
Normalization Helps Training of Quantized LSTM

Lu Hou1, Jinhua Zhu2, James T. Kwok1, Fei Gao3, Tao Qin3, Tie-yan Liu3

1Hong Kong University of Science and Technology, Hong Kong
{lhouab,jamesk}@cse.ust.hk

2University of Science and Technology of China, Hefei, China
teslazhu@mail.ustc.edu.cn
3Microsoft Research, Beijing, China

{feiga, taoqin, tyliu}@microsoft.com

Abstract

The long-short-term memory (LSTM), though powerful, is memory and computa-
tion expensive. To alleviate this problem, one approach is to compress its weights
by quantization. However, existing quantization methods usually have inferior
performance when used on LSTMs. In this paper, we first show theoretically that
training a quantized LSTM is difficult because quantization makes the exploding
gradient problem more severe, particularly when the LSTM weight matrices are
large. We then show that the popularly used weight/layer/batch normalization
schemes can help stabilize the gradient magnitude in training quantized LSTMs.
Empirical results show that the normalized quantized LSTMs achieve significantly
better results than their unnormalized counterparts. Their performance is also
comparable with the full-precision LSTM, while being much smaller in size.

1 Introduction

The long-short-term memory (LSTM) [10] has achieved remarkable performance in various sequence
modeling tasks [26, 28, 14]. Though powerful, the high-dimensional input/hidden/output and recur-
sive computation across long time steps lead to space and time inefficiencies [29, 1], limiting its use
on low-end devices with limited hardware resources.

In the LSTM, its weight matrices account for most of the time and space complexities. To lighten the
computational demands, a popular approach is to quantize each weight to fewer bits. Previous weight
quantization methods are mainly used on feedforward networks. In BinaryConnect [5], each weight
is binarized. By introducing a scaling parameter, the binary weight network [23], ternary weight
network [17], and loss-aware binarized/ternarized network [11, 12] often report performance that
are even comparable with the full-precision network. However, when used to quantize LSTMs, their
performance is usually inferior, and BinaryConnect even fails [11, 1]. To alleviate this problem, one
has to use more bits and/or much more sophisticated quantization functions [9, 29, 22, 18].

On the other hand, normalization techniques, such as weight normalization [24], layer normaliza-
tion [2] and batch normalization [13], have been found useful in improving deep network training and
performance. In particular, while batch normalization is initially limited to feedforward networks, it
has been recently extended to LSTMs [4]. Very recently, Ardakani et al. [1] used this extension to
train binarized/ternarized LSTMs, and achieved state-of-the art performance. However, it remains
unclear why batch normalization works well on quantized LSTMs, and also leaves open the question
whether weight normalization and layer normalization may also work. Besides, the batch normaliza-
tion extension in [4, 1] requires storing separate full-precision population statistics for each time step.
These can cost even more storage than the quantized LSTM model itself. Moreover, it has to be used
with a stochastic weight quantization function, which can be expensive due to the sampling operation.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

In this paper, we first study theoretically why the quantized LSTM is difficult to train. Similar to
the analysis on vanilla RNN in [21], we study the LSTM by investigating an upper bound on its
backpropagated gradient w.r.t. the hidden states. We show that in each backpropagation step, the scale
of this gradient is controlled by a number bounded by the norm of LSTM weights. Quantization tends
to increase these norms, particularly for large models, making the exploding gradient problem much
more severe than its full-precision counterpart. We then study the quantized LSTM with weight, layer,
and batch normalization. Unlike the batch-normalized LSTM in [1] which requires a new stochastic
weight quantization, we propose to apply normalization directly on top of any existing quantization
method. We show that these normalization methods make the gradient invariant to weight scaling,
and thus alleviate the problem of having a possibly large weight norm increase caused by quantization.
Experiments are performed on various quantization methods with weight/layer/batch normalization.
Results show that all three normalization schemes work well with quantized LSTMs, and achieve
better results than their unnormalized counterparts. With only one or two bits, the normalized
quantized LSTMs achieve comparable performance with the full-precision baseline. Moreover,
weight/layer normalization perform as well as batch normalization (with separate statistics), but are
more memory efficient.

Notations: For a vector x, ‖x‖ =
√∑

i x
2
i is its `2-norm, and Diag(x) returns a diagonal matrix

with x on the diagonal. For two vectors x and y, x� y denotes the element-wise multiplication. For
a matrix X, ‖X‖2 is its spectral norm (which is equal to its largest singular value).

2 Problem of Exploding Gradient

It is well-known that the vanilla RNN suffers from exploding and vanishing gradient problems due to
long-term dependencies [3, 21]. To avoid vanishing gradient, the LSTM employs self-connection in
the cell [10]. Its recurrence (without using peephole connections) is: itftat

ot

 =

Wxixt +Whiht−1
Wxfxt +Whfht−1
Wxaxt +Whaht−1
Wxoxt +Whoht−1

+

bibfba
bo

 , (1)

ct = σ(it)� tanh(at) + σ(ft)� ct−1, (2)
ht = σ(ot)� tanh(ct). (3)

Here, xt, ht and ct are the input, hidden state and cell state at time t, Wxi,Wxf ,Wxa,Wxo ∈ Rd×r,
Whi,Whf ,Wha,Who ∈ Rd×d are the weight matrices, and bi,bf ,ba,bo ∈ Rd are the biases.

In the following, we show that the gradients in the LSTM can still explode. For the vanilla RNN, the
backpropagated gradient takes the form of a product of Jacobian matrices. By studying the upper
bound on gradient magnitude, the necessary condition for exploding gradient can be derived [21]. In
this paper, we follow the same approach, and study upper bounds on the gradient magnitude in the
LSTM. Because of the introduction of ct, the backpropagated gradient in LSTM is not of the simple
form as that for vanilla RNN, and the upper bound analysis is much more difficult.

Lower bounds are more desirable in deriving a sufficient condition for exploding gradient. However,
even for the vanilla RNN, only an upper bound can be derived [21]. Moreover, as will be demonstrated
empirically in Section 4, these upper bounds can still help explain the behavior of exploding gradient
(Figures 2-3) and failure of BinaryConnect and TerConnect in quantized LSTM (Tables 2-4).

2.1 Exploding Gradient in LSTM

Let the loss be ξ =
∑T
m=1 ξm, where T is the number of time steps unrolled, and ξm is the loss at time

step m. In backpropagation, recall that we first obtain ∂ξm
∂hm

and ∂ξm
∂cm

, and then backpropagate from
∂ξm
∂ht

and ∂ξm
∂ct

to ∂ξm
∂ht−1

and ∂ξm
∂ct−1

(for t ≤ m). We study the exploding gradient problem of LSTM by

first considering ‖ ∂ξm
∂ht−1

‖ and ‖∂ξm∂ht
‖ at adjacent time steps. Let γ1 = max1≤t≤m,1≤j≤d |[ct−1]j |,

and

λ1=
1

4
‖Whi‖2+

γ1
4
‖Whf‖2+‖Wha‖2+

1

4
‖Who‖2, λ2=

1

4
‖Whi‖2+

γ1
4
‖Whf‖2+‖Wha‖2. (4)

2

Proposition 2.1 ‖ ∂ξm
∂ht−1

‖ ≤ λ1‖∂ξm∂ht
‖ + λ2‖ ∂ξm∂ct+1

‖.

When λ2 = 0, Proposition 2.1 simplifies to ‖ ∂ξm
∂ht−1

‖ ≤ λ1‖∂ξm∂ht
‖. By induction, for any time step

p < t, ‖∂ξm∂hp
‖ ≤ λt−p1 ‖∂ξm∂ht

‖. The norm of this backpropagated gradient can grow exponentially
when λ1 > 1, leading to exploding gradient. Hence, we have the following corollary.

Corollary 1 When λ2 = 0, a necessary condition for exploding gradients in the LSTM is λ1 > 1.

Empirically, λ2 is rarely zero (Figure 1). The upper bound of ‖ ∂ξm
∂ht−1

‖ in Proposition 2.1 is then even
larger, and the gradient may explode even more easily.

2.2 Exploding Gradient in Quantized LSTM

From (1)-(3), most of the LSTM’s parameters are due to matrices Wxi, Wxf , Wxa, Wxo, Whi,
Whf , Wha, Who. In the sequel, we use Wx∗ and Wh∗ to denote these matrices. The computation
is also dominated by matrix-vector multiplications of the form Wx∗xt +Wh∗ht−1 [1]. Quantizing
these weight matrices can thus significantly reduce space and time [11, 29, 1].

The following propositions show that a large d leads to a large ‖Wh∗‖2 for both the binarized LSTM
(Proposition 2.2) and m-bit quantized LSTM (Proposition 2.3).

Proposition 2.2 [11] For any W ∈ {−1,+1}d×d, ‖W‖2 ≥
√
d. Equality holds iff all singular

values of W are the same.

Proposition 2.3 For any W ∈ {−Bk, . . . ,−B1, B0, B1, . . . , Bk}d×d where 0 = B0<B1< · · · <
Bk, we have ‖W‖2 ≥ (1 − s)B1

√
d, where s is the sparsity (fraction of zero elements) in W.

Equality holds iff all singular values of W are the same.

For ternarization, s > 0 and B1 = 1, the lower bound in Proposition 2.3 is smaller than that for
binarization in Proposition 2.2. Table 1 compares the spectral norms of Wh∗ before/after binarization
(using BinaryConnect) and ternarization (using TerConnect in Section 4). As can be seen, quantization
increases its spectral norm, especially for large d and for binarization. When ‖Wh∗‖2 becomes larger
after quantization, λ1, λ2 in (4) also become large, and the exploding gradient problem becomes more
severe. Empirically, though BinaryConnect [5] achieves remarkable performance on feedforward
networks, it fails on LSTMs [11].

Table 1: Average spectral norm of 10 d × d weight matrices (obtained by various initialization
methods) before/after binarization and ternarization. “Pytorch default" refers to the default uniform
initialization used in the PyTorch implementation of LSTM. For ternarization, sparsity of the matrix
is around 0.35 empirically.

d
full-precision binarized ternarizedPytorch default Xavier initialization [6] He initialization [8]

512 1.15± 0.01 1.98± 0.01 2.81± 0.02 44.76± 0.28 36.18± 0.18
1024 1.15± 0.00 1.99± 0.01 2.81± 0.01 63.64± 0.30 51.33± 0.28
2048 1.15± 0.00 2.00± 0.01 2.82± 0.01 90.32± 0.30 72.81± 0.17

To alleviate the exploding gradient problem, empirical success has been observed by adding a scaling
factor to the quantized weight [11, 12]. For example, in binarization, the binarized values become
{−α,+α} for some α > 0. We speculate that the success behind this simple method is that for any
α ≥ 0, ‖αWh∗‖2 = α‖Wh∗‖2. By using α < 1, the norm becomes smaller and the exploding
gradient problem can be alleviated (empirical results are shown in Appendix B). However, α is
usually learned and there is no guarantee that it is small enough to compensate for the increase in
‖Wh∗‖2 caused by quantization.

3 Normalization in LSTM

In this section, we theoretically study the properties of (full-precision and quantized) LSTMs with
weight normalization [24], layer normalization [2], and batch normalization [13], and how these

3

properties help optimization of the quantized LSTMs. In general, let the normalization function be
N (·). The normalized LSTM satisfies the recurrence:

ĩt
f̃t
ãt
õt

=

N (Wxixt) +N (Whiht−1)
N (Wxfxt) +N (Whfht−1)
N (Wxaxt) +N (Whaht−1)
N (Wxoxt) +N (Whoht−1)

+
bibfba
bo

 , (5)

ct = σ(̃it)� tanh(ãt) + σ(f̃t)� ct−1, (6)
ht = σ(õt)� tanh(ct). (7)

3.1 Weight Normalization (WN)

Weight normalization re-parameterizes the weight vector to decouple its length from direction. In
a LSTM, each row Wj,: of a weight matrix W (where W can be Wh∗ or Wx∗) is separately nor-
malized. The jth element of a weight-normalized vectorWN (Wx) isWN (Wj,:x) = gj

Wj,:

‖Wj,:‖x,
where gj is a trainable scaling factor. For Wh∗, let the corresponding g∗ be the largest gj across all
rows ofWN (Wh∗x), and D∗ = Diag([‖(Wh∗)1,:‖, ‖(Wh∗)2,:‖, . . . , ‖(Wh∗)d,:‖]>).

Proposition 3.1 With weight normalization,∥∥∥∥ ∂ξm
∂ht−1

∥∥∥∥ ≤
(gi
4
‖D−1

i Whi‖2 +
γ1gf
4
‖D−1

f Whf‖2 + ga‖D−1
a Wha‖2 +

go
4
‖D−1

o Who‖2
)∥∥∥∥∂ξm∂ht

∥∥∥∥
+
(gi
4
‖D−1

i Whi‖2 +
γ1gf
4

∥∥D−1
f Whf

∥∥
2
+ ga‖D−1

a Wha‖2
)∥∥∥∥ ∂ξm

∂ct+1

∥∥∥∥ .
Compared to the unnormalized LSTM (Proposition 2.1), the norm of the backpropagated gradient is
now related to g∗’s and D∗’s. As will be demonstrated in Appendix C, the g∗ value only increases
slightly after quantization, and so we ignore its effect in the theoretical analysis. When Wh∗ is
scaled by a factor α, D∗ will also be scaled by α, and so D−1∗ Wh∗ is not affected. Hence, the
backpropagation of ‖∂ξm∂ht

‖ in the quantized LSTM is not affected by the possibly large scaling of the
weight matrix caused by quantization (Propositions 2.2 and 2.3), and the exploding gradient problem
can be alleviated.

3.2 Layer Normalization (LN)

Layer normalization normalizes the neuron activities in each layer to zero mean and unit variance,
and can stabilize the hidden state dynamics for RNNs. Let x ∈ Rd be the input (which can be Wx∗xt
or Wh∗ht−1 in (5)) to layer normalization, with mean µ and standard deviation σ computed over
its d elements. Let z = (x− µ1)/σ be the z-normalized vector (with zero mean and unit variance).
The output from layer normalization is y = LN (x) = g � z + b, where g and b are the scaling
and bias parameters. For layer normalization applied to Wh∗ht−1, let g∗ = gk, σ∗ = σk, where
k = argmax1≤j≤d gj .

Proposition 3.2 With layer normalization,∥∥∥∥ ∂ξm
∂ht−1

∥∥∥∥ ≤
(
1

4

gi
σi
‖Whi‖2 +

γ1
4

gf
σf
‖Whf‖2 +

ga
σa
‖Wha‖2 +

1

4

go
σo
‖Who‖2

)∥∥∥∥∂ξm∂ht
∥∥∥∥

+

(
1

4

gi
σi
‖Whi‖2+

γ1
4

gf
σf
‖Whf‖2+

ga
σa
‖Wha‖2

)∥∥∥∥ ∂ξm
∂ct+1

∥∥∥∥.
If the elements of Wh∗ grow twice as large, the corresponding σ∗ will be twice as large, and
‖Wh∗‖2/σ∗ remains unchanged. Thus, the backpropagation of ‖∂ξm∂ht

‖ is again not affected by
scaling of Wh∗.

3.3 Batch Normalization (BN)

Recently, batch normalization has achieved state-of-the-art performance with quantized LSTMs [1].
However, the underlying reason remains unclear. Besides, it has to be used with a stochastic weight

4

quantization function, which is expensive due to the underlying sampling operation. It is also memory
expensive as separate mean and variance statistics for different time steps have to be stored.

In this work, we propose to directly apply batch normalization on top of any existing quantization
method in LSTM. As will be seen in Section 4, this yields comparable or even better performance
than [1], and is much cheaper in space when the batch statistics are shared across different time steps.

Batch normalization operates on a minibatch. At time t, let xkt ∈ Rr, hkt , c
k
t ∈ Rd be the input, hidden

state and cell state for sample k in a minibatch of N samples, and Ht = [h1
t , . . . ,h

N
t]> ∈ RN×d,

Xt = [x1
t , . . . ,x

N
t]> ∈ RN×r. The input to batch normalization is X ∈ RN×d (which can

be XtW
>
x∗ or Ht−1W

>
h∗), with mean µj and standard deviation σj for the jth column. The

batch normalization output Y ∈ RN×d has Y:,j = BN (X:,j) = gj
X:,j−µj1

σj
+ bj1, where g =

[g1, . . . , gd]
> ∈ Rd and b = [b1, . . . , bd]

> ∈ Rd are the scaling parameters and biases, respectively.
For batch normalization applied to Ht−1W

>
h∗, let (σ∗, g∗) = argmax{σ1,...,σd},{g1,...,gd}

gj
σj

. Let
γ2 = max1≤t≤m,1≤j≤d,1≤k≤N |[ckt−1]j |.

Proposition 3.3 For the unnormalized LSTM in (1),
N∑
k=1

∥∥∥∥ ∂ξm
∂hkt−1

∥∥∥∥2 ≤
(
1

2
‖Whi‖22 +

γ2
2

2
‖Whf‖22 + 8 ‖Wha‖22+

1

4
‖Who‖22

) N∑
k=1

∥∥∥∥∂ξm∂hkt

∥∥∥∥2

+

(
1

2
‖Whi‖22+

γ2
2

2
‖Whf‖22 + 8 ‖Wha‖22

) N∑
k=1

∥∥∥∥ ∂ξm
∂ckt+1

∥∥∥∥2.
Proposition 3.4 With batch normalization,
N∑
k=1

∥∥∥∥ ∂ξm
∂hkt−1

∥∥∥∥2 ≤
(
1

2

g2i
σ2
i

‖Whi‖22 +
γ2
2

2

g2f
σ2
f

‖Whf‖22 + 8
g2a
σ2
a

‖Wha‖22 +
1

4

g2o
σ2
o

‖Who‖22

)
N∑
k=1

∥∥∥∥∂ξm∂hkt

∥∥∥∥2

+

(
1

2

g2i
σ2
i

‖Whi‖22 +
γ2
2

2

g2f
σ2
f

‖Whf‖22 + 8
g2a
σ2
a

‖Wha‖22

)
N∑
k=1

∥∥∥∥ ∂ξm
∂ckt+1

∥∥∥∥2 .
In contrast to the unnormalized LSTM (Proposition 3.3), when batch normalization is used, if the
elements of Wh∗ in the quantized LSTM grow twice as large, the corresponding σ∗ will be twice as
large, and ‖Wh∗‖22 /σ2

∗ remains unchanged. Thus, it is again unaffected by the scaling of Wh∗.

Remark 3.1 In summary, by using weight, layer or batch normalization, backpropagation of ‖∂ξm∂ht
‖

in the quantized LSTM is not affected by the possibly large scaling of the weight matrix caused by
quantization, and the exploding gradient problem can be alleviated.

Remark 3.2 Note that the storage requirements of the normalization schemes differ. The full-
precision LSTM requires 32× 4(rd+ d2 + d) bits to store the Wx∗’s, Wh∗’s, and b∗’s in (1), while
the m-bit unnormalized LSTM requires m × 4(rd + d2) + 32 × 4d bits. When normalization is
used on the m-bit LSTM, weight normalization requires 32× 8d additional bits to store the scaling
parameters gj’s. Layer normalization is slightly more expensive, and needs 32× 16d bits to store
the scaling parameters and biases. Batch normalization needs 32× 32d extra bits when the mean
and variance statistics are shared across time steps, which is even more expensive but still small
(compared to the LSTM size). However, when separate statistics are used in each time step, the
additional space becomes 32× 16d+32× 16Td bits, and can be large for large T . As will be shown
in Section 4, empirically using shared statistics performs similarly as using separate statistics on
language modeling tasks, but worse on (permuted) sequential MNIST classification.

4 Experiments

Experiments are performed on character/word-level language modeling and sequential MNIST
classification. We compare with the full-precision LSTM, and popular state-of-the-art quantized
LSTMs including (i) 1-bit LSTMs with/without normalization: binarized using BinaryConnect (BC)
[5], binary weight network (BWN) [23], and loss-aware binarization (LAB) [11]. We also compare

5

Table 2: Test BPC and size (in KB) of LSTM on character-level language modeling. “N/A" means that
the loss become NaN after the first epoch. Method with the lowest BPC in each group is highlighted.

War and Peace Penn Treebank Text8
precision quantization normalization BPC size BPC size BPC size

full -

- 1.72 4800 1.45 4504 1.46 63375
weight 1.73 4816 1.45 4520 1.48 63438
layer 1.69 4832 1.43 4536 1.45 63500

batch (shared) 1.72 4864 1.45 4568 1.46 63625
batch (separate) 1.72 8032 1.45 7736 1.46 86000

SBN batch (separate) 1.78 3794 1.60 3785 1.54 27464

BinaryConnect

- 4.24 158 2.51 149 N/A 2011
weight 1.74 174 1.50 165 1.50 2073
layer 1.69 190 1.49 181 1.47 2136

batch (shared) 1.72 222 1.51 213 1.47 2261
batch (separate) 1.72 3390 1.50 3381 1.48 24636

BWN

- 1.89 158 1.56 149 1.56 2011
weight 1.74 174 1.51 165 1.50 2073

1-bit layer 1.70 190 1.49 181 1.47 2136
batch (shared) 1.72 222 1.50 213 1.47 2261

batch (separate) 1.72 3390 1.51 3381 1.48 24636

LAB

- 1.86 158 1.56 149 1.58 2011
weight 1.73 174 1.51 165 1.50 2073
layer 1.70 190 1.49 181 1.47 2136

batch (shared) 1.71 222 1.50 213 1.47 2261
batch (separate) 1.72 3390 1.50 3381 1.47 24636

STN batch (separate) 1.72 3944 1.60 3521 1.51 15303

TerConnect

- 6.35 308 5.84 289 N/A 3990
weight 1.72 324 1.42 305 1.42 4053
layer 1.67 340 1.43 321 1.44 4115

batch (shared) 1.70 372 1.44 353 1.44 4240
batch (separate) 1.71 3540 1.45 3521 1.44 26615

TWN

- 1.86 308 1.51 289 1.54 2990
weight 1.71 324 1.45 305 1.43 4053

2-bit layer 1.67 340 1.43 321 1.44 4115
batch (shared) 1.70 372 1.44 353 1.44 4240

batch (separate) 1.70 3540 1.45 3521 1.44 26615

LAT

- 1.80 308 1.48 289 1.50 2990
weight 1.69 324 1.42 305 1.44 4053
layer 1.65 340 1.40 321 1.41 4115

batch (shared) 1.68 372 1.41 353 1.41 4240
batch (separate) 1.68 3540 1.42 3521 1.41 26615

with the recent stochastically binarized LSTM (denoted SBN) with batch normalization in [1]; (ii)
2-bit LSTMs with/without normalization: ternarized using ternary weight networks (TWN) [17], and
loss-aware ternarization with approximate solution (LAT) [12]. Analogous to BinaryConnect, we
also include a baseline called TerConnect1, which ternarizes weights to {−1, 0,+1} using the same
threshold as TWN, but does not scale the ternary weights. We also compare with 2-bit alternating
LSTM [29], and the stochastically ternarized LSTM (denoted STN) with batch normalization [1].

4.1 Character-level Language Modeling

The LSTM takes as input a character sequence, and predicts the next character at each time step. The
training objective is the cross-entropy loss over target sequences, and performance is evaluated by bits
per character (BPC). Experiments are performed on three benchmark data sets: (i) Leo Tolstoy’s War
and Peace; (ii) Penn Treebank Corpus [27]; and (iii) Text8. On War and Peace and Penn Treebank, we
use a one-layer LSTM with 512 hidden units2 as in [11, 12]. On text8, we use a one-layer LSTM with
2000 hidden units as in [1]. Adam is used as the optimizer. The detailed setup is in Appendix A.1.

Table 2 shows the testing BPC values and size of LSTM parameters, including the additional storage
due to normalization parameters and statistics (where applicable). Note that [1] does not count this
additional storage.

Normalization: For the quantized LSTM, the normalized version consistently outperforms its unnor-
malized counterpart. In particular, directly applying BinaryConnect achieves very poor performance
on War and Peace and Penn TreeBank, and fails on Text8. With weight / layer / batch (shared)
normalization, BinaryConnect achieves comparable or even better results than the full-precision

1Note that this is different from the stochastic ternary-connect in [19]
2Ardakani et al. [1] use 1000 hidden units, so their BPC results are not directly comparable.

6

LSTM, while being over 20x smaller. For batch normalization, using shared statistics across all time
steps yields similar performance as when separate statistics are used, but with much smaller storage.

Comparison with Full-Precision LSTM: The 1-bit normalized LSTM performs similarly as the
unnormalized full-precision baseline on War and Peace and Text8. The 2-bit normalized LSTM
significantly outperforms the unnormalized full-precision baseline on all three data sets, and requires
much less storage. Moreover, compared with the normalized full-precision LSTM, 2-bit normalized
LSTM has competitive performance, but requires much smaller storage.

Comparison of Different Quantization Methods: For the unnormalized 1-bit LSTM, BWN and
LAB perform significantly better than BinaryConnect. They have an additional scaling parameter
which is empirically smaller than 1 (as can be seen in Appendix B), and can thus alleviate the
exploding gradient problem (Section 2.2). As BWN and LAB differ from BinaryConnect only in
the scaling parameter, the three perform similarly when normalization is applied, as the normalized
LSTM is invariant to weight rescaling. For the unnormalized 2-bit quantized LSTMs, TWN and LAT
also perform significantly better than TerConnect.

Comparison with SBN and STN: Directly applying normalization on top of quantization con-
sistently outperforms the batch-normalized LSTM in [1]. In particular, 1-bit layer-normalized
BinaryConnect achieves similar and often better performance than 2-bit STN. Moreover, bina-
rized/ternarized model with weight/layer/batch (shared) normalization is significantly smaller than
SBN and STN, which use separate statistics for different time steps and normalization on the cell.

λ1, λ2 Values: Figures 1(a)-1(b) show λ1, λ2 (in Propositions 2.1, 3.1-3.2) for the unnormalized
full-precision and BC-binarized LSTMs with weight/layer normalization on Penn Treebank, and
Figures 1(c)-1(d) show the values (in Propositions 3.3-3.4) with batch normalization.3 As can be seen,
normalization reduces λ1, λ2 in the binarized LSTM. The corresponding g∗ values are in Appendix C.

0 2000 4000 6000 8000
#iterations

0

100

200

300

1

Full-precision
BC

BC+LN
BC+WN

(a) λ1.

0 2000 4000 6000 8000
#iterations

0

100

200

300

2

Full-precision
BC

BC+LN
BC+WN

(b) λ2.

0 2000 4000 6000 8000
#iterations

0

200000

400000

600000

1

Full-precision
BC
BC+BN(shared)

(c) λ1.

0 2000 4000 6000 8000
#iterations

0

200000

400000

600000

2

Full-precision
BC
BC+BN(shared)

(d) λ2.

Figure 1: λ1 and λ2 values in full-precision and binarized LSTMs (with and without normalization).

Gradient Magnitude: Figure 2 shows the backpropagated gradient norms4 for the unnormalized
full-precision LSTM, and BC-normalized LSTM with/without normalization. The gradients of the
unnormalized binarized LSTM explode quickly during backpropagation (Figure 2(b)), while the
normalized binarized LSTM has stable gradient flow similar to the full-precision baseline. More
results can be found in Appendix D.1.

0 20 40 60 80 100
timestep

10 2

10 1

100

101

102

103

h t
(×

10
3)

(a) Full-precision.

0 20 40 60 80 100
timestep

10 2

10 1

100

101

102

103

h t
(×

10
3)

(b) BC.

0 20 40 60 80 100
timestep

10 2

10 1

100

101

102

103

h t
(×

10
3)

(c) BC+WN.

0 20 40 60 80 100
timestep

10 2

10 1

100

101

102

103

h t
(×

10
3)

(d) BC+LN.

0 20 40 60 80 100
timestep

10 2

10 1

100

101

102

103

h t
(×

10
3)

(e) BC+BN (shared).

Figure 2: Gradient norms of the unnormalized full-precision LSTM and BC-binarized LSTM
with/without normalization for character-level language modeling on Penn Treebank. Since back-
propagation operates in the backward direction, each plot is best read from right to left.

3Propositions 3.3 and 3.4 are based on the squared weight norm. Hence, Figures 1(c)-1(d) plot the coefficients
before

∑N
k=1 ‖

∂ξm
∂hk

t
‖2 and

∑N
k=1 ‖

∂ξm

∂ck+1
t

‖2. With an abuse of notation, we still call these λ1 and λ2.
4Figures 2(a)-2(d) show ‖ ∂ξ

∂ht
‖. Each curve corresponds to the gradient from one sample in the mini-batch.

For better visualization, we only show 10 curves. Figure 2(e) shows
∑N
k=1 ‖

∂ξ

∂hk
t
‖2 for the whole mini-batch.

7

4.2 Word-level Language Modeling

In this section, we perform experiments to predict the next word on Penn Treebank. We use a one-
layer LSTM, with d = 300 as in [1, 29], and d = 650 as in [1, 30]. We use the same data preparation
and training procedures as in [1, 20]. The optimizer is SGD. Detailed setup is in Appendix A.2.

Table 3 shows the testing perplexity (PPL) results. BinaryConnect and TerConnect fail when
directly applied. However, with normalization, they achieve comparable performance as the full-
precision counterpart. Quantized models with normalization usually outperform their unnormalized
counterparts, and have comparable or even better performance than the full-precision baseline. Again,
directly applying normalization to existing quantization methods on LSTM perform similarly or
even better than SBN and STN, while requiring much smaller storage when normalized using
weight/layer/batch (shared) normalization. For batch normalization, using shared mean and variance
statistics across all time steps performs similarly as using separate statistics. Preliminary results on a
2-layer LSTM also show similar observations (details are in Appendix E).

Table 3: Test PPL and size (in KB) of LSTM for word-level language modeling on Penn Treebank.
For the alternating LSTM, only d = 300 are reported in [29].

d = 300 d = 650
precision quantlization normalization PPL size PPL size

full -

- 91.5 2817 87.6 13213
weight 86.1 2827 86.2 13234
layer 87.4 2836 84.5 13254

batch (shared) 90.2 2855 86.3 13295
batch (separate) 90.5 3492 87.9 14676

1-bit

SBN batch (separate) 92.2 852 87.2 2068

BinaryConnect

- 8247.4 93 1244.2 423
weight 87.6 102 84.8 443
layer 89.4 111 82.3 463

batch (shared) 92.4 130 84.8 504
batch(separate) 91.9 767 85.6 1885

BWN

- 94.7 93 83.5 423
weight 89.4 102 85.9 443
layer 91.4 111 84.2 463

batch (shared) 91.5 130 86.6 504
batch (separate) 93.0 767 87.3 1885

2-bit

alternating LSTM - 103.1 180 - -
STN batch (separate) 90.7 940 86.1 2481

TerConnect

- 113.8 180 113.8 835
weight 86.5 190 84.9 856
layer 88.2 199 82.5 876

batch (shared) 90.6 218 85.8 917
batch (separate) 91.6 855 86.5 2298

TWN

- 89.8 180 84.2 835
weight 87.1 190 85.6 856
layer 90.5 199 84.1 876

batch (shared) 92.1 218 85.5 917
batch (separate) 91.2 855 87.5 2298

3-bit alternating LSTM - 93.8 268 - -
4-bit alternating LSTM - 91.4 356 - -

Figure 3 shows the norms of backpropagated gradients in the full-precision and binarized LSTMs.
As can be seen, the gradients of the unnormalized binarized LSTM explode quickly during backprop-
agation (Figure 3(b)), while the normalized binarized LSTM has stable gradient flow similar to the
full-precision baseline. This agrees with Propositions 2.2-2.3 and Table 1 that the spectral norm of
weight matrix becomes larger (i) for large d, and (ii) for BinaryConnect than TerConnect, leading to
more severe exploding gradient problem. More results can be found in Appendix D.2.

0 5 10 15 20 25 30 35
timestep

10 1

100

101

102

103

104

h t
(×

10
3)

(a) Full-precision.

0 5 10 15 20 25 30 35
timestep

10 1

100

101

102

103

104

h t
(×

10
3)

(b) BC.

0 5 10 15 20 25 30 35
timestep

10 1

100

101

102

103

104

h t
(×

10
3)

(c) BC+WN.

0 5 10 15 20 25 30 35
timestep

10 1

100

101

102

103

104

h t
(×

10
3)

(d) BC+LN.

0 5 10 15 20 25 30 35
timestep

10 1

100

101

102

103

104

h t
(×

10
3)

(e) BC+BN (shared).
Figure 3: Gradient norms of the unnormalized full-precision LSTM and BC-binarized LSTM
with/without normalization for word-level language modeling (with d = 300) on Penn Treebank.

8

4.3 Sequential MNIST

We perform experiments on the sequential version of MNIST classification, which processes one
image pixel at a time. We follow the setting in [16, 4, 1], and use both the MNIST and permuted
MNIST (pMNIST) [4]. In MNIST, the 28× 28 pixels are processed in scanline order. In pMNIST,
they are processed in a fixed random order. The optimizer is Adam. Detailed setup is in Appendix A.3.

Table 4 shows the test accuracy results and size5 of the LSTM parameters. BinaryConnect and
TerConnect, which cannot be trained without normalization on this task, have comparable results as
the full-precision baselines when used with normalization.

Batch normalization with shared mean and variance statistics across all time steps has inferior
performance; while storing separate mean and variance statistics for the 28× 28 = 784 time steps is
too memory expensive. In contrast, weight and layer normalization achieve high model compression,
and with comparable or even better performance as the batch normalization counterpart.

Though batch normalization with shared statistics performs similarly as using separate statistics
on language modeling tasks (Tables 2-3), it fails on this sequential MNIST task. We speculate
it is because in this task, each time step corresponds to an input pixel. The use of shared batch
normalization statistics implicitly assumes different pixels to have similar characteristics. However,
this may not be reasonable (e.g., pixels around the edge are typically darker).

Table 4: Test accuracy (%) and size (KB) of LSTM on the sequential MNIST task. “N/A" means that
the loss becomes NaN after the first epoch.

precision quantization normalization MNIST pMNIST size

full -

- 98.9 90.2 159
weight 98.4 90.2 163
layer 98.0 90.7 166

batch (shared) 21.4 35.4 172
batch (separate) 99.0 93.7 5066

1-bit

SBN batch (separate) 98.6 89.9 5526

BinaryConnect

- N/A N/A 8
weight 98.7 91.4 11
layer 98.9 91.2 14

batch (shared) 20.6 36.5 21
batch (separate) 98.7 91.2 4914

- 98.7 89.7 8
weight 98.7 91.3 11

BWN layer 98.8 90.8 14
batch (shared) 20.6 40.1 21

batch (separate) 98.6 91.1 4914

2-bit

STN batch (separate) 98.8 91.9 5531

TerConnect

- N/A N/A 13
weight 98.9 92.4 16
layer 98.8 92.5 19

batch (shared) 23.6 34.1 25
batch (separate) 98.8 93.2 4919

- 98.6 90.4 13
weight 98.6 92.1 16

TWN layer 98.8 91.7 18
batch (shared)) 26.5 38.3 25
batch (separate) 98.7 93.1 4919

5 Conclusion

In this paper, we show that quantized LSTMs are hard to train because the scales of the quantized
LSTM weights can be very large, making the gradients easy to explode. We then show that applying
weight, layer or batch normalization can enable the gradient magnitude to be invariant to this possibly
large scaling, and thus alleviates the exploding gradient problem. Experiments on various tasks
show that the normalized quantized LSTM can be easily trained, achieves comparable or even better
performance than its full-precision counterpart, but saves much storage due to quantization.

5Note that [1] does not count the additional storage for batch statistics, which is indeed much larger than the
model itself on this sequential MNIST task (where the number of time steps is T = 784).

9

Acknowledgments

This research project is partially funded by Microsoft Research Asia.

References
[1] A. Ardakani, Z. Ji, S. C. Smithson, B. H. Meyer, and W. J. Gross. Learning recurrent bi-

nary/ternary weights. In International Conference on Learning Representations, 2019.

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. Preprint arXiv:1607.06450, 2016.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[4] T. Cooijmans, N. Ballas, C. Laurent, C. Gulcehre, and A. Courville. Recurrent batch normaliza-
tion. In International Conference on Learning Representations, 2016.

[5] M. Courbariaux, Y. Bengio, and J. P. David. BinaryConnect: Training deep neural networks
with binary weights during propagations. In Neural Information Processing Systems, pages
3105–3113, 2015.

[6] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics, pages 249–256,
2010.

[7] A. Graves. Supervised sequence labelling. In Supervised Sequence Labelling with Recurrent
Neural Networks, pages 5–13. Springer, 2012.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In International Conference on Computer Vision, pages
1026–1034, 2015.

[9] Q. He, H. Wen, S. Zhou, Y. Wu, C. Yao, X. Zhou, and Y. Zou. Effective quantization methods
for recurrent neural networks. Preprint arXiv:1611.10176, 2016.

[10] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–
1780, 1997.

[11] L. Hou, Q. Yao, and J. T. Kwok. Loss-aware binarization of deep networks. In International
Conference on Learning Representations, 2017.

[12] L. Hou, Q. Yao, and J. T. Kwok. Loss-aware weight quantization of deep networks. In
International Conference on Learning Representations, 2018.

[13] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pages 448–456,
2015.

[14] A. Karpathy, J. Johnson, and F. F. Li. Visualizing and understanding recurrent networks. In
International Conference on Learning Representations, 2016.

[15] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

[16] Q. Le, N. Jaitly, and G. E. Hinton. A simple way to initialize recurrent networks of rectified
linear units. Preprint arXiv:1504.00941, 2015.

[17] F. Li and B. Liu. Ternary weight networks. Preprint arXiv:1605.04711, 2016.

[18] Z. Li, D. He, F. Tian, W. Chen, T. Qin, L. Wang, and T. Liu. Towards binary-valued gates for
robust lstm training. In International Conference on Machine Learning, 2018.

[19] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio. Neural networks with few multiplications.
In International Conference on Learning Representations, 2016.

10

[20] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur. Recurrent neural network
based language model. In Annual Conference of the International Speech Communication
Association, 2010.

[21] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks.
In International Conference on Machine Learning, pages 1310–1318, 2013.

[22] A. Polino, R. Pascanu, and D. Alistarh. Model compression via distillation and quantization. In
International Conference on Learning Representations, 2018.

[23] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: ImageNet classification
using binary convolutional neural networks. In European Conference on Computer Vision,
2016.

[24] T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Neural Information Processing Systems, pages 901–909,
2016.

[25] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch normalization help optimiza-
tion? In Neural Information Processing Systems, 2018.

[26] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Neural Information Processing Systems, pages 3104–3112, 2014.

[27] A. Taylor, M. Marcus, and B. Santorini. The Penn treebank: An overview. In Treebanks, pages
5–22. Springer, 2003.

[28] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption
generator. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3156–3164,
2015.

[29] C. Xu, J. Yao, Z. Lin, W. Ou, Y. Cao, Z. Wang, and H. Zha. Alternating multi-bit quantization
for recurrent neural networks. In International Conference on Learning Representations, 2018.

[30] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. Preprint
arXiv:1409.2329, 2014.

11

