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ABSTRACT

We consider the following central question in the field of Deep Reinforcement
Learning (DRL): How can we use implicit human feedback to accelerate and op-
timize the training of a DRL algorithm? State-of-the-art methods rely on any
human feedback to be provided explicitly, requiring the active participation of hu-
mans (e.g., expert labeling, demonstrations, etc.). In this work, we investigate an
alternative paradigm, where non-expert humans are silently observing (and assess-
ing) the agent interacting with the environment. The human’s intrinsic reactions
to the agent’s behavior is sensed as implicit feedback by placing electrodes on the
human scalp and monitoring what are known as event-related electric potentials.
The implicit feedback is then used to augment the agent’s learning in the RL tasks.
We develop a system to obtain and accurately decode the implicit human feedback
(specifically error-related event potentials) for state-action pairs in an Atari-type
environment. As a baseline contribution, we demonstrate the feasibility of cap-
turing error-potentials of a human observer watching an agent learning to play
several different Atari-games using an electroencephalogram (EEG) cap, and then
decoding the signals appropriately and using them as an auxiliary reward func-
tion to a DRL algorithm with the intent of accelerating its learning of the game.
Building atop the baseline, we then make the following novel contributions in our
work: (i) We argue that the definition of error-potentials is generalizable across
different environments; specifically we show that error-potentials of an observer
can be learned for a specific game, and the definition used as-is for another game
without requiring re-learning of the error-potentials. (ii) We propose two differ-
ent frameworks to combine recent advances in DRL into the error-potential based
feedback system in a sample-efficient manner, allowing humans to provide im-
plicit feedback while training in the loop, or prior to the training of the RL agent.
(iii) Finally, we scale the implicit human feedback (via ErrP) based RL to rea-
sonably complex environments (games) and demonstrate the significance of our
approach through synthetic and real user experiments.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) algorithms have now beaten human experts in Go (Silver et al.,
2017), taught robots to become parkour masters (Heess et al., 2017), and enabled truly autonomous
vehicles (Wang et al., 2018). However, current state-of-the-art RL agents equipped with deep neural
networks are inherently complex, difficult and time-intensive to train. Particularly in complex envi-
ronments with sparse reward functions (e.g., maze navigation), the DRL agents need an inordinate
amount of interaction with the environment to learn the optimal policy. Human participation can po-
tentially help DRL algorithms by accelerating their training and reducing the learning costs without
compromising final performance. This potential has inspired a several research efforts where either
an alternative (or supplementary) feedback is obtained from the human participant (Knox, 2012).
Such approaches despite being highly effective, severely burden the human-in-the-loop demanding
either expert demonstrations (Ross et al., 2011) or explicit feedback (Christiano et al., 2017).

In this paper, we investigate an alternative paradigm that substantially increases the richness of the
reward functions, while not severely burdening the human-in-the-loop. We study the use of elec-
troencephalogram (EEG) based brain waves of the human-in-the-loop to generate the reward func-
tions that can be used by the DRL algorithms. Such a model will benefit from the natural rich activity
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of a powerful sensor (the human brain), but at the same time not burden the human if the activity
being relied upon is intrinsic. This paradigm is inspired by a high-level error-processing system in
humans that generates error-related potential/negativity (ErrP or ERN) (Scheffers et al., 1996).When
a human recognizes an error made by an agent, the elicited ErrP can be captured through EEG to
inform agent about the sub-optimality of the taken action in the particular state.

As a baseline contribution, we demonstrate the feasibility of capturing error-potentials of a human
observer watching an agent learning to play several different Atari-games, and then decoding the
signals appropriately and using them as an auxiliary reward function to a DRL algorithm. We show
that a full access approach to obtain feedback on every state-action pair while RL agent is learning,
can significantly speedup the training convergence of RL agent. We contend that while obtaining
such implicit human feedback through EEG is less burdensome, it is still a time-intensive task for
the subject and the experimenter alike. This, combined with the noisy EEG signals and stochasticity
in inferring error-potentials, raises significant challenges in terms of the practicality of the solution.

In this context, we first argue that the definition of ErrPs is generalizable across different environ-
ments. We show that ErrPs of an observer can be learned for a specific game, and the definition used
as-is for another game without requiring re-learning of the ErrP. This is notably different from previ-
ous approaches (Chavarriaga & Millán, 2010; Salazar-Gomez et al., 2017), where the labeled ErrPs
are obtained in the same environment (where the RL task is performed). For any new and unseen
environment, it does not require the human to go through the training phase again, and assumes no
prior knowledge about the optimal state-action pairs of the environment.

We present two different frameworks to combine recent advances in DRL into the implicit human
feedback mechanism (via ErrP) in a practical, sample-efficient manner. This reduces the cost of
human supervision sufficiently allowing the DRL systems to train. Relying on Active Learning
(AL) methods, our first framework allows humans to provide implicit feedback in the loop, while an
RL agent is being trained. An uncertainty based acquisition function is modeled to select the samples
state-action pairs for querying the implicit human feedback. However, as a human is always required
to be in the loop, our second framework allows humans to provide their feedback implicitly before
the agent starts training. Based on the human feedback obtained during pre-training, a quality (Q)
function is learned over these imperfect demonstrations to provide the supplementary reward to the
RL agent. We present results from real ErrP experiments to evaluate the acceleration in learning,
and sample efficiency, in both frameworks. In summary, the novel contributions of our work are,

1. We demonstrate the generalizability of error-potentials over various Atari-like environments (dis-
crete grid-based navigation games, studied in this work), enabling the estimation of implicit hu-
man feedback in new and unseen environments.

2. We propose two different frameworks to combine recent advances in DRL into ErrP based feed-
back system in a practical, sample-efficient manner. The first framework allows humans to pro-
vide implicit feedback while training in the loop. Taking advantage of recent approaches in
learning from imperfect demonstrations, in the second framework, the implicit human feedback
is obtained prior to the training of the RL agent.

3. We scale the implicit human feedback (via ErrP) based RL to reasonably complex environments
and demonstrate the significance of our approach through synthetic and real user experiments.

1.1 RELATED WORK

Daniel et al. (2015); El Asri et al. (2016); Wang et al. (2016) studied RL from human rankings or rat-
ings, however rely on explicit human feedback, and assume that the feedback is noiseless. Demon-
strations have been commonly used to improve the efficiency of RL (Kim et al., 2013; Chemali &
Lazaric, 2015; Piot et al., 2014), and a common paradigm is to initialize RL algorithms with good
policy or Q function (Nair et al., 2018; Hester et al., 2018; Gao et al., 2018). In this work, we use
rely on implicit feedback from non-expert humans (via ErrPs) which is inherently noisy.

(Chavarriaga & Millán, 2010; Iturrate et al., 2010; Salazar-Gomez et al., 2017) demonstrate the
benefit of ErrPs in a very simple setting (i.e., very small state-space), and use ErrP-based feedback
as the only reward. Moreover, in all of these works, the ErrP decoder is trained on a similar game
(or robotic task), essentially using the knowledge that is supposed to be unknown in the RL task. In
our work, we use labeled ErrPs examples of very simple and known environments to train the ErrP
decoder, and combine with the recent advances in DRL in a sample-efficient manner for reasonably
complex environments.
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Figure 1: Manifestation of error-potentials in time-domain: Grand average potentials (error-minus-
correct conditions) are shown for Maze, Catch and Wobble game environments. Thick black line
denotes the average over all the subjects. The game environments are explained in section

2 DEFINITIONS AND PRELIMINARIES

Consider a Markov Decision Process (MDP) problem M , as a tuple < X ,A, P, P0, R, γ >, with
state-space X , action-space A, transition kernel P , initial state distribution P0, accompanied with
reward function R, and discounting factor 0 ≤ γ ≤ 1. Here the random variable Z(s,a) denotes
the accumulated discounted future rewards starting from state s and action a.

In this work, we only consider MDP with discrete actions and states. In model-free RL method, the
central idea of most prominent approaches is to learn the Q-function by minimizing the Bellman
residual, i.e., L(Q) = Eπ

[(
Q(x, a) − r − γQ(x′, â)

)2]
, and temporal difference (TD) (Tesauro,

1995) update where the transition tuple (x, a, r, x′) consists of a consecutive experience under be-
havior policy π. Modern techniques in DRL such as DQN (Mnih et al., 2015) and the target network
(Van Hasselt et al., 2016) are also adpoted throughout the paper.

3 INTEGRATING DRL WITH IMPLICIT HUMAN FEEDBACK: AN IDEAL
APPROACH

The humans intrinsic reactions to the agents behavior is sensed as implicit feedback by placing
electrodes on the human scalp and monitoring what are known as event-related electric potentials.
We rely on the Riemannian Geometry framework for the classification of error-related potentials
(Barachant & Congedo, 2014; Congedo et al., 2013) presented in Appendix 7.1. We consider the
classification of error-related potentials as a binary variable indicating the presence (i.e., action taken
by the agent is incorrect) and absence of error (i.e., action taken by the agent is correct).

With the availability of implicit human feedback, we explore how the training of state-of-the-art
DRL algorithms can be accelerated. A trivial approach is to obtain feedback on every state-action
pair while RL agent is learning (also known as full access). It is to add a negative penalty to the
reward when ErrP is detected, and keep using the original reward from the environment without ErrP
detected. The evaluation result of this method based on real ErrP data is shown in section 5.1. The
results validate that this method can speed up the training convergence of RL agent significantly.

We contend that while obtaining such implicit human feedback through EEG is less burdensome,
it is still a time-intensive task for the subject and the experimenter alike. This, combined with the
noisy EEG signals and stochasticity in inferring ErrPs, raises significant challenges in terms of the
practicality of the solution.

4 TOWARDS PRACTICAL INTEGRATION OF DRL WITH IMPLICIT HUMAN
FEEDBACK

In this section, we discuss three approaches towards integrating the ErrP with recent advances in
DRL in a practical manner. Firstly, we show that ErrPs of an observer can be learned for a specific
game, and the definition used as-is for another game without requiring re-learning of the ErrP. Fur-
ther, we discuss two frameworks to combine the recent advances in DRL into the implicit human
feedback mechanism (via ErrP) to accelerate the RL agent learning in a sample-efficient manner.
The first framework allows humans to provide implicit feedback while training in the loop, without
any prior knowledge on the game. In the second framework, the implicit human feedback is obtained
prior to the training of the RL agent. It exploits the initially given trajectories with ErrP labels to
learn a reward function for augmenting the RL agent, where human with some prior knowledge is
needed to specify some non-expert trajectories. Recently, Q function can be shown to have better
generalization in state-space if trained with non-expert demonstrations (Luo et al., 2019).
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4.1 ERRP GENERALIZATION ACROSS ENVIRONMENTS

Error-potentials in the EEG signals is studied under two major paradigms in human-machine inter-
action tasks, (i) feedback and response ErrPs: error made by human (Carter et al., 1998; Falkenstein
et al., 2000; Blankertz et al., 2003; Parra et al., 2003; Holroyd & Coles, 2002), (ii) interaction ErrPs:
error made by machine in interpreting human intent (Ferrez & Millán, 2005). Another interesting
paradigm is when human is watching (and silently assessing) the machine performing a specific task
(Chavarriaga & Millán, 2010). The manifestation of these potentials across these paradigms were
found quite similar in terms of their general shape, timings of negative and positive peaks, frequency
characteristics etc., (Ferrez & Millán, 2005; Chavarriaga & Millán, 2010). This prompts us to ex-
plore the consistency of the error-potentials across different environments (i.e., games, in our case).
We restrict the score of our work to the paradigm of human acting as a silent observer of the machine
actions. In Fig.5, we plot the grand average waveforms across three environments (Maze, Catch and
Wobble), to visually validate the consistency of potentials. We can see that the shape of negativity,
and the timings of the peaks is quite consistent across the three game environments studied in this
work. Further, we perform experimental evaluation in section 5.2.1, to show that error-potentials
are indeed generalizable across environments, and can further be used to inform deep reinforcement
learning algorithm in a new and unseen environments.

4.2 FIRST FRAMEWORK: TRAINING WITH IMPLICIT HUMAN FEEDBACK IN THE LOOP

Active Learning (AL) frameworks have been proved quite successful in optimizing the learning task
while minimizing the required number of labeled examples (Cohn et al., 1996; Gal et al., 2017). In
AL, an acquisition function is used to efficiently select the data points requested for labeling from
an external oracle. We introduce a framework of training RL agents with implicit non-expert human
feedback in the loop, leveraging recent advances in active learning methods.

We present our active learning based framework in Fig. 2(a). We use an uncertainty-based acquisi-
tion function to select the state-action pairs required for non-expert human labeling (via ErrP). Since
it is critical to keep the coherence between consecutive state-action pairs shown to the human sub-
ject, a full trajectory from start to end of the game can be shown. The calculation of the acquisition
function is based on the state-action pair uncertainty along the trajectory, as explained in Appendix
7.3. Specifically, we model the Deep-Q-Network (DQN) by Bayesian learning methods, which have
strong capacity of uncertainty estimation (Gal et al., 2017). The DQN is trained with experience
collected in the reply buffer, a structure commonly used in deep RL algorithms.

In contrast to the full access method, the presented framework queries for ErrP based state-action
pair labeling only at the end of every NE episodes. We further store the decoded ErrP labels into
buckets, to be used for future training augmentation. In every step, the RL agent inquire the negativ-
ity of the current state-action pair from buckets, instead of ErrP labeling, which reduces the number
of ErrP inquiries significantly. This negativity can add a negative penalty to the environmental re-
ward as auxiliary.

Trajectory Generation and Selection: ErrP labeling informs the RL agent about negativity of
selected actions, ideally preventing the agent from deviating from the optimal paths in the game.
However, these optimal paths are unknown a priori. For generating trajectories for ErrP labeling,
we empirically found that following greedily the action with largest Q value in every state based on
the most updated DQN performs very well. Then the trajectory with the largest acquisition function
output is selected for querying ErrP labels. Three acquisition functions evaluated in experiments are
all formulated based on the uncertainty estimation of Q values, and their formulations and approxi-
mations are introduced in Appendix 7.3. The framework are presented in Algorithm 1.

4.3 SECOND FRAMEWORK: LEARNING FROM IMPERFECT DEMONSTRATIONS WITH
IMPLICIT HUMAN FEEDBACK

RL algorithms deployed in the environment with sparse rewards demand heavy explorations (require
a large number of trial-and-errors) during the initial stages of training. Imitation learning from a
small number of demonstrations followed by RL fine-tuning is a promising paradigm to improve
the sample efficiency in such cases (Večerı́k et al., 2017; Hester et al., 2018; Gao et al., 2018).
Inspired by the paradigm of imitation learning, we develop a novel framework that can robustly
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Algorithm 1: Integrating Implicit Human Feedback while Training
Input: Parameters NE , NT , acquisition function a(·)

1 Initialize DQN Q(·, ·) ;
2 for episode=1,2,. . . do
3 Starting from random initial state, the RL agent plays the game until the end of the episode;
4 Update the DQN Q by experiences randomly selected from the replay buffer ;
5 In every NE episode: ;
6 Generate NT trajectories {τk}NT

k=1 by following the actions induced from Q ;
7 Select the trajectory maximizing the acquisition function a(·) for obtaining ErrP data;
8 Return the decoded ErrP labels to the RL agent for future training augmentation ;
9 end

Environment
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Observation
+

Reward

Experience

DQN

ErrP experiment

ErrP feedback ErrP
decoder

Trajectory

(a) Training with implicit human feedback in the loop.
Trajectory block: trajectory generation and selection
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(b) Learning from imperfect demonstration with im-
plicit human feedback. The dashed line shows trajec-
tories in D ∪DR, and are used in reward learning

Figure 2: Integrating DRL with Implicit Human Feedback

learn a reward function to augment the DRL algorithms and accelerate the training of RL agent.
This reward function is derived from reward function with imperfect demonstrations, achieved by
obtaining the implicit human feedback in the form of ErrP over a set of trajectories.

The flowchart of the second framework is in Fig. 2(b). In this framework, the trajectories in the
demonstration are first criticized by ErrP labeling in experiments, and a quality (Q) function is
learned from the labeled trajectories in the reward learning step. An alternative reward is derived
from the learned quality function, augmenting the following RL algorithm. This approach is con-
siderably different from our first framework (section 4.2), as we only make queries for ErrP labeling
on trajectories initially given in the demonstration (rather than making queries continuously during
every training step). These queries are made before the RL agent starts training, improving the ef-
ficiency of the total number of labeling (implicit, ErrP based) queries made to the external oracle
(human). Similar to the first framework, the demonstrations for ErrP labeling can only consist of
complete trajectories. We assumed that the trajectories in the demonstration are initially specified by
human or other external sources, without any reward information. This is a reasonable assumption
since the rewards may be unknown to humans in general cases. The human subject in the experiment
provides feedback in an implicit manner (via ErrP) on state-action pairs along the trajectories, label-
ing every state-action pair as a positive or negative sample. Based on the decoded ErrP labels and
initially given trajectories, the proposed framework learns the reward function based on maximum
entropy RL methods (Ziebart, 2010), as explained in details in Appendix 7.4.

Different from conventional imitation learning, these trajectories are not given by expert policies,
allowing the non-experts to demonstrate. Moreover, the Q function learned from imperfect demon-
strations can have better estimations on states unseen in the demonstration, and provide better gen-
eralization in the state-space (Luo et al., 2019).

5 EVALUATION

We have developed three discrete-grid based navigation games in OpenAI Gym emulating Atari
framework (Brockman et al., 2016), namely (i) Wobble, (ii) Catch, and (iii) Maze, shown in Fig.
3(a). We use the default Atari dimensions (i.e., 210x160 pixels). The source codes of the games can
be found in the public repository1, and can be used with the OpenAI Gym module.

1source code is attached with the submission for anonymity purposes
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(a) Game Environments (b) Experiment Bench

Figure 3: Experimental framework
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Figure 4: RL with full access to ErrP feedback.

Wobble: Wobble is a simple 1-D cursor-target game, where the middle horizontal plane is divided
into 20 discrete blocks. At the beginning of the game, the cursor appears at the center of the screen,
and the target appears no more than three blocks away from the cursor position. The action space
for the agent is moving one step either left or right. The game is finished when the cursor reaches
the target. Once the game is finished, a new game is started with the cursor in place.
Catch: Catch is a simplistic version of Eggomania2 (Atari 2600 benchmark), where we display a
single egg on the screen at a time. The screen dimensions are divided into 10x10 grid space, where
the egg and the cart, both occupies one block. The action space of the agent consists of “NOOP”
(no operation), “moving left” and “moving right”. At the start of the game, the horizontal position
of the egg is chosen randomly. At each time step, the egg falls one block in the vertical direction.
Maze: Maze is a 2-D navigational game, where the agent has to reach to a fixed target. The Atari
screen is centered and divided into 10x10 equal-sized blocks. The agent and target occupy one
block. The action space consists of four directional movements. The maze architecture is kept fixed
for the purpose of this work. If an agent moves, but hits a wall, a quick blinking of the agent is
displayed, to show the action taken by the agent.

EEG experimental protocol: We designed and developed an experimental protocol, where a ma-
chine agent plays a computer game, while a human silently observes (and assesses) the actions taken
by the machine agent. These implicit human reactions are captured by placing raw electrodes on the
scalp of the human brain in the form of EEG. The electrode cap was attached with the OpenBCI3

platform, which was further connected to a desktop machine over the wireless channel. In the game
design (developed on OpenAI Gym), we open a TCP port, and continuously transmit the current
state-action pair using the TCP/IP protocol. We used OpenViBE software (Renard et al., 2010)
to record the human EEG data. OpenViBE continuously listens to the TCP port (for state-action
pairs), and timestamps the EEG data in a synchronized manner. A total of five human subjects were
recruited using standard procedures. We recruited five human subjects (mean age 26.8 ± 1.92, 1
female) for collecting the EEG data. For each subject, we conducted three separate sessions over
multiple days. For each subject-game pair, the experimental duration was less than 15 minutes. The
agent took action every 1.5 seconds. All the research protocols for the user data collection were
reviewed and approved by the Institutional Review Board4.

5.1 FULL ACCESS

The full access method as discussed in section 3 is the most preliminary approach to make ErrP
labels augment the RL algorithm. It has the fastest training convergence rate (provides upper bound)
but makes the maximum possible queries to the external oracle (human) for the implicit feedback.
We use this method as a benchmark for comparing the data-efficiency of other RL augmentation
methods. The results with real ErrP data of 5 subjects are shown in Figure 4. Here the training
data of ErrP decoder is from Catch game while the testing data is from Maze. We can see there
is a significant improvement in the training convergence. It further validates the generalization
capability of ErrP decoding from 1-D to 2-D navigation games. In this paper, ”No ErrP” method
refers to regular RL algorithms without the help of any human feedback. The success rate is defined
as the ratio of success plays in the previous 32 episodes. The training completes when the success
rate reaches to 1. In all plots of this paper, solid lines are average values over 10 random seeds,
and shaded regions correspond to one standard deviation. In the evaluations of this paper, the Q
network is modeled by Bayesian deep learning methods, such as Bayesian DQN or bootstrapped
DQN, introduced in Appendix 7.2.

2https://en.wikipedia.org/wiki/Eggomania
3http://openbci.com
4The Institution name is not disclosed to ensure the anonymity of the author affiliations.
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Figure 5: Detection performance and generalizability of ErrP: (a) 10-fold CV performance of each
game i.e., no generalization, (b) generalizability from Catch to Maze over subjects compared with
10-fold CV, (c) generalizability over all combinations of three games compared with 10-fold CV.
5.2 PRACTICAL SOLUTION

In this subsection, we evaluate the performance of three approaches to practially integrate the DRL
with implicit human feedback (via ErrPs).

5.2.1 GENERALIZABILITY

We first validate the feasibility of decoding ErrP signals using a 10-fold cross-validation scheme for
each game. In this scheme, we train and test on the ErrP samples of the same game environment. In
Fig. 5(a), we show the performance of three games in terms of AUC score, sensitivity and specificity,
averaged over 5 subjects. The Maze game has the highest AUC score (0.89 ± 0.05) followed by
Catch (0.83 ± 0.08) and Wobble (0.77 ± 0.09). To evaluate the generalization capability of error-
potential signals and the decoding algorithm, we train on the samples collected from Catch and test
on Maze game. In Fig. 5(b), we provide the AUC score performance compared with the 10-fold
CV AUC score of Maze. We can see that the Catch game is able to capture more than 80% of the
variability in the ErrPs for Maze game. To provide deeper insights into the generalizability extent,
we present the AUC score of generalizability performance over all combinations in fig. 5(c). In the
later subsections, we experimentally show that these performance numbers are sufficient to achieve
2.25x improvement in training time (in terms of the number of episodes required).

We performed preliminary experiments to gain fundamental insights into the extent of generalizabil-
ity. All the three games considered in this work, differ in terms of their action space. Wobble can
move either left or right (two actions), Catch has an additional “NOOP” (3 actions), and the agent
in the Maze can move in either direction (4 actions). To understand the generalizability of ErrP in
terms of the actions taken by the agent, we train on the Wobble, and test on the Catch game for two
groups - (i) when the agent moves in either direction, and (ii) when the agent stays in the place. We
obtain an average AUC score of 0.7359 (± 0.1294) and 0.6423 (± 0.1451) for both groups, respec-
tively. Through a paired t-test, we found the difference in mean statistically significant. Similarly,
for the Catch game, we test two groups - (i) when egg is close to the paddle, and (ii) when egg is far
from the paddle. We found the mean AUC scores of 0.71 (± 0.1) and 0.84 (± 0.12) for each group,
respectively. The difference of the mean of both groups was found statistically significant.

5.2.2 EVALUATION OF FIRST FRAMEWORK

In evaluating active RL framework, we explore three forms of acquisition functions, i.e., entropy,
mutual information, and confidence interval. Their expressions and approximation techniques are
illustrated with details in Appendix 7.3. The benchmark performance of full access method is shown
in section 5.1. We first evaluate the performance of first framework with synthesized human feed-
back, which is presented in Appendix 7.5.1 on box world environment(Zambaldi et al., 2018).

In this section, we evaluate the first framework on Maze game with real ErrP experimental data. We
use Bayesian DQN for the Q network. Three acquisition functions are compared in Figure 6 with
detailed statistics on Table 7.5.1, which has similar conclusions as the synthetic case. Based on real
ErrP data, we can show that compared with full access method, the first framework can reach similar
performance with much less feedback inquiries.

5.2.3 EVALUATION OF SECOND FRAMEWORK

In the evaluation of this framework, the trajectories given initially are generated based on optimal
paths randomly corrupted by wrong actions, which appear with the probability of 0.2. We evaluate
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Figure 6: Evaluation of First Framework: Training with Implicit Human Feedback in the loop.
Comparison of Three Acquisition Functions in Figure (b) and (d).

the performance with 10 and 20 trajectories given initially. Prior to training the RL agent, each
subject is asked to provide feedback via ErrP on the state-action pairs along these trajectories. We
conducted experiments on 5 subjects, based on Maze game. Here the Q network is modeled by
Bayesian DQN. The performance of augmented RL algorithms is shown in Figure 7.
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Figure 7: Evaluation of Second Framework: Learning from Imperfect Demonstrations Labeled by
ErrP. Figures (a) and (b) are for the demonstration with 10 trajectories, and figures (c) and (d) are
for 20 trajectories.

The reward function is shown to speed up the training convergence of the RL agent significantly.
Since trajectories are randomly generated initially, the number of ErrP inquiries of the second frame-
work is equal to 372.1(±58.2), based on the statistics in our simulations. The second framework
even outperforms the full access method, with ErrP inquiries on only 20 trajectories, proving its
data efficiency. However, this framework needs a human or external source, who has some prior
knowledge of the game, to specify the initial trajectories.

6 CONCLUSIONS AND FUTURE WORK

We first demonstrate the feasibility of capturing error-potentials of a human observer watching an
agent learning to play several different Atari-games, and then decoding the signals appropriately and
using them as an auxiliary reward function to a DRL algorithm. Then we argue that the definition
of ErrPs is generalizable across different environment. In the ideal approach, we validate the aug-
mentation effect of ErrP labels on RL algorithms by the full access method. Then, in the practical
approach, we propose two augmentation frameworks for RL agent, applicable to different situations.
The first is to integrate human into the training loop of RL agent based on active learning, while the
second is to learn a reward function from imperfect demonstrations labeled by ErrP.

The demonstration of the generalizability of error-potentials is limited across the environments pre-
sented in the paper. We have considered discrete grid-based reasonably complex navigation games.
The validation of the generalization to a variety of Atari and Robotic environments is the subject
of the future work. We also plan to test our framework of integrating implicit human feedback (via
ErrPs) over robotic environments, and text the generalization capability of error-potentials between
virtual and physical worlds.

As future work, we plan to investigate as to how machines can be assisted in RL by using intrinsic
EEG-based cooperations among humans and machines.
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Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635, 2011.

Andres F Salazar-Gomez, Joseph DelPreto, Stephanie Gil, Frank H Guenther, and Daniela Rus.
Correcting robot mistakes in real time using eeg signals. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 6570–6577. IEEE, 2017.

Marten K Scheffers, Michael GH Coles, Peter Bernstein, William J Gehring, and Emanuel Donchin.
Event-related brain potentials and error-related processing: An analysis of incorrect responses to
go and no-go stimuli. Psychophysiology, 33(1):42–53, 1996.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38(3):
58–68, 1995.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016.
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7 APPENDIX

7.1 OBTAINING THE IMPLICIT HUMAN FEEDBACK: DECODING ERRPS

The Riemannian Geometry based framework was first proposed in (Barachant & Congedo, 2014;
Congedo et al., 2013) to translate teh raw EEG signals into meaningful labels5. The raw EEG data

5The authors successfully applied the framework and won multiple Kaggle challenges. E.g.,
https://www.kaggle.com/c/inria-bci-challenge. Later, this framework was successfully adapted in many other
error-potential decoding works (Salazar-Gomez et al., 2017).
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are bandpass filtered in [0.5, 40] Hz. Epochs of 800ms were extracted relative to pre-stimulus 200ms
baseline, and were subjected to spatial filtering. In spatial filtering, prototype responses of each class,
i.e., “correct” and “erroneous”, are computed by averaging all training trials in the corresponding
classes(“xDAWN Spatial Filter” (Rivet et al., 2009; Barachant & Congedo, 2014; Congedo et al.,
2013)). “xDAWN filtering” projects the EEG signals from sensor space (i.e., electrode space) to
the source space (i.e., a low-dimensional space constituted by the actual neuronal ensembles in
brain firing coherently). The covariance matrix of each epoch is computed, and concatenated with
the prototype responses of the class. Further, dimensionality reduction is achieved by selecting
relevant channels through backward elimination (Barachant & Bonnet, 2011). The filtered signals
are projected to the tangent space (Barachant et al., 2013; 2011) for feature extraction. The obtained
feature vector is first normalized (using L1 norm) and fed to a regularized regression model. A
threshold value is selected for the final decision by maximizing accuracy offline on the training set.
We present the algorithm to decode the ErrP signals in Algorithm 2.

Algorithm 2: Riemannian Geometry based ErrP classification algorithm (Barachant et al., 2013)
Input : raw EEG signals EEG

1 Pre-process raw EEG signals ;
2 Spatial Filtering: xDAWN Spatial Filter (nfilter) ;
3 Electrode Selection: ElectrodeSelect (nelec, metric=’riemann’) ;
4 Tangent Space Projection : TangentSpace(metric = “logeuclid”) Normalize using L1 norm ;
5 Regression: ElasticNet ;
6 Select decision threshold by maximizing accuracy

7.2 DEEP Q NETWORK MODELS

Here we introduce two DQN models adopted in this paper.

Bayesian DQN The first model we use is a DQN architecture where the Q-function is approximated
as a linear function, with weights ωa, of the feature representation of states φθ(x) ∈ Rd, parameter-
ized by neural network with weights θ (Osband et al., 2013). Here by utilizing the DQN architecture
and imposing Gaussian distributions on ωa, based on Bayesian linear regression (BLR) (Rasmussen,
2003), the posterior of ωa can be calculated by

ωa ∼ N (ω̄a,Cova), ω̄a :=
1

σ2
ε

CovaΦθaya, Cova :=

(
1

σ2
ε

ΦθaΦθa
T

+
1

σ2
I

)−1
(1)

where we construct disjoint replay buffer Da corresponding to experience with action a, and a
matrix Φθa ∈ Rd×|Da|, vector ya, i.e., the concatenation of state features and target values in set Da.
Therefore the posterior of Q value can be the following the Gaussian distribution,

Q(x, a) ∼ N (ω̄Ta φθ(x), φθ(x)
TCovaφθ(x)) (2)

Bootstrapped DQN Another Bayesian DQN model we use is bootstrapped DQN (Osband et al.,
2016). It explores in a similar manner as the Bayesian DQN introduced above, but uses a boot-
strapped neural network to approximate a posterior sample for the value. Bootstrapped DQN is also
provably efficient, but adopts neural network instead of linear value function and bootstraps instead
of Gaussian sampling. It is implemented byK ∈ N bootstrapped estimates of the Q value in parallel,
i.e., Qk(s, a; θ), s = 1, . . . ,K.

7.3 ACQUISITION FUNCTION

In this work, three acquisition functions are explored in selecting trajectory for ErrP labeling. The
trajectory is defined as a sequence of state-action pairs τ := {(s0,a0), . . . , (sT ,aT )}. We denote
the trajectory set asD, the learned Q network asQ, and acquisition function as a(τ,Q). The selected
trajectory maximizes the acquisition function given Q. In this work, we explore three acquisition
functions:
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• Entropy: Select the trajectory with the maximum entropy, which measures the uncertainty
of state-action pairs along the trajectory.

a(τ,Q) := H[τ |Q] = −
T∑
t=0

H[st,at|Q]

Specifically, in Bayesian and bootstrapped DQN, since Q value is approximately Gaus-
sian distributed, we can directly use the differential entropy of Gaussian random variable
here, i.e., H[st,at|Q] = 1

2 log 2πeCova, where the variance term Cova can be replaced by
equation 1 or the variance of K heads of bootstrapped DQN.
• Mutual Information: choose the trajectory with maximum mutual information between

priors and posterior of state-action distributions (Houlsby et al., 2011). The mutual infor-
mation represents the information gain of action selections. We have

a(τ,Q) := I[τ |Q] =

T∑
t=0

I[st,at|Q]

Following (Nikolov et al., 2018), we approximate the mutual information I[st,at|Q] by
log(1+ σ(st,at)

2

ρ(st,at)2
), where σ(st,at) characterizes the parametric uncertainty of Q value, and

ρ(st,at)
2 represents the intrinsic uncertainty. In this work, σ(·, ·)2 is obtained by Cova

in equation 1 for Bayesian DQN, and by the variance of K heads in bootstrapped DQN.
We approximate ρ(st,at) by the variance of accumulated rewards Z(st,at), obtained by
histogram statistics, C51 (Bellemare et al., 2017) or QR-DQN (Dabney et al., 2018).

• Confidence Interval: Choose the trajectory with the maximum uncertainty in ErrP label-
ing. Some state-action pairs may have ambiguous results of ErrP decoding, with similar
numbers of true and false results. And taking these pairs for ErrP labeling can decrease
the uncertainty, making the RL agent more decisive on action selection. Confidence level
of Binomial random variable is used here as the metric of uncertainty. Then acquisition
function based on confidence interval can be expressed as

T∑
t=1

1.96

Ns
t +Nf

t

√
Ns
tN

f
t

Ns
t +Nf

t

where Ns
t (Nf

t ) are number of True (False) ErrP decoding results for state-action pair at
step t on the trajectory.

7.4 REWARD LEARNING

Since implicit human feedback via ErrP is noisy (hence imperfect demonstrations), we model the
reward learning as a probabilistic maximum entropy RL problem. Following the principle of max-
imum entropy, given Q function Q(·, ·), the policy distribution and value function in terms of Q
function can be expressed as follows,

VQ(s) = α log
∑
a

exp(Q(s,a)/α), πQ(a|s) = exp((Q(s,a)− VQ(s))/α) (3)

where α is a free parameter, tuned empirically. The likelihood of positive and negative state-action
pair are denoted as πQ(a|s) and 1 − πQ(a|s). When demonstrations and corresponding implicit
human feedback are ready, we train the Q function by maximizing the likelihood of both positive
and negative state-action pairs in the demonstrations.

In order to refine the reward shape and attenuate the variance of learning updates, we introduce
another baseline function t(s) in the Q function. Hence, the Q function becomes QB(s,a) :=
Q(s,a) − t(s). It can be proved that QB(·, ·) and Q(·, ·) induce the same optimal policy (Ng
et al., 1999). The baseline function t∗(·) can be learned by optimizing t∗ = arg mint J(t), and the
objective is defined as

J(t) := arg min
t

∑
(s,a,s′)∈D∪DR

l(Q(s,a)− t(s)− γ max
a′∈A

(Q(s′,a′)− t(s′)))
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where the loss function l(·) is chosen to be l1-norm through empirical evaluations. In addition to
the demonstration D, we incorporate another set of demonstrations DR, containing transitions ran-
domly sampled from environment without reward information. The set DR is to help the function
t(·) to efficiently learn the state dynamics, and does not require human labeling, essentially keeping
the number of queries same. After reward learning, consisting of learning Q function and base-
line function, for any transition tuple (s,a, s′), the learned reward function can be represented as
QB(s,a)− γmaxa′∈AQB(s′,a′). We then use this reward function to augment the following RL
agent.

7.5 BOX WORLD GAME ENVIRONMENT

This environment consists of an 8 × 8 pixels room with keys and boxes randomly scattered. The
room also contains an agent, represented by a single black pixel, which can move in four directions:
up, down, left, and right. Keys are represented by a single colored pixel, and boxes are represented
by two adjacent colored pixels, where the pixel on the right represents the box’s lock. A key can
open a lock if its color matches the lock. Its screen shot is shown in Figure 8 (a).

7.5.1 EVALUATION WITH SYNTHETIC HUMAN FEEDBACK

Here, we evaluate the first framework on the Box World game (Zambaldi et al., 2018) with synthetic
human feedback. This environment is introduced with details in Appendix 7.5. The synthetic feed-
back gives noisy label on each state-action pair, where the correct (optimal) one is labeled as wrong
(sub-optimal) with the probability of ε1, and the wrong (sub-optimal) one is labeled as correct with
the probability of ε2. Here, the Q network is modeled by bootstrapped DQN.

This game has a combinatorially complex environment which cannot be quickly solved by a regular
RL algorithm. The simulation results are shown in Figure 8, where ”No Feedback” refers to the
RL algorithms without the help of human feedback. The detailed statistics of evaluations are illus-
trated in Table 7.5.1. Three acquisition functions are evaluated for comparison. The mean complete
episode for mutual information, entropy and confidence level are 167.0, 177.5 and 231.2 for Human
1, 166.3, 184.2 and 195.2 for Human 2. We can see the first framework can achieve similar perfor-
mance as full access method in terms of convergence speed, with much smaller number of inquiries.
The acquisition function of confidence interval performs worst, because it does not consider the
properties of the trained model. The mutual information performs better than entropy, but needs a
larger number of human feedback inquiries.
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(c) Human 2

Figure 8: First Framework Evaluation on Box World Game. The number in brackets denotes the
inquiry interval NE .

Table 1: First Framework Evaluation on Box World Game with Synthesized Human (NE : Inquiry
Interval NC : Complete Episode NI : Number of Inquiries). Standard deviation is presented in the
brackets.

Human NE
Full Access Mutual Information Entropy Confidence Interval

NC NI NC NI NC NI NC NI

ε1 = 0.3, ε2 = 0.25 5 166.9(36.2) 7219.6(1236.0) 167.0(36.1) 1010.3(208.2) 177.3(31.8) 758.9(298.4) 231.2(26.2) 1003.2(154.62)
ε1 = 0.2, ε2 = 0.15 10 153.2(29.7) 4562.2(325.3) 166.3(33.0) 743.3(117.5) 184.2(61.9) 510.6(165.3) 195.2(30.0) 809.9(154.6)
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Table 2: First Framework Evaluation on Maze Game with Real ErrP
Subject NE

Full Access Mutual Information Entropy Confidence Level
NC NI NC NI NC NI NC NI

Subject 04 5 153.4(±27.8) 1975.4(±346.2) 161.2(±21.7) 636.7(±170.3) 172.0(±47.8) 389.3(±149.9) 168.3(±22.6) 847.2(±135.2)
Subject 05 5 150.0(±20.4) 2130.1(±357.8) 153.1(±36.8) 505.7(±221.6) 164.8(±25.4) 394.7(±109.1) 173.8(±39.6) 887.1(±292.0)
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