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ABSTRACT

A central challenge in reinforcement learning is discovering effective policies for
tasks where rewards are sparsely distributed. We postulate that in the absence of
useful reward signals, an effective exploration strategy should seek out decision
states. These states lie at critical junctions in the state space from where the agent
can transition to new, potentially unexplored regions. We propose to learn about
decision states from prior experience. By training a goal-conditioned policy with
an information bottleneck, we can identify decision states by examining where
the model actually leverages the goal state. We find that this simple mechanism
effectively identifies decision states, even in partially observed settings. In effect,
the model learns the sensory cues that correlate with potential subgoals. In new
environments, this model can then identify novel subgoals for further exploration,
guiding the agent through a sequence of potential decision states and through new
regions of the state space.

1 INTRODUCTION

Deep reinforcement learning has enjoyed many recent successes in domains where large amounts
of training time and a dense reward function are provided. However, learning to quickly perform
well in environments with sparse rewards remains a major challenge. Providing agents with useful
signals to pursue in lieu of environmental reward becomes crucial in these scenarios. In this work, we
propose to incentivize agents to learn about and exploit multi-goal task structure in order to efficiently
explore in new environments. We do so by first training agents to develop useful habits as well
as the knowledge of when to break them, and then using that knowledge to efficiently probe new
environments for reward.

We focus on multi-goal environments and goal-conditioned policies (Foster and Dayan, [2002} |Schaul
et al., 2015; |Plappert et al., [2018). In these scenarios, a goal G is sampled from p(G) and the
beginning of each episode and provided to the agent. The goal GG provides the agent with information
about the environment’s reward structure for that episode. For example, in spatial navigation tasks, G
might be the location or direction of a rewarding state. We denote the agent’s policy mp(A | S, G),
where S is the agent’s state, A the agent’s action, and 6 the policy parameters.

We incentivize agents to learn task structure by training policies that perform well under a variety of
goals, while not overfitting to any individual goal. We achieve this by training agents that, in addition
to maximizing reward, minimize the policy dependence on the individual goal, quantified by the
conditional mutual information I(A; G | S). This is inspired by the information bottleneck approach
(Tishby et al.l [1999) of training deep neural networks for supervised learning (Alemi et al., 2017}
Chalk et al., 2016} |Achille and Soatto, |2016; Kolchinsky et al.l 2017), where classifiers are trained
to achieve high accuracy while simultaneously encoding as little information about the input as
possible. This form of “information dropout” has been shown to promote generalization performance
(Achille and Soattol 2016; |Alemi et al., 2017). We show that minimizing goal information promotes
generalization in an RL setting as well. Our proposed model is referred as InfoBot (inspired from the
Information Bottleneck framework).
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This approach to learning task structure can also be interpreted as encouraging agents to fol-
low a default policy: This is the default behaviour which the agent should follow in the ab-
sence of any additional task information (like the goal location, the relative distance to the goal
or a language instruction etc). To see this, note that our regularizer can also be written as
I(A;G | S) = E,, [DxLlme(A | S,G) | mo(A | S)]], where mp(A | S, G) is the agent’s multi-goal
policy, E,, denotes an expectation over trajectories generated by 7y, Dk, is the Kuhlback-Leibler
divergence, and mo(A | S) = > p(g) me(A | S, g) is a “default” policy with the goal marginalized
out. While the agent never actually follows the default policy 7y directly, it can be viewed as what
the agent might do in the absence of any knowledge about the goal. Thus, our approach encourages
the agent to learn useful behaviours and to follow those behaviours closely, except where diverting
from doing so leads to significantly higher reward. Humans too demonstrate an affinity for relying on
default behaviour when they can (Kool and Botvinick} 2018]), which we take as encouraging support
for this line of work (Hassabis et al., [2017).

We refer to states where diversions from default behaviour occur as decision states, based on the
intuition that they require the agent not to rely on their default policy (which is goal agnostic) but
instead to make a goal-dependent “decision.” Our approach to exploration then involves encouraging
the agent to seek out these decision states in new environments. Decision states are natural subgoals
for efficient exploration because they are boundaries between achieving different goals (van Dijk and
Polani, 2011)). By visiting decision states, an agent is encouraged to 1) follow default trajectories
that work across many goals (i.e could be executed in multiple different contexts) and 2) uniformly
explore across the many “branches” of decision-making. We encourage the visitation of decision
states by first training an agent with an information regularizer to recognize decision states. We
then freeze the agent’s policy, and use Dk [mg(A | S, G) | mo(A | S)] as an exploration bonus for
training a new policy. Crucially, this approach to exploration is tuned to the family of tasks the agent
is trained on, and we show that it promotes efficient exploration than other task-agnostic approaches
to exploration (Houthooft et al.|[2016; Pathak et al.| [2017b).

Our contributions can be summarized as follows :

e We regularize RL agents in multi-goal settings ﬂe(p : I‘I?r@ @
with I(A;G | S), an approach inspired by the
information bottleneck and the cognitive science
of decision making, and show that it promotes Pace(A | 5, 7)

generalization across tasks. @

e We use policies as trained above to then provide encoder
an exploration bonus for training new policies penc(Z | S, ) T
in the form of Dk [mg(A | S,G) | mo(A | S)],
which encourages the agent to seek out decision @ @
states. We demonstrate that this approach to ex-

ploration performs more effectively than other
state-of-the-art methods, including a count-based
bonus, VIME (Houthooft et al.l 2016), and cu-
riosity (Pathak et al.l 2017b).

Figure 1: Policy architecture.

2 OUR APPROACH

Our objective is to train an agent on one set of tasks (environments) T' ~ py.in(7), but to have
the agent perform well on another different, but related, set of tasks T ~ pq(7"). We propose to
maximize the following objective in the training environments:

J(0) = Eq,[r] = BI(A;G | S)

= Enylr — ADxe [mo(A | 5.G) | mo(A| )] M

where E ., denotes an expectation over trajectories generated by the agent’s policy, 5 > 0 is a tradeoff
parameter, Dy is the Kullback-Leibler divergence, and mo(A | S) = > p(g) me(A | S, g) is a
“default” policy with the agent’s goal marginalized out.
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2.1 TRACTABLE BOUNDS ON INFORMATION

We parameterize the policy mp(A | S,G) using an encoder pen(Z |S,G) and a decoder
Paec(A | S, Z) such that m9(A | S,G) = 3, penc(z | S, G) pacc(A | S, z) (see figure [1)] The en-
coder output Z is meant to represent the information about the present goal G that the agent believes
is important to access in the present state S in order to perform well. The decoder takes this encoded
goal information and the current state and produces a distribution over actions A.

We suppress the dependence of pey. and pgee on 0, but 0 in the union of their parameters. Due to the
data processing inequality (DPI) (Cover and Thomas|, [2006), I(Z; G | S) > I(A; G | S). Therefore,
minimizing the goal information encoded by penc also minimizes I(A4; G | S).

Thus, we instead maximize this lower bound on .J(6):

J(0) = Ex,[r] = BI(Z;G | 5)

B, 1 — ADxw penc(Z | S.G) | p(Z | )] @

where p(Z | S) = >_ p(g) Penc(Z | S, g) is the marginalized encoding.

In practice, performing this marginalization over the goal may often be prohibitive, since the agent
might not have access to the goal distribution p(G), or even if the agent does, there might be
many or a continuous distribution of goals that makes the marginalization intractable. To avoid
this marginalization, we replace p(Z | S) with a variational approximation ¢(Z | S) (Kingma and
Welling| 2014; |Alemi et al., 2017; Houthooft et al., 2016; |Strouse et al., 2018)). This again provides a
lower bound on J(#) since:

p(zlg.s
17:G18) =Y plz,s.9)log (<||>)
zZ,8,9 p
= plz,5,9)logp(z | g, s Zp p(z | s)logp(= | 5) 3)
2,8,
> " plz,s,9)logp(z | g.5) Zp p(z ] s)logq(z | s),
2,8,9

where the inequality in the last line, in which we replace p(z | s) with ¢(z | s), follows from that
Dx[p(Z | s) | 4(Z | 5)] 2 0= 3. p(z | s)logp(z | s) =3, p(2 | 5)logq(z | s).

Thus, we arrive at the lower bound .J (9) that we maximize in practice:

J(G) > J(G) =Er, [7‘ _BDKL[ enc(Z | S, G) ‘ Q(Z ‘ S)H . 4)

In the experiments below, we fix ¢(Z | S) to be unit Gaussian, however it could also be learned, in
which case its parameters should be included in 8. Although our approach is compatible with any
RL method, we maximize J (0) on-policy from sampled trajectories using a score function estimator
(Williams), |1992; |Sutton et al.| [1999a)). As derived by Strouse et al.[(2018)), the resulting update at
time step ¢, which we denote Vg j(t), is:

Vo (t) = Rylog(ma(as | 81,9:)) — BVeDkL [Penc(Z | s159¢) | a(Z | 50)], (5)

where R, = ZZ:t ~¥~tF, is a modified return, 7y = ry + BDKL [Penc(Z | 5t,9) | ¢(Z | 5¢)] is a
modified reward, T’ is the length of the current episode, and a,, s¢, and g; are the action, state, and
goal at time ¢, respectively. The first term in the gradient comes from applying the REINFORCE
update to the modified reward, and can be thought of as encouraging the agent to change the policy in
the present state to revisit future states to the extent that they provide high external reward as well as
low need for encoding goal information. The second term comes from directly optimizing the policy
to not rely on goal information, and can be thought of as encouraging the agent to directly alter the
policy to avoid encoding goal information in the present state. Note that while we take a Monte Carlo
policy gradient, or REINFORCE, approach here, our regularizer is compatible with any RL algorithm.

In practice, we estimate the marginalization over Z using a single sample throughout our experiments.
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2.2 POLICY AND EXPLORATION TRANSFER

By training the policy as in equation [5|the agent learns to rely on its (goal-independent) habits as
much as possible, deviating only in decision states (as introduced in Section[I)) where it makes goal-
dependent modifications. We demonstrate in Section 4] that this regularization alone already leads to
generalization benefits (that is, increased performance on T ~ py(T) after training on T ~ pyain (7).
However, we train the agent to identify decision states as in equation [5 such that the learnt goal-
dependent policy can provide an exploration bonus in the new environments. That is, after training on
T ~ Puain(T), we freeze the agent’s encoder pe,(Z | S, G) and marginal encoding ¢(Z | .S), discard
the decoder pgec (A | S, Z), and use the encoders to provide Dky, [penc(Z | S, G) | ¢(Z | S)] as a state
and goal dependent exploration bonus for training a new policy m4(A | S,G) on T ~ pres(T). To
ensure that the new agent does not pursue the exploration bonus solely (in lieu of reward), we also
decay the bonus with continued visits by weighting with a count-based exploration bonus as well.
That is, we divide the KL divergence by 1/c(5), where ¢(.S) is the number of times that state has
been visited during training, which is initialized to 1. Letting 7 (¢) be the environmental reward at
time ¢, we thus train the agent to maximize the combined reward r;:

re = rolt) + f(S)DKL[ we(Z | 50,90) | 4(Z | s1)]. ®)

Our approach is summarized in algorithm I}

Algorithm 1 Transfer and Exploration via the Information Bottleneck

Require: A policy mg(A | S,G) =, Penc(2 | S, G) pacc(A | S, z), parameterized by 0
Require: A variational approximation ¢(Z | S) to the goal-marginalized encoder
Require: A regularization weight 3
Require:  Another policy w4 (A | S, G), along with a RL algorithm A to train it
Require: A set of training tasks (environments) piin(7') and test tasks pest(7')
Require: A goal sampling strategy p(G | T') given a task T'
for episodes = 1 to Ny, do
Sample a task T' ~ piin(T") and goal G ~ p(G | T')
Produce trajectory 7 on task 7" with goal G using policy mg(A | S, G)
Update policy parameters 6 over 7 using Eqn[j]
end for
Optional: use 7y directly on tasks sampled from pieg (7'
for episodes = 1 to Ny, do
Sample a task 7' ~ pist(T') and goal G ~ p(G | T')
Produce trajectory 7 on task 7" with goal G using policy 74(A | S, G)
Update policy parameters ¢ using algorithm A to maximize the reward given by Eqn|[6]
end for

3 RELATED WORK

van Dijk and Polani| (2011)) were the first to point out the connection between action-goal information
and the structure of decision-making. They used information to identify decision states and use
them as subgoals in an options framework (Sutton et al., | 1999b)). We build upon their approach by
combining it with deep reinforcement learning to make it more scaleable, and also modify it by using
it to provide an agent with an exploration bonus, rather than subgoals for options.

Our decision states are similar in spirit to the notion of “’bottleneck states” used to define subgoals in
hierarchical reinforcement learning. A bottleneck state is defined as one that lies on a wide variety of
rewarding trajectories (McGovern and Bartol 20015 Stolle and Precup, |2002) or one that otherwise
serves to separate regions of state space in a graph-theoretic sense (Menache et al.l [2002; [Simsekl
et al., 2005 [Kazemitabar and Beigy, 2009; |Machado et al., 2017). The latter definition is purely based
on environmental dynamics and does not incorporate reward structure, while both definitions can lead
to an unnecessary proliferation of subgoals. To see this, consider a T-maze in which the agent starts
at the bottom and two possible goals exist at either end of the top of the T. All states in this setup are
bottleneck states, and hence the notion is trivial. However, only the junction where the lower and
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upper line segments of the T meet are a decision state. Thus, we believe the notion of a decision
state is a more parsimonious and accurate indication of good subgoals than is the above notions of a
bottleneck state. The success of our approach against state-of-the-art exploration methods (Section [4))
supports this claim.

We use the terminology of information bottleneck (IB) in this paper because we limit (or bottleneck)
the amount of goal information used by our agent’s policy during training. However, the correspon-
dence is not exact: while both our method and IB limit information into the model, we maximize
rewards while IB maximizes information about a target to be predicted. The latter is thus a supervised
learning algorithm. If we instead focused on imitation learning and replaced E[r] with I(A*; A | S)
in Eqn[T] then our problem would correspond exactly to a variational information bottleneck (Alemi
et al.,[2017) between the goal GG and correct action choice A* (conditioned on S).

Whye Teh et al.| (2017) trained a policy with the same KL divergence term as in Eqn[I]} But this term
is used completely differently context: Whye Teh et al.|(2017) use a regularizer on the KL-divergence
between action distributions of different policies to improve distillation, does not have any notion of
goals, and is not concerned with exploration or with learning exploration strategies and transferring
them to new domain. We use the variational information bottleneck, which has a KL divergence
penalty on the difference between the posterior latent variable distribution and the prior. We are not
distilling multiple policies. Parallel to our work, [Strouse et al.|(2018) also used Eqn|[I]as a training
objective, however their purpose was not to show better generalization and transfer, but instead to
promote the sharing and hiding of information in a multi-agent setting. In concurrent work (Galashov
et al., 2019) proposed a way to learn default policy which helps to enforce an inductive bias, and
helps in transfer across different but related tasks.

Popular approaches to exploration in RL are typically based on: 1) injecting noise into action selection
(e.g. epsilon-greedy, (Osband et al.,|2016)), 2) encouraging “curiosity” by encouraging prediction
errors of or decreased uncertainty about environmental dynamics (Schmidhuber, |1991; [Houthooft:
et al., 2016; Pathak et al., 2017b)), or 3) count-based methods which incentivize seeking out rarely
visited states (Strehl and Littman) 2008; Bellemare et al., 2016; Tang et al.,|2016} |Ostrovski et al.
2017). One limitation shared by all of these methods is that they have no way to leverage experience
on previous tasks to improve exploration on new ones; that is, their methods of exploration are not
tuned to the family of tasks the agent faces. Our transferrable exploration strategies approach in
algorithm[T|however does exactly this. Another notable recent exception isGupta et al[ (2018), which
took a meta-learning approach to transferable exploration strategies.

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the following experimentally:

e The goal-conditioned policy with information bottleneck leads to much better policy transfer
than standard RL training procedures (direct policy transfer).

e Using decision states as an exploration bonus leads to better performance than a variety of
standard task-agnostic exploration methods (transferable exploration strategies).

(a) MultiRoomN4S4 (b) MultiRoomN12S10 (c) FindObjS5 (d) FindObjS6

Figure 2: MultiRoomN X SY and FindObjSY MiniGrid environments. See text for details.



Published as a conference paper at ICLR 2019

4.1 MINIGRID ENVIRONMENTS

The first set of environments we consider are partially observable grid worlds generated with MiniGrid
(Chevalier-Boisvert and Willems| [2018), an OpenAl Gym package (Brockman et al. [2016). We
consider the MultiRoomN X SY and a FindObjSY task domains, as depicted in Figure [2| Both
environments consist of a series of connected rooms, sometimes separated by doors that need opened.
In both tasks, black squares are traversable, grey squares are walls, black squares with colored
borders are doors, the red triangle is the agent, and the shaded area is the agent’s visible region. The
MultiRoomN X SY the environment consists of X rooms, with size at most Y, connected in random
orientations. The agent is placed in a distal room and must navigate to a green goal square in the most
distant room from the agent. The agent receives an egocentric view of its surrounding, consisting of
3x3 pixels. The task increases in difficulty with X and Y. The FindObjSY environment consists of
9 connected rooms of size Y — 2 X Y — 2 arranged in a grid. The agent is placed in the center room
and must navigate to an object in a randomly chosen outer room (e.g. yellow circle in bottom room
in Figure 2 and blue square in top left room in Figure 2[d). The agent again receives an egocentric
observation, this time consisting of 7x7 pixels, and again the difficulty of the task increases with Y.
For more details of the environment, see Appendix [H]

Solving these partially observable, sparsely rewarded tasks by random exploration is difficult because
there is a vanishing probability of reaching the goal randomly as the environments become larger.
Transferring knowledge from simpler to more complex versions of these tasks thus becomes essential.
In the next two sections, we demonstrate that our approach yields 1) policies that directly transfer well
from smaller to larger environments, and 2) exploration strategies that outperform other task-agnostic
exploration approaches.

4.2 DIRECT POLICY GENERALIZATION ON MINIGRID TASKS

We first demonstrate that training an agent with a goal bottleneck alone already leads to more effective
policy transfer. We train policies on smaller versions of the MiniGrid environments (MultiRoomN2S6
and FindObjS5 and S7), but evaluate them on larger versions (MultiRoomN10S4, N10S10, and
N12S10, and FindObjS7 and S10) throughout training.

Figure [3] compares an agent trained with a goal bottleneck (first half of Algorithm[I)) to a vanilla
goal-conditioned A2C agent (Mnih et al.,[2016) on MultiRoomN X SY generalization. As is clear,
the goal-bottlenecked agent generalizes much better. The success rate is the number of times the
agent solves a larger task with 10-12 rooms while it is being trained on a task with only 2 rooms.
When generalizing to 10 small rooms, the agent learns to solve the task to near perfection, whereas
the goal-conditioned A2C baseline only solves <50% of mazes (Figure [3j).

Table [T compares the same two agents on FindObjSY  generalization. In addition, this comparison
includes an ablated version of our agent with 5 = 0, that is an agent with the same architecture
as in Figure[T| but with the no information term in its training objective. This is to ensure that our
method’s success is not due to the architecture alone. As is evident, the goal-bottlenecked agent again
generalizes much better.

We analyzed the agent’s behaviour to understand the intuition of why it generalizes well. In the
MultiRoomN X SY environments, we find that the agent quickly discovers a wall following strategy.
Since these environments are partially observable, this is indeed a good strategy that also generalizes
well to larger mazes. In the FindObjSY environments, on the other hand, the agent sticks toward
the center of the rooms, making a beeline from doorway to doorway. This is again a good strategy,
because the agent’s field of view in these experiments is large enough to see the entire room in which
its in to determine if the goal object is present or not.

Method FindObjS7 FindObjS10
Goal-conditioned A2C 56% 36%
InfoBot with 5 = 0 44% 24%
InfoBot 81% 61%

Table 1: Policy generalization on FindObjSY . Agents trained on FindObjS5, and evaluated on
FindObjS7 and S10.
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Figure 3: Policy generalization on MultiRoomN X SY'. Success is measured by the percent of time
the agent can find the goal in an unseen maze. Error bars are standard deviations across runs. Baseline
is a vanilla goal-conditioned A2C agent.

Method MultiRoomN3S4  MultiRoomN5S4
Goal-conditioned A2C 0% 0%
TRPO + VIME 54% 0%
Count based exploration 95% 0%
Curiosity-based exploration 95 % 54%
InfoBot (decision state exploration bonus) 90% 85%

Table 2: Transferable exploration strategies on MultiRoomN X SY. InfoBot encoder trained on
MultiRoomN2S6. All agents evaluated on MultiRoomN3S4 and N5S4. While several methods
perform well with 3 rooms, InfoBot performs far better as the number of rooms increases to 5.

4.3 TRANSFERABLE EXPLORATION STRATEGIES ON MINIGRID TASKS

We now evaluate our approach to exploration (the second half of Algorithm|[T). We train agents with a
goal bottleneck on one set of environments (MultiRoomN2S6) where they learn the sensory cues that
correspond to decision states. We then use the identified decision states to guide exploration on another
set of environments (MultiRoomN3S4, MultiRoomN4S4, and MultiRoomN5S4). We compare to
several standard task-agnostic exploration methods, including count-based exploration (Eqn [6] without
the Dy, that a bonus of 3/4/¢(s)), VIME (Houthooft et al.| [2016), and curiosity-driven exploration
(Pathak et al., 2017b)), as well as a goal-conditioned A2C baseline with no exploration bonuses.
Results are shown in Table [2and Figure[d]

On a maze with three rooms, the count-based method and curiosity-driven exploration slightly
outperform the proposed learned exploration strategy. However, as the number of rooms increases,
the count-based method and VIME fail completely and the curiosity-based method degrades to only
54% success rate. This is in contrast to the proposed exploration strategy, which by learning the
structure of the task, maintains a high success rate of 85%.

4.4 GOAL-BASED NAVIGATION TASKS

In this task, we use a partially observed goal based MiniPacMan environment as shown in Figure [3
The agent navigates a maze, and tries to reach the goal. The agent sees only a partial window around
itself. The agent only gets a reward of “1” when it reaches the goal. For standard RL algorithms,
these tasks are difficult to solve due to the partial observability of the environment, sparse reward
(as the agent receives a reward only after reaching the goal), and low probability of reaching the
goal via random walks (precisely because these junction states are crucial states where the right
action must be taken and several junctions need to be crossed). This environment is more challenging
as compared to the Minigrid environment, as this environment also has dead ends as well as more
complex branching.

We first demonstrate that training an agent with a goal bottleneck alone leads to more effective
policy transfer. We train policies on smaller versions of this goal based MiniPacMan environment
environments (6 X 6 maze), but evaluate them on larger versions (11 X 11) throughout training.
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Figure 4: Transferable exploration strategies on MultiRoomNXSY. As the number of rooms
increases (from left to right), a count-based exploration bonus alone cannot solve the task, whereas
the proposed exploration bonus, by being tuned to task structure, enables success on these more
difficult tasks.

Algorithm (Train on 6 x 6 maze) Evaluate on 11 x 11 maze
Actor-Critic 5%
PPO (Proximal Policy Optimization 8%
Actor-Critic + Count-Based 7%
Curiosity Driven Learning (ICM) 47%
Goal Based (UVFA) Goal - TopDownImage of the goal 7%
Goal Based (UVFA) Goal - Relative Dist 15%
Feudal RL 37%
InfoBot (proposed) 64%

Table 3: Experiments for training the agent in a 6 X 6 maze environment, and then generalizing to a
11 x 11 maze. Comparison of our proposed method to regular actor-critic methods, UVFA and other
hierarchical approaches. Results shown for the % of times agent reaches the goal. The results are
average over 3 random seeds.

Table. 3 compares an agent trained with a goal bottleneck (first half of Algorithm[I) to a vanilla
goal-conditioned A2C agent (Mnih et al.l 2016)), exploration methods like count-based exploration,
curiosity driven exploration (Pathak et al.,2017a) and Feudal RL algorithm (Vezhnevets et al.,2017).
The goal-bottlenecked agent generalizes much better. The success rate is the number of times the
agent solves a larger task while it is being trained on a task with only 2 rooms. When generalizing to
larger maze, the agent learns to solve the task 64% of the times, whereas other agents solve <50% of
mazes (Table 3). For representing the goals, we experiment with 2 versions. 1) In which we give
the agent’s relative distance to the goal as the goal representation. 2) In which we give the top down
image of the goal. For our experiments, the baseline in which we give the relative distance to the goal
worked better.

4.5 MIDDLE GROUND BETWEEN MODEL BASED RL AND MODEL FREE RL

We further demonstrate the idea of decision states in a planning goal-based navigation task that uses
a combination of model-based and model-free RL. Identifying useful decision states can provide a
comfortable middle ground between model-free reasoning and model-based planning. For example,
imagine planning over individual decision states, while using model-free knowledge to navigate
between bottlenecks: aspects of the environment that are physically complex but vary little between
problem instances are handled in a model-free way (the navigation between decision points), while
the particular decision points that are relevant to the task can be handled by explicitly reasoning
about causality, in a more abstract representation. We demonstrate this using a similar setup as in
imagination augmented agents (Weber et al.|[2017). In imagination augmented agents, model free
agents are augmented with imagination, such that the imagination model can be queried to make
predictions about the future. We use the dynamics models to simulate imagined trajectories, which
are then summarized by a neural network and this summary is provided as additional context to a
policy network. We use the output of the imagination module as a “goal” and we want to show that
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only near the decision points (i.e potential subgoals) the agent wants to make use of the information
which is a result of running imagination module.

(@) (b)

Figure 5: Goal based MiniPacMan navigation task: We train on a 6 x 6 environment, and evaluate
the generalization performance in a 11 x 11 maze. The agent is represented by white color and has to
reach the goal (light green marker).

(a)

Figure 6: Goal based MiniPacMan navigation task: Here the agent gets a full observation of
environment. We follow the similar setup as in Imagination Augmented agents. In this, the output of
the imagination core is treated as a contextual information by the policy. We treat this contextual
information as the “goal” in the InfoBot setup. Here, we want to see, where the policy wants to access
the information provided by running the imagination module. Ideally, only at the decision states (i.e
potential sub-goals) policy should access the output of the imagination module. We show the output
of Dxi [Penc(Z | 8¢, 9¢) | ¢(Z | s1)], where g; refers to the output of imagination module. High KL
is represented by lighter color.

5 CONNECTIONS TO NEUROSCIENCE AND COGNITIVE SCIENCE

The work we have presented bears some interesting connections to cognitive science and neuroscience.
Both of these fields draw a fundamental distinction between automatic and controlled action selection
(Miller and Cohenl 2001)). In automatic responses, perceptual inputs directly trigger actions according
to a set of habitual stimulus-response associations. In controlled behaviour, automatic responses are
overridden in order to align behaviour with a more complete representation of task context, including
current goals. As an example, on the drive to work, automatic responding may trigger the appropriate
turn at a familiar intersection, but top-down control may be needed to override this response if the
same intersection is encountered on the route to a less routine destination.

As is readily evident, our InfoBot architecture contains two pathways that correspond rather directly
to the automatic and controlled pathways that have been posited in cognitive neuroscience models
(Miller and Cohenl,2001). In the neuroscience context, representation of task context and the function
of overriding automatic responses has been widely linked with the prefrontal cortex (Miller and Cohen|
[2001), and it is interesting to consider the route within InfoBot from goal to action representations in
this light. Notably, recent work has suggested that prefrontal control processes are associated with
subjective costs; ceteris paribus, human decision-makers will opt for habitual or automatic routes
to behaviour. This of course aligns with InfoBot, and in particular with the KL term in Equation|I]
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This correspondence with neuroscience provides some indirect encouragement for the approach
implemented in the present work. In turn, the InfoBot framework provides an indication for why a
cost of control may exist in human cognition, namely that this encourages the emergence of useful
habits, with payoffs for efficient exploration and transfer.

6 CONCLUSION

In this paper, we proposed to train agents to develop “default behaviours™ as well as the knowledge of
when to break those behaviour, using an information bottleneck between the agent’s goal and policy.
We demonstrated empirically that this training procedure leads to better direct policy transfer across
tasks. We also demonstrated that the states in which the agent learns to deviate from its habits, which
we call ’decision states”, can be used as the basis for a learned exploration bonus that leads to more
effective training than other task-agnostic exploration methods.
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A  MATHEMATICAL FRAMEWORK

We show that the proposed approach is equivalent to regularizing agents with a variational upper
bound on the mutual information between goals and actions given states.

Recall that the variational information bottleneck objective (Alemi et al.|[2016; [Tishby et al., 2000) is
formulated as the maximization of I(Z,Y") — SI(Z, X). In our setting, the input (X) corresponds to
the goal of the agent (G) and (A) corresponds to the target output.

We assume that the joint distribution p(G, A, Z|S) factorizes as follows: p(G, A, Z|S)
p(Z|G, A, S)p(AlZ, S)p(G|S) = p(Z|G, S)p(A|Z, S)p(G|S) i.e., we assume p(Z|G, A, S)
p(Z|G, S), corresponding to the Markov chain G — Z — A.

The Data Processing Inequality (DPI) (Beaudry and Renner, 2012} |Kinney and Atwall 2014; |Achille
and Soatto| [2017) for a Markov chain x — z — y ensures that I (z;z) > I(z;y).

Hence for Infobot, it implies,

I(A:G|S) < I(Z;G|S) (7)
To get an upper bound on I(G; Z|S), we first would get an upper bound on I(G; Z|S = s), and then
we average over p(s) to get the required upper bound.

We get the following result,

G521 = 9) = 3 plalon(els. g)log P, ®

Here, we assume that marginalizing over goals to get p(z[s) = >__ p(g)p(z|s, g) is intractable, and

so we approximate it with a normal prior pp,;or = N (0, 1). Since the cross-entropy between p(z|s)
and pprior(2) is larger than between p(z|s) and itself, we get the following upper bound:

I(G; Z|S = 5) <> plgls) Zp zls, g log(s(gz))
Pprior

’ €))

= ZP(Q\S)DKL[I?(ZW g)|pprior(z)]

Averaging over state probabilities gives

1(Z;G|S) <Zp Zp gls) DcL[p(zls, 9) pprior (2)]

(10)
—Zp Zp (s9) Drer [p(2]3, 9) [Pprior (2)]

Using Eq. [/|, we can get an upper bound on the mutual information between immediate action and
goal. Here 7(z) is a fixed prior.

I1(A;G|S) < I(Z;G|S)
ZP Zp(3|g) KL [penc (23, 9)|[Pprior (2)] (11)

\H’_/ A/_/ penalize encoder for departure from prior

sample a goal sample a trajectory

Hence, minimizing the KL between pp,ior(2) and p(z|s, g) penalizes the use of information about
the goal by the policy, so that when the policy decides to use information about the goal, it must be
worthwhile, otherwise the agent is supposed to follow a "default" behaviour.
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Figure 7: Transferable exploration strategies on Humanoid, Walker2D, and Hopper. The "base-
line” is PPO (Schulman et al.,[2017). Experiments are run with 5 random seeds and averaged over
the runs.
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Figure 8: Transferable exploration strategies on Pong, Qbert, Seaquest, and Breakout. The
baseline is a vanilla A2C agent. Results averaged over three random seeds.

A.1 TRANSFERABLE EXPLORATION STRATEGIES FOR CONTINUOUS CONTROL

To show that the InfoBot architecture can also be applied to continuous control, we evaluated the
performance of InfoBot on three continuous control tasks from OpenAl Gym (Brockman et al.,
2016). Because InfoBot depends on the goal, in the control domains, we use high value states as an
approximation to the goal state following |Goyal et al.[|(2018]). We maintain a buffer of high value
states, and at each update, we sample a high value state from the buffer which acts as a proxy for
the goal. We compared to proximal policy optimization (PPO) (Schulman et al., [2017), as well as
two ablated versions of our model: 1) instead of taking high value states, we take low value states
from the buffer as proxy to the goal ("InfoBot-low-value”) and 2) we use the same InfoBot policy
architecture but do not use the information regularizer (i.e. 5 = 0) ("InfoBot-zero-k1”). The results in
Figure[7]show that InfoBot improves over all three alternatives.

A.2 TRANSFERABLE EXPLORATION STRATEGIES FOR ATARI

We further evaluate our experiments on few Atari games (Bellemare et al., [2013)) using A2C and
compare it with our proposed InfoBot framework. In this experiment, our goal is to show that InfoBot
can generalize to even more complex domains compared to the maze tasks above. As in the control
experiments, we again use high value states as a proxy to the goal|Goyal et al.|(2018)) and maintain a
buffer of 20000 states to sample and prioritize high value states. We evaluate our proposed model on
4 Atari games (Pong, QBert, Seaquest and BreakOut) as shown in figure [8] We find that compared to
a vanilla A2C agent, our InfoBot A2C agent performs significantly better on these Atari tasks. Our
experiments are averaged over three random seeds.

B TRANSFERRED EXPLORATION STRATEGY IN ATARI

We demonstrate that the encoder can be used to transfera exploration strategy across Atari games
to help agents learn a new game quickly. To initialize the encoder, we train an agent on the game
Seaquest, where the agent is trained to identify the decision states. We then re-use this encoder on
another Atari environment to provide an exploration bonus. Our experiments on the Atari games are
evaluated on the games of Pong and Qbert. On Pong, an agent with learns to get a task return of 20 in
3M time steps. We show that the identification of bottleneck states can be used to transfer exploration
strategies across Atari games (Fig.[9).
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Figure 9: Transfer across ALE Games (Pong, Qbert and Freeway) using egocentric encoder to
provide exploration bonus, trained from Seaquest. Comparison of InfoBot (A2C + KL Regularizer)
with a Baseline A2C. Experiment results averaged over four random seeds. See Section

C ALGORITHM IMPLEMENTATION DETAILS

We evaluate the InfoBot framework using Adavantage Actor-Critic (A2C) to learn a policy mg(als, g)
conditioned on the goal. To evaluate the performance of InfoBot, we use a range of maze multi-
room tasks from the gym-minigrid framework (Chevalier-Boisvert and Willems| [2018]) and the A2C
implementation from (Chevalier-Boisvert and Willems, 2018)). For the maze tasks, we used agent’s
relative distance to the absolute goal position as "goal".

For the maze environments, we use A2C with 48 parallel workers. Our actor network and critic
networks consist of two and three fully connected layers respectively, each of which have 128 hidden
units. The encoder network is also parameterized as a neural network, which consists of 1 fully
connected layer. We use RMSProp with an initial learning rate of 0.0007 to train the models, for
both InfoBot and the baseline for a fair comparison. Due to the partially observable nature of the
environment, we further use a LSTM to encode the state and summarize the past observations.

For the Atari experiments, we use the open-source A2C implementation from Kostrikov| (2018)) and
condition the goal state into the policy network. For the actor network, we use 3 convolution layers
with ReLLU activations. For training the networks, we use RMSProp with pre-defined learning rates
for our algorithm and the baseline. The goal state in our experiments is used as the high value state
following (Goyal et al., 2018).

For the Mujoco Experiments, we use Proximal Policy Optimization (PPO) (Schulman et al., 2017)
with the open-source implementation available in |Kostrikov| (2018), using the defined architectures
and hyperparameters as given in the repository for both our algorithm and the baseline. Again, for
the goal-conditioned policies, the goal state for Mujoco experiments is defined as the high value state
following (Goyal et al.| 2018)).

For reproducibility purposes of our experiments, we will further release the code on github that will
be available on|

Hyperparameter Search for Grid World Experiments: For the proposed method, we only varied
the weight of KL loss. We tried 5 different values 0.1, 0.9, 0.01, 0.09, 0.005 for each of the env. and
plotted the results which gave the most improvement. We used CNN policy for the case of FindObjSY
env, and MLP policy for the case of MultiRoomNXSY. We used the agent’s relative distance to goal
as a goal for our goal conditioned policy.

Hyperparameter Search for Control experiments We have not done any hyper-parameter search
for the baseline. For the proposed method, we only varied the weight of KL loss. We tried 3 different
values 0.5, 0.01, 0.09 for each of the env. and plotted the results which gave the most improvement
over the PPO baseline.

https://github.com/anonymous

16


https://github.com/anonymous

Published as a conference paper at ICLR 2019

Method Train Reward TestReward
No Communication -0.919 -0.920
Communication -0.36 -0.472
Communication (with KL cost) -0.293 -0.38

Table 4: Training and test physical reward for setting with comunication, without communication,
with limited communication (using InfoBot cost)

D MULTIAGENT COMMUNICATION

Here, we want to show that by training agents to develop “default behaviours” as well as the
knowledge of when to break those behaviours, using an information bottleneck can also help in other
scenarios like multi-agent communication. Consider multiagent communication, where in order to
solve a task, agents require communicating with another agents. Ideally, an agent would would like
to communicate with other agent, only when its essential to communicate, i.e the agents would like
to minimize the communication with another agents. Here we show that selectively deciding when to
communicate with another agent can result in faster learning.

In order to be more concrete, suppose there are two agents, Alex and Bob, and that Alex receives
Bob’s action at time t, then Alex can use Bob’s action to decide what influence Bob’s action has
on its own action distribution. Lets say the current state of the Alex and Bob are represented by
Sq, Sy respectively, and the communication channel b/w Alex and Bob is represented by z. Alex and
BOD can decide what action to take based on the distribution p, (a,|Ss), pr(ar|s;) respectively. Now,
when Alex wants to use the information regarding Bob’s action, then the modified action distribution
(for Alex) becomes p,(aq|Sq, 2-) Where z, contains information regarding Bob’s past states and
actions, similarly the modified action distribution (for Bob) becomes p;(a,|s;, z4). Now, the idea is
that Alex and Bob wants to know about each other actions only when its necessary (i.e the goal is
to minimize the communication b/w Alex and Bob) such that on average they only use information
corresponding to there own states (which could include past states and past actions.) This would
correspond to penalizing the difference between the marginal policy of Alex (“habit policy”) and the
conditional policy of Alex (conditioned on Bob’s state and action information) as it tells us how much
influence Bob’s action has on Alex’s action distribution. In mathematical terms, it would correspond
to penalizing Dky, [pa(@q | Sa, 2r) | Pa(@a | Sa)]-

In order to show this, we use the same setup as in the paper (Mordatch and Abbeell |2018)). The agent
perform actions and communicate utterances according to policy which is identically instantiated
for all the different agents. This policy determines the action, and the communication protocols. We
assume all agents have identical action and observation spaces, and all agents act according to the
same policy and receive a shared reward. We consider the cooperative setting, in which the problem
is to find a policy that maximizes expected return for all the agents.Table ] shows the training and test
rewards as compared to the scenarios when there is no communication b/w different agents, when all
the agents can communication with each other, and when there is a KL cost penalizing the KL b/w
the conditional policy distribution and marginal policy distribution. As evident, agents trained with
InfoBot cost achieves the best results.

D.1 MULTIAGENT COMMUNICATION

The environment consists of N agents and M landmarks. Both the agents and landmarks exhibit
different characteristics such as different color and shape type. Different agents can act to move in
the environment. They can also act be effected by the interactions with other agents. Asides from
taking physical actions, agents communicate with other agents using verbal communication symbols
c. We use the same setup as in the paper (Mordatch and Abbeel, [2018]).
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(a) InfoBot Visitation Count

(b) Baseline Policy Visitation Count

Figure 10: Visitation Count: Effect on visitation count as a result of giving KL as an exploration
bonus. As top figure shows, that after giving KL as an exploration bouns, agent visits more diverse
states. Here, the agent is trained on a smaller 6 x 6 maze, and evaluated on more complex 11 * 11
maze. The "blueness" quanitifies the states visited by the agent.

E EFFECT ON VISITATION COUNT DUE TO EXPLORATION BONUS

F COMPARISON WITH OFF POLICY ALGORITHMS (SAC)

In this section, we study in isolation the effect of proposed method as compared to the state of the art
off-policy methods like SAC (Haarnoja et al.} [2018)). For this domain, we again use high value states
as an approximation to the goal state following (Goyal et al., 2018)). In order to implement this, we
maintain a buffer of 20000 states, and choose the state with the highest value under the current value
function, as a proxy to the goal.

We compare the proposed method with SAC in sparse reward scenarios. We evaluate the proposed
algorithm on 4 MuJoCo tasks in OpenAlI Gym. (Brockman et al},[2016)

The result in Figure [IT]shows the performance of the proposed method showing improvement over
the baseline on HalfCheetah-v2, Walker2d-v2, Hopper-v2 and Swimmer-v2 sparse reward tasks. We
evaluate the performance by evaluating after every 50K steps. We plotted the performance of the
proposed method as well as baseline for 500K steps. We averaged over 2 random seeds.

G INFORMATION REGULARIZATION FOR INSTRUCTION FOLLOWING

Here we use the proposed method in the context of interactive worlds for spatial reasoning where
the goal is given by language instruction. The agent is placed in an interactive world, and agent
can take actions to reach the goal specified by language instruction. For ex. Reach the north-most
house, the problem could be challenging because the language instruction is is highly context-
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Figure 11: InfoBot comparison with state of the art off policy algorithm (SAC) on sparse reward
mujoco envs.

dependent. Therefore, for better generalization to unseen worlds, the model must jointly reason over
the instruction text and environment configuration.

We model our task as a Markov Decision Process (MDP), where an agent can take actions to effect
the world. The goal to the agent is specified by the language instruction. The MDP can be represented
by the tuple (S,A,G,T,R), where S is the set of all possible states, A is the action set, G is the set of all
goal specifications in natural language, T'(Spext|S, @, g) is the transition distribution, and R(s,g) is the
reward function, which is dependent on both the current state as well as goal. A state s € S includes
information such as the locations of different entities along with the agent’s own position.

Puddle world navigation data In order to study generalization across a wide variety of environmen-
tal conditions and linguistic inputs, we follow the same experimental setup as in (Janner et al., 2018)).
Its basically an extension of the puddle world reinforcement learning benchmark. States in a grid are
first filled with either grass or water cells, such that the grass forms one connected component. We
then populate the grass region with six unique objects which appear only once per map (triangle, star,
diamond, circle, heart, and spade) and four non-unique objects (rock, tree, horse, and house) which
can appear any num- ber of times on a given map.

We compare the proposed method to the UVFA (Schaul et al.l 2015). We made use of one MLPs
and the LSTM to learn low dimensional embeddings of states and goals respectively which are then
combined via dot product to give value estimates. Goals are described in text described in text, and
hence we use the LSTM over the language instruction. The state MLP has an identical architecture to
that of the UVFA: two hidden layers of dimension 128 and ReL.U activations.

Text instructions can have both local and global references to objects. Local references require an
understanding of spatial prepositional phrases such as ‘above’, ‘next to’ in order to reach the goal.
This is invariant to the global position of the object references, on the other hand, global references
contains superlatives such as ‘easternmost’ and ‘topmost’, which require reasoning over the entire
map. For example, in the case of local reference, one could describe a unique object (e.g. Go to the
circle), whereas for global reference might require comparing the positions of all objects of a specific
type (e.g. Go to the northernmost tree). Fig. [I2]shows randomly generated worlds. |

Image taken from https://github.com/JannerM/spatial-reasoning
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Method Local - Policy Quality  Global - Policy Quality
UVFA 0.57 0.59
InfoBot (Proposed Method) 0.89 0.81

Table 5: Performance of models trained via reinforcement learning on a held-out set of environments
and instructions. Policy quality is the true expected normalized reward. We show results from training
on the local and global instructions both separately and jointly.

Figure 12: Visualizations of randomly generated worlds

H MINIGRID ENVIRONMENTS FOR OPENAI GYM

The FindObj and MultiRoom environments used for this research are part of MiniGrid, which is an
open source gridworld packagd] This package includes a family reinforcement learning environments
compatible with the OpenAl Gym framework. Many of these environments are parameterizable so
that the difficulty of tasks can be adjusted (eg: the size of rooms is often adjustable).

H.1 THE WORLD

In MiniGrid, the world is a grid of size NxN. Each tile in the grid contains exactly zero or one object.
The possible object types are wall, door, key, ball, box and goal. Each object has an associated
discrete color, which can be one of red, green, blue, purple, yellow and grey. By default, walls are
always grey and goal squares are always green.

H.2 REWARD FUNCTION

Rewards are sparse for all MiniGrid environments. In the MultiRoom environment, episodes are
terminated with a positive reward when the agent reaches the green goal square. Otherwise, episodes
are terminated with zero reward when a time step limit is reached. In the FindObj environment, the
agent receives a positive reward if it reaches the object to be found, otherwise zero reward if the time
step limit is reached.

H.3 ACTION SPACE

There are seven actions in MiniGrid: turn left, turn right, move forward, pick up an object, drop
an object, toggle and done. For the purpose of this paper, the pick up, drop and done actions are
irrelevant. The agent can use the turn left and turn right action to rotate and face one of 4 possible
directions (north, south, east, west). The move forward action makes the agent move from its current
tile onto the tile in the direction it is currently facing, provided there is nothing on that tile, or that the
tile contains an open door. The agent can open doors if they are right in front of it by using the toggle
action.

H.4 OBSERVATION SPACE

Observations in MiniGrid are partial and egocentric. By default, the agent sees a square of 7x7 tiles
in the direction it is facing. These include the tile the agent is standing on. The agent cannot see
through walls or closed doors. The observations are provided as a tensor of shape 7x7x3. However,
note that these are not RGB images. Each tile is encoded using 3 integer values: one describing the

https://github.com/maximecb/gym-minigrid
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type of object contained in the cell, one describing its color, and a flag indicating whether doors are
open or closed. This compact encoding was chosen for space efficiency and to enable faster training.
The fully observable RGB image view of the environments shown in this paper is provided for human
viewing.

H.5 LEVEL GENERATION

The level generation in this task works as follows: (1) Generate the layout of the map (X number of
rooms with different sizes (at most size Y) and green goal) (2) Add the agent to the map at a random
location in the first room. (3) Add the goal at a random location in the last room. MultiRoomNXSY
- In this task, the agent gets an egocentric view of its surroundings, consisting of 3x3 pixels. A neural
network parameterized as MLP is used to process the visual observation.

FindObjSY - In this task, the agent’s egocentric observation consists of 7 x 7 pixels. We use
Convolutional Neural Networks to encode the visual observations.

I MINIPACMAN ENV

Fuedal Networks primarily has four components: (1) Transition policy gradient, (2) Directional
cosine similarity rewards, (3) Goals specified with respect to a learned representation, and (4) dilated
RNN. For our work we use normal LSTMs, and hence we do not include design choice (4).
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