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ABSTRACT

We present a Function Feature Learning (FFL) method that can measure the sim-
ilarity of non-convex neural networks. The function feature representation pro-
vides crucial insights into the understanding of the relations between different
local solutions of identical neural networks. Unlike existing methods that use
neuron activation vectors over a given dataset as neural network representation,
FFL aligns weights of neural networks and projects them into a common function
feature space by introducing a chain alignment rule. We investigate the function
feature representation on Multi-Layer Perceptron (MLP), Convolutional Neural
Network (CNN), and Recurrent Neural Network (RNN), finding that identical
neural networks trained with different random initializations on different learn-
ing tasks by the Stochastic Gradient Descent (SGD) algorithm can be projected
into different fixed points. This finding demonstrates the strong connection be-
tween different local solutions of identical neural networks and the equivalence of
projected local solutions. With FFL, we also find that the semantics are often pre-
sented in a bottom-up way. Besides, FFL provides more insights into the structure
of local solutions. Experiments on CIFAR-100, NameData, and tiny ImageNet
datasets validate the effectiveness of the proposed method.

1 INTRODUCTION

Neural networks have achieved remarkable empirical success in a wide range of machine learning
tasks (LeCun et al., 1989; Krizhevsky et al., 2012; He et al., 2016) by finding a good local solution.
How to better understand the characteristics of local solutions of neural networks remains an open
problem. Recent evidence shows that identical neural networks trained with different initializations
achieve nearly the same classification accuracy. Are these trained models (local solutions) equiva-
lent? (Li et al., 2016) claimed that neural networks converge to apparently distinct solutions in which
it is difficult to find one-to-one mappings of neuron units. (Raghu et al., 2017; Morcos et al., 2018;
Kornblith et al., 2019) concentrated on comparing representations of neural networks using the in-
termediate output of neural networks over a given dataset. These studies provide important insights
into the understanding of similarity of neurons by probing and aligning the intermediate output (or
neuron activation) representation of data points, but they do not focus on how to directly measure
the similarity of function feature representations of neural networks using weights of networks.

In this paper, we propose a Function Feature Learning (FFL) method to measure the similarity be-
tween different trained neural networks. Instead of using intermediate activation/response values of
neural networks over a bunch of data points, FFL directly learns an effective weight feature represen-
tation from trained neural networks. To address the problem of random permutated weights (Figure
1), a chain alignment rule is introduced to eliminate permutation variables. The aligned weights are
then learned to project into a function feature representation space by classifying different classes
of local solutions. The learned function features can be used to describe the characteristics of local
solutions. With FFL, one can validate some assumptions about the similarity of local solutions.

Function feature learning is built upon data feature learning. Given a set of data points, data feature
learning is to learn a function fi that can describe the underlying representations to measure data
similarity. Similarly, given a set of data representation functions {fi}, function feature learning is to
learn a function F that can measure the similarity of {fi}. Specifically, an identical neural network
with different weights forms a family of functions {fi} that could cover different function types (an
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identical neural network with different weights can be used as different function types for different
learning tasks in practice). Function feature learning attempts to discover characteristics of functions
and thus provides an effective metric for function similarity measure. In this paper, we propose to
describe the function feature representation by using weights of neural networks instead of network
structures because neural networks often share a common set of functional building blocks, e.g.,
global/local linear units, activation units, and normalization units.

Overall, we make four main contributions as follows.

• We propose a Function Feature Learning (FFL) method to measure the similarity of iden-
tical neural networks trained from different initializations. FFL first addresses the random
permutation of weights of neural networks by using a chain alignment rule and then projects
the aligned weights into a common space. We find that there exist strong relations between
different local solutions optimized by the Stochastic Gradient Descent (SGD) algorithm.

• We investigate function feature representations of Multi-Layer Perceptron (MLP), Convo-
lutional Neural Network (CNN), and Recurrent Neural Network (RNN) on the CIFAR-100,
NameData, and tiny ImageNet datasets. With the chain alignment rule, the proposed FFL
approach achieves consistent high accuracy for three types of neural networks, which shows
the effectiveness of FFL and the soundness of the aforementioned finding.

• We investigate the chain based semantics and the results suggest that the semantics are
hierarchical. The projection directions of all layers are arranged in order along with the
depth of neural networks. In short, the semantics are presented in a bottom-up way.

• We analyze several factors of neural networks and find that 1) adding more layers or chang-
ing the ReLU activation function into leaky ReLU has little impact on the structure of local
solutions; 2) changing plain networks into residual networks has some impact on local so-
lutions; 3) SGD often converges to a stable structure of local solutions while the Adam
optimizer does not.

Related Work. Neural networks are often regarded as black-boxes due to the non-convexity. To bet-
ter understand these black-boxes, various approaches provide effective tools for visual interpretabil-
ity of neural networks (Simonyan et al., 2013; Dosovitskiy & Brox, 2016; Zeiler & Fergus, 2014;
Zhou et al., 2015; Selvaraju et al., 2016). These approaches utilized gradient of the class scores
with respect to input or de-convolution operations to visualize the attention activations at high-level
semantics.

Instead of building visual interpretability foundations between input and output, recent research
(Raghu et al., 2017; Morcos et al., 2018; Kornblith et al., 2019) focused on representations of neural
networks by exploiting intermediate activations/features to describe the similarity of neural net-
works. For example, SVCCA (Raghu et al., 2017) used singular value decomposition and canonical
correlation analysis tools for network representations and similarity comparison of neural networks.
After that, a projection weighted CCA approach was developed for better understanding similarity
of neural networks. In (Kornblith et al., 2019), a centered kernel alignment method was proposed to
measure the relation between data representational similarity matrices. Our approach concentrates
on the function/weight feature representation but not intermediate representations of data points,
which is greatly different from these works.

2 PRELIMINARIES

In this section, we first introduce related notations and then describe the permutation problem of
neural networks.

2.1 NOTATION

Let a L-layer neural network contain a series of stacked units {gl(x;Wl)}L1 with global/local lin-
ear operations, where x ∈ Rn0 is input and Wl ∈ Rnl−1×nl denotes the weights of the l-th
unit. nl denotes the number of neurons in the l-th layer. We formulate the stacked units as
FL = σ(gL(σ(gL−1(...σ(g1(x;W1))...;WL−1));WL)). FL is a family of functions that share an
identical network structure and σ is an activation function. (W1,W2, ...,WL−1,WL) determines the
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Figure 1: Permutation of neural networks.

function representation of the neural network. We denote hl = σ(gl(...σ(g1(x;W1))...;Wl)) as the
l-th hidden vector, hl ∈ Rnl . When gl is a local linear/convolutional operation, FL represents a CN-
N. When gl is a global linear operation, FL represents an MLP. When {gl(x;Wl)}L1 share weights,
FL represents an RNN. Because a CNN can be regarded as a patch-based MLP and an RNN can be
regarded as a variant version of MLP, we consider MLP for formulation. Besides, the term function,
local solution, and trained model will be used synonymously for better understanding.

2.2 RANDOM PERMUTATION OF NEURAL NETWORKS

Neurons in the intermediate layers of neural networks (termed intermediate neurons) are often sym-
metric without any constraint. Neurons in the first and last layers (side neurons) are manually con-
strained by data and label structures, respectively. Under such constraints, permutating intermediate
neurons and their corresponding weights could produce the same output, as mentioned in (Li et al.,
2016). We refer to them as neuron permutation and weight permutation.

Permuting neurons and weights according to a certain rule could produce the same output. Because
activation functions are often element based operations and do not have any impact on the permuta-
tion of neural networks, we consider a 4-layer linear MLP for simplification, as shown in Figure 1
(a). The neural network takes x = (x1, x2)T as input and outputs y = (y1, y2)T . The network con-
tains two intermediate hidden layers, denoted as h1 = (0.2, 0.7, 0.5)T and h2 = (h12, h

2
2, h

3
2)T . The

weights W1 and W2 are [0.8, 0.9; 0.1, 0.7; 0.8, 0.2]T and [0.5, 0.9, 0.5; 0.3, 0.1, 0.4; 0.4, 0.3, 0.2]T

(MATLAB-like notation), respectively. Now we permutate the first and second neurons of h1 and
permutate the corresponding columns of W1 and rows of W2. We obtain h

′

1 = (0.7, 0.2, 0.5)T and
W
′

1 = [0.1, 0.7; 0.8, 0.9; 0.8, 0.2]T and W
′

2 = [0.9, 0.5, 0.5; 0.1, 0.3, 0.4; 0.3, 0.4, 0.2]T , as shown
in Figure 1 (b). Given any input x, the output of these two functions (a) and (b) are equivalent be-
cause WT

2 W
T
1 x = (W

′

2)T (W
′

1)Tx. Neurons and weights are just like flexible nodes and wires that
can be easily exchanged. Weight permutation (blue and green wires are exchanged) is exchanged
in accord with neuron permutation. Due to neuron permutation and weight permutation, repeating
the optimization procedure of identical neural networks would generate different permutations of
equivalent local solutions even if we assume neural networks are convex. Therefore, it is important
to align the weight permutation of neural networks before analyzing the similarity of local solutions
of neural networks.

3 METHOD

In this section, we first provide a principle for validation foundation. We then introduce a rule for the
alignment of neural networks. Finally, we propose to learn a function feature representation based
on the aligned weights.
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3.1 LEARNING TELLS THE TRUTH PRINCIPLE

In machine learning, an effective way to learn underlying patterns or rules is to exploit labeled data
points to perform supervised learning. However, in some cases, it is difficult to know if a rule is
true or an annotation approach is correct. To this, we introduce a Learning tells the truth principle.
Suppose there exists a learning algorithm such that an assumptive rule learned from a training set
can be also well-validated on a test set, then the rule holds. Learning tells the truth provides an
assumption-learning-validation paradigm to validate some assumptions.

The key point of this principle is to make reasonable assumptions, assign labels to a set of objects
and find an effective learning algorithm. In this paper, the assumptions are that local solutions across
different runs of an identical neural network converge to a similar local minimum under some condi-
tions (e.g., different optimizers and different neural network structures). Based on the assumptions,
an intuitive annotation way is to assign the same label to local solutions of a learning task in different
runs. Different learning tasks produce different local solutions and their corresponding labels. We
define them as local solution labels or classes. Under such an assumption, we can create a solution
set that contains different solution classes by training different task data sets.

We next try to find an effective learning algorithm such that the assumptive rule learned from the
training set can be well-validated on the test set. We discuss this step in the next section.

3.2 CHAIN ALIGNMENT RULE OF NEURAL NETWORKS

The common approach of aligning weights of neural networks is to transform
(W1,W2, ...,WL−1,WL) into a standard form (W ∗

1 ,W
∗
2 , ...,W

∗
L−1,W

∗
L) that is invariant to

weight permutation. However, it is difficult to define such an ideal standard form or directly match
two solutions because the structure of local solutions is not only affected by the symmetry of
neurons but also determined by the non-convex optimization algorithm. To achieve this, we attempt
to eliminate the permutation factors by considering the relations between variables of different
layers.

We first consider the weight W1. W1 is a n0 × n1 matrix. If we want to permutate neurons of
h1 and keep the output unchangeable, we have to permute the columns of W1 and the rows of W2

correspondingly, as illustrated in Figure 1. Given any non-standard W1, suppose there is a column
permutation matrix Q1 ∈ Rn1×n1 such that W1 can be transformed into W ∗

1 . We have

W1Q1 = W ∗
1 . (1)

In Eq. 1, we cannot directly solveW ∗
1 , because bothW ∗

1 andQ1 are unknown. Instead, we eliminate
the permutation factor Q1 by

(W1Q1)(W1Q1)T = W ∗
1W

∗T
1 . (2)

Because Q1 is the permutation of the identity matrix I and thus a normalized orthogonal matrix.
Hence, Q1Q

T
1 = In1×n1 . We obtain

W1W
T
1 = W ∗

1W
∗T
1 , (3)

which is invariant to random permutation Q1.

We then considerW2. W2 could be affected by the column permutation ofW ∗
1 and the row permuta-

tion of W ∗
3 . Given any non-standard W2, suppose there are a row permutation matrix P2 ∈ Rn1×n1

and a column permutation matrixQ2 ∈ Rn2×n2 such thatW2 can be transformed intoW ∗
2 . We have

P2W2Q2 = W ∗
2 , (4)

where Q1 = PT
2 , because the standardization of W2 is jointly affected by W1, as illustrated in

Figure 1. Q2 and P2 are orthogonal matrixes. Hence, Q1P2 = PT
2 P2 = In1×n1 , Q2Q

T
2 = In2×n2 .

In Eq. 4, it is difficult to eliminate both P2 and Q2. Combining Eqs. 1 and 4, we obtain

W1Q1P2W2Q2 = W1W2Q2 = W ∗
1W

∗
2 (5)

Similar to Eq. 2, we eliminate the permutation factor Q2 by

(W1W2Q2)(W1W2Q2)T = (W ∗
1W

∗
2 )(W ∗

1W
∗
2 )T . (6)

4



Under review as a conference paper at ICLR 2020

Hence, we obtain
W1W2W

T
2 W

T
1 = W ∗

1W
∗
2W

T∗
2 WT∗

1 . (7)

In this way, we can easily generalize Eq. 7 to the case of the l-th layer

W1W2...WlW
T
l ...W

T
2 W

T
1 = W ∗

1W
∗
2 ...W

∗
l W

∗T
l ...WT∗

2 WT∗
1 . (8)

It is observed that the left of Eq. 8 is independent of permutation factors. We term Eq. 8 as the
chain alignment rule of neural networks. Here, a chain is defined as a sequence of layers of a
neural network that begins with the first layer. The l-th chain is from the 1-st layer to the l-th layer.

3.3 FUNCTION FEATURE LEARNING OF NEURAL NETWORKS

Data feature learning is often achieved by minimizing the distance between intra-class data points
and maximizing the distance between inter-class data points. Similar to data feature learning, func-
tion feature learning can be also achieved by minimizing the distance between intra-class local
solutions and maximizing the distance between inter-class local solutions. Here, intra-class local
solutions are a family of local solutions trained by similar procedures on the same learning task
dataset. Inter-class local solutions are those who are trained on different learning task datasets.
For each function (local solution) class, we repeat the training procedure mi times and thus obtain
M =

∑N
i=1mi trained models, where N is the number of solution classes. We then use these local

solutions as metadata points to perform function feature learning to measure the function similarity
of neural networks.

We investigate the function feature representation based on chains. For the l-th chain, the aligned
weight W1W2...WlW

T
l ...W

T
2 W

T
1 with size of (n1, n1) is reshaped into a (n1 × n1, 1) vector and

then projected into a common function feature space by learning a projection matrix Θl. We use the
cross-entropy loss for function classification

Ll = −
N∑
i=1

Yi log(qli) (9)

where Yi is the i-dimensional value of the one-hot label Y . qli represents the probability of the i-th
function class of the l-th chain. We train L function classifiers for L types of chains. Note that we
normalize the weights of each layer in MLP during the function feature learning. When measuring
the local solution similarity of two neural networks, we extract function feature representation by
using projected vectors. We normalize projected vectors and use the cosine similarity to compute
the function similarity. We evaluate the chains from l = 1 to L and find that the isometric chains
of local solutions are strongly related by the SGD optimization algorithm. We empirically evaluate
that local solution classification can achieve about 99% top-1 accuracy.

4 EXPERIMENT

In this section, we study the effectiveness of the proposed function feature representation of MLP,
CNN, and RNN, and validate several assumptions on three datasets, i.e., CIFAR-100 (Krizhevsky &
Hinton, 2009), tiny ImageNet (Russakovsky et al., 2015), and NameData (Paszke et al., 2017).

The assumptions in the experiments are that under some conditions the training of the same learning
tasks converges to highly similar local solution structures (even though neural networks are non-
convex functions) and that of different tasks does not. We use this assumption to label local solutions
(weights), which are used as training data points to train a classifier. The learning algorithm is the
chain alignment rule plus the linear projection. High test accuracy means that assumptions are
reasonable.

Local solution classification is to validate that under the label assumption the rule/knowledge learn-
ing from a training set also holds on the test set. Local solution retrieval aims to validate if function
feature representation can be used for unseen solution classes, because solution classes between a
training set and a test set are non-overlapping in the retrieval setting. These protocols follow image
classification and retrieval and thus have the same motivation.
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Figure 2: Evaluations on the tiny ImageNet Dataset. “layer” is the x-axis of the unaligned method
and “chain” is the x-axis of the aligned method. The following figures are the same.

Specially, Section 4.1, 4.2, and 4.3 assume that under the SGD optimizer condition, local solutions of
each task (different runs) are highly similar even though neural networks are non-convex functions.
In Section 4.4, the assumptions are slightly different. We change one factor of the baseline to form
one new setting each time. Under a new condition, we investigate if the assumption in Section
4.1, 4.2, and 4.3 still holds. We also study if the proposed function feature representation that is
trained under the baseline condition is available under another condition. If under both conditions
the classification accuracy is high, then the structure of local solutions could nearly not affected by
this condition impact factor.

4.1 EVALUATIONS ON THE TINY IMAGENET DATASET

The tiny ImageNet dataset, which is drawn from the ImageNet (Russakovsky et al., 2015), has 200
classes, 64 × 64 in size. Each class has 500 training images, 50 validation images, and 50 test
images. We evaluate the function features of MLP and CNN on the tiny ImageNet dataset. The
goal of this experiment is to validate that SGD based local solutions of a learning task are highly
similar even though neural networks are non-convex functions. It also aims to demonstrate that the
proposed function feature learning is effective.

Local solution sets. We assume that SGD based local solutions of a learning task share the same
property and thus have the same label. Based on the assumption, we generate local solution sets.
We train a 5-layer convolutional network (PlainNet-5) and a 4-layer MLP (MLP-4) to create two
local solution sets for evaluation. The PlainNet-5 network consists of 4 convolutional units and one
fully-connected layer. Each convolutional unit contains one convolutional layer with a kernel size
of 3 × 3, one ReLU function, one BatchNorm layer, and one pooling layer. The MLP-4 consists
of 4 fully connected layers (followed by one ReLU functions), among which three layers have 500
hidden neurons and one has N neurons. We split 200 classes into 50 groups as 50 data subsets with
solution labels 0∼49. Each data subset contains 4 classes. For both MLP and CNN, we repeat the
training procedure 100 times to obtain 100 local solutions for each data subset. We generate 5,000
local solutions (weights) for MLP-4 and PlainNet-5, respectively.

Implementation. When generating local solution sets, we use SGD with a batch size of 128. For
PlainNet-5, the learning rate starts from 0.1 and is divided by 10 after 30 epochs and we train for 50
epochs. For MLP-4, the learning rate starts from 0.1 and is divided by 10 after 70 epochs and we
train for 100 epochs. For saving memory, we resize images into 32 × 32 as input and only analyze
the first three chains in function feature learning (the fourth chain of CNN takes 72G GPU memory
even through the batch size is 1).

When training the function feature representation, we use SGD with a batch size 1. The learning
rate is 0.001 and is divided by 10 after 6 epochs. We also set a baseline without weight alignment.
For each layer, we directly learn to classify its weights.

Local solution classification. We use local solution classification to validate the similarity of local
solutions. We evaluate the performance of local solution classification on MLP and CNN. Similar to
image classification, we predict the solutions labels of trained models by using the chain alignment
rule and the vector projection. For each solution class, we sample 60 local solutions for training
while the other 40 for test. The training set contains 3,000 trained local solutions while the test set
contains 2,000 local solutions. We train the function features by classifying 50 solution classes.
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Figure 3: Evaluations on the CIFAR-100 Dataset.

The experimental results are shown in Figure 2 (a) and (b). In local solution classification, our
proposed method achieves 99.4%, 99.7% and 99.1% top-1 accuracy using MLP and 99.6%, 99.3%
and 99.5% using CNN. The high performance validates the function feature representation of SGD
based local solutions with different solutions labels can be closely projected into different fixed
points. This suggests SGD based local solutions share similar function features and thus have strong
connections. Without using the chain alignment rule, the performance drops significantly, e.g.,
62.9%, 2.4% and 2.8% using MLP, 9.7%, 4.4% and 4.0% using CNN. Besides, for the baseline
without alignment, the first layer also obtains good performance, because the first layer only has one
column permutation variable and thus the row of the matrix contains discriminative information. We
also observed that all types of chains can achieve high performance. This suggests that semantics
of neural networks are hierarchical in a bottom-up way. In other words, the projection directions of
neural networks are arranged in order. Otherwise, the out-of-order projection directions confuse the
system and thus lead to poor performance. We finally conclude that local solutions of each learning
task or optimization process are highly similar and the chain alignment rule plus linear projection is
an effective learning algorithm for validation.

Local solution retrieval. In local solution retrieval, we use the image retrieval metric for local solu-
tion retrieval evaluation, i.e., cumulative matching characteristic Gray et al. (2007). Local solution
retrieval aims to validate that function feature representation can be generalized to measure the sim-
ilarity of unseen local solutions. As shown in Figure 2 (c) and (d), our method achieves 99.3%,
98.8% and 98.0% rank-1 accuracy using MLP. For the function feature representation of CNN, the
proposed model achieves 98.5%, 96.3%, and 97.0%. Without using the chain alignment rule, the
performance drops to 85.3%, 9.5%, and 5.3% on MLP, 15.3%, 8.8%, and 11.0% on CNN. The local
solution retrieval results show the robustness of the function representation learning for unseen so-
lution classes. And the high accuracy demonstrates the soundness of the assumption under the SGD
optimizer.

4.2 EVALUATIONS ON THE CIFAR-100 DATASET

The CIFAR-100 dataset (Krizhevsky & Hinton, 2009), 32 × 32 in size, has 100 classes containing
600 images each. There are 500 training images and 100 testing images per class. The assumptions
in this section is similar to Section 4.1.

Local solution sets. We train PlainNet-5 and MLP-4 to form two local solution sets on CIFAR-100.
The 100 classes of CIFAR-100 is split into 50 groups as 50 data subsets with solution labels 0∼49.
Each data subset has 2 image classes. For each data subsets, we repeat the training procedure 100
times to obtain 100 local solutions. Finally, we obtain 5,000 local solutions for MLP and CNN,
respectively.

Implementation. The implementation of CIFAR-100 is similar to that of tiny ImageNet. The
structure of PlainNet-5 and MLP-4 slightly differs from previous ones because each data subset
of CIFAR-100 contains 2 classes and the dimension of the last fully connected layer is 2.

Local solution classification and retrieval. In both local solution classification and retrieval, our
method obtains about 98.0% top-1 accuracy and 98.0% rank-1 accuracy, as shown in Figure 3. These
results demonstrate the soundness of the assumption and the effectiveness of our proposed function
feature learning once again.
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Table 1: Evaluations on the NameData Dataset using RNN.

unaligned aligned
local solution classification 17.2% top-1 100.0% top-1

local solution retrieval 21.3% rank-1 95.7% rank-1
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Figure 4: Performance of different settings.

4.3 EVALUATIONS ON THE NAMEDATA DATASET

The NameData dataset (Paszke et al., 2017) contains a few thousand surnames from 18 languages
of origin. It is used to train a character-level RNN that can predict which language a name is
from based on the spelling. The assumption is similar to Section 4.1 but is about Recurrent Neural
Network (RNN).

Local solution sets. We train a GRU (Chung et al., 2014) based RNN with two GRU cells (GRU-2)
on NameData. A fully connected layer is added after the GRU module for classification. We do
not use LSTM (Sundermeyer et al., 2012) because we find that GRU is better than LSTM in our
setting. We split 18 classes into 9 groups as 9 data subsets with solution labels 0∼8. Each data
subset contains 2 classes. We repeat the training procedure 100 times to obtain 100 local solutions
for each class. Finally, we generate 900 local solutions.

Implementation. When generating the local solution set, we use SGD with a mini-batch size of 1.
The learning rate starts from 0.1 and is divided by 10 after 7,000 batches and we train for 10,000
batches. When training the function representation, we use SGD with a mini-batch size 1. The
learning rate is 0.001 and is divided by 10 after 6 epochs.

Local solution classification and retrieval. We evaluate the function feature representation of RNN
with solution classification and retrieval metrics as discussed in Section 4.1. With the chain rule
alignment, the proposed method obtains 100.0% top-1 accuracy in the classification setting and
95.7% rank-1 in retrieval setting. Without the alignment approach, the accuracy is 17.2% in classi-
fication and 21.3% in retrieval. These results demonstrate the soundness of the assumption and the
effectiveness of our proposed function feature learning on RNN.

4.4 EFFECT OF DIFFERENT FACTORS

We then study four potential factors that could affect the assumptions made in Section 4.1, 4.2,
and 4.3. They are listed as follows. 1) Baseline. The baseline is implemented by PlainNet-5 with
the ReLU activation function and is optimized by SGD. 2) Network depth (“Depth”). Depth is
implemented by adding a convolutional unit to PlainNet-5, referred to as PlainNet-6. 3) Network
structure (“Res5”). Res5 is designed as a 5-layer residual network (ResNet-5). Note that weight
size is kept the same. 4) Optimizer (“Adam”). Adam is implemented by replacing the SGD opti-
mizer with an Adam optimizer. The initial learning rate is 0.001. 5) Activation function (“Leaky”).
Leaky is implemented by replacing all of the ReLU activation functions with the leaky ReLU func-
tions. Experiments are conducted on the CIFAR-100 dataset.

We implement four settings by changing one of four factors while keeping the other factors un-
changed. For each setting, we train 5,000 local solutions (models) and the solution set is split into
the training and test sets as mentioned in 4.2.
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Figure 5: Effect of four factors on the structure of local solution.

Assumptions and conclusions under four new conditions. We investigate if the assumption under
the new condition still holds on four new solution sets. In Figure 4 (a) and (b), we have two obser-
vations: (1) In both local solution classification and retrieval, using the residual network structure,
leaky ReLU activation function or adding one more layer can also obtain high performance of so-
lution classification and retrieval; (2) The Adam optimizer cannot achieve good performance, the
reason could be that the Adam optimizer converges to unstable structures of local solutions and thus
leads to dissimilar local solutions. Therefore, the assumption in this setting does not hold.

Effect of four factors on the structure of local solutions. Previous discussions focus on the eval-
uation in a certain setting. In this experiment, we want to find out the effect of these factors on
the structure of local solutions. This can be achieved by validating the effectiveness of the function
feature representation across different conditions. We train models by using the baseline setting and
test by another setting. In Figure 5 (a), we use local solution classification, which aims to validate
if the structure of local solutions affected by these factors. The training and test sets share the same
learning tasks. We find several key points. First, when applying the function feature representa-
tion of PlainNet-5 to that of ResNet-5, the performance drops in the solution classification setting.
That means the structure of local solutions of ResNet-5 is changed to some extent compared with
PlainNet-5. Second, replacing ReLU by Leaky ReLU or adding one layer to PlainNet-5 nearly does
not change the structure of local solutions because the accuracy is still high in solution classifica-
tion. Third, it is observed that Adam obtains low accuracy. That is, the structure of local solutions
of Adam is quite different from that of SGD, the reason could be the unstable adaptive convergence
against the convexity of neural networks. In Figure 5 (b), we use local solution retrieval, which aims
to validate the effectiveness of function feature learning across conditions. It is observed that the
first three factors do not affect the high accuracy of the assumptions, which shows the function fea-
tures are robust across different conditions to validate these assumptions. Local solutions of Adam
optimizer could converge to an unstable structure, which has been discussed. Therefore, function
feature learning cannot extract shared features from them.

5 CONCLUSION

In this paper, we present a Function Feature Learning (FFL) method that can measure the similarity
of non-linear neural networks and thus provides crucial insights into the understanding of the relation
between different local solutions of identical neural networks. FFL introduces a novel chain align-
ment rule for parameter alignment. FFL is used for Multi-Layer Perceptron (MLP), Convolutional
Neural Network (CNN), and Recurrent Neural Network (RNN) and evaluated on three datasets. The
promising results demonstrate the strong connection between different SGD based local solutions
of identical neural networks and the equivalence of projected local solutions by SGD. Besides, the
semantics are often presented in a bottom-up way. Finally, FFL provides more insights into the
structure of local solutions.

We intend to extend FFL in several directions. First, FFL could be used to measure the transferability
between different learning tasks based on the similarity of local solutions. Second, FFL could be
used to select diverse learners for ensemble learning based on the dissimilarity of local solutions.
Third, FFL could be helpful to find better local solutions in non-convex optimization according to
the strong relation between different local solutions.
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