed
to execute a more complicated algorithm.

To that end, we study a graph algorithm, Dijkstra's algorithm to �nd shortest paths, shown on the left
of Figure 7, which is mirrored in the source code on the left. The algorithm consists of four major
steps: (1) Initialization: set the distance from the source node to the other nodes to in�nity (ende in
Section 3.1), then append them into a queue structure for processing; (2) Compute newly found path
from the source node to all neighbors of the selected node; (3) Update path lengths if they are smaller
than the stored lengths; (4) Select he node with the smallest distance to the source node and remove it
from the queue. The algorithm repeats steps (2)–(4) as long as there are elements in the queue.

Figure 7: Dijkstra code translated to NEE architecture.

Computing Dijkstra's
algorithm requires
the NEEs to learn the
three corresponding
subroutines, as shown
on the right in Figure
7. Finding the min-
imum between the
possible paths
andshortest path
as well as the
minimum current
shortest path can
be accomplished
by the modi�ed
transformer trained to
accomplish the same
goal for sorting in Section 4.2. The new challenges are to learn addition (Section 5.1) and to compose
these learned models sequentially to achieve shortest path in a generalizable way (Section 5.2).
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5.1 LEARNING ADDITION

The addition subroutine in Dijkstra's algorithm iteratively adds all of the elements in the adjacency
list of a selected node to the shortest path that is currently known. To learn this function, we train an
NEE to learn the sum of two numbers, then apply it to Dijkstra's algorithm.

Given the input/output examples for this subroutine, we �nd that addition is a more challenging task
than sorting. Zero and in�nity (end token, Sec. 2.3) are important concepts for the model to learn.
Our bitwise embedding already represents zero as the zero vector. We �nd it useful to embed in�nity
as a directly learnable vector. We use a moving average on the parameters of the neural network in
evaluation to reduce the noise in weights (Kushner & Yang, 1995; Polyak & Juditsky, 1992), and
with this, our modi�ed transformer architecture is capable of learning addition to 100% accuracy.

To understand the number system that the NEE has learned, we visualize the structure of the learned
embeddings using PCA to 3 dimensions, and compare the embeddings learned from addition and
sorting, shown in Figure 8a and Figure 8b, respectively. Each node is colored based on the number
it represents. We �nd that a highly structured number system has been learned, and the addition
embeddings are rigorously arranged such that the sequence of numbers that increase by 1 are placed
on a line (shown with arrows in Figure 8a). The sorting embeddings exhibit many small clusters and
the numbers in each cluster are related. More detailed visualizations are provided in Appendix A.3.

(a) Addition: The embeddings of a sequence of
numbers that increase by 1 are placed on a line.

(b) Sorting: The numbers per cluster are related
according to the pattern of gray arrows (bottom).

Figure 8: Visualization of learned addition and sorting embeddings.

In addition to testing on unseenpairs of numbers in the addition task, we can also test oncompletely
unseen numbersto further test the generalization of our model. As shown in Table 1, even with
half the data range held out of training, the model achieves high accuracy. This study corroborates
prior work that shows that the model only needs to observe the bit being toggled to generalize to
the numerical range represented by any given bit (Shi et al., 2019). This is a promising result as it
suggests we may be able to extend the framework to much larger bit vectors, where observing every
number in training is intractable.

Table 1: Performance for different hold-out %
of 8-bit number ranges.

Hold-out % 6.25% 12.5% 25% 50%

Accuracy 99.96% 100% 99.2% 98.72%

Figure 9: NEE Dijkstra:
Training on graphs with�
10 nodes generalizes per-
fectly to � 40-node graphs.

5.2 RESULTS

Given that NEEs can be trained to perform the necessary subroutines underlying Dijkstra's algorithm,
we demonstrate that they can then be composed to reliably compute the overall algorithm and
generalize to much larger graphs. A step-by-step view of the operations that the NEEs perform are
shown in Figure 15 in Appendix A.4. The examples are Erd�os-Ŕenyi random graphs (since the types
of graphs do not matter). We train on graphs with up to 8 nodes and test on graphs up to 40 nodes,
with 100 graphs evaluated at each size. Weights are randomly assigned within the allowed 8-bit
number range. We evaluate the prediction accuracy on the �nal output (the shortest path of all nodes
to the source nodes) and achieve 100% test accuracy with graph sizes up to 40 nodes (Figure 9).
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