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Abstract

With a mortality rate of 5.4 million lives worldwide every year and a healthcare cost of
more than 16 billion dollars in the USA alone, sepsis is one of the leading causes of hospital
mortality and an increasing concern in the ageing western world. Recently, medical and
technological advances have helped re-define the illness criteria of this disease, which
is otherwise poorly understood by the medical society. Together with the rise of widely
accessible Electronic Health Records, the advances in data mining and complex nonlinear
algorithms are a promising avenue for the early detection of sepsis. This work contributes to
the research effort in the field of automated sepsis detection with an open-access labelling
of the medical MIMIC-III data set. Moreover, we propose MGP-AttTCN: a joint multitask
Gaussian Process and attention-based deep learning model to early predict the occurrence
of sepsis in an interpretable manner. We show that our model outperforms the current
state-of-the-art and present evidence that different labelling heuristics lead to discrepancies
in task difficulty.

1 INTRODUCTION

Every year, it is estimated that 31.5 million people worldwide contract sepsis. With a mortality rate
of 17% in its benign state and 26% for its severe state (Fleischmann et al., 2016), sepsis is one of the
leading causes of hospital mortality (Vincent et al., 2014), costing the healthcare system more than
16 billion dollars in the USA alone (Angus et al., 2001). Studies demonstrated that early treatment
has a significant positive effect on the survival rate (Kumar et al., 2006; Nguyen et al., 2007). In
particular, Castellanos-Ortega et al. (2010) demonstrated that each hour delay in treating a patient
results in a 7.6% increase in mortality.

Current methods of screening, such as Modified Early Warning System (MEWS) and Systemic
Inflammatory Response Syndrome (SIRS) have been criticised for their lack of specificity, leading to
low accuracies and high false alarm rates. In 2015, the Third International Consensus Definitions
for Sepsis (Singer et al., 2016; Seymour et al., 2016; Shankar-Hari et al., 2016) committee worked
towards incorporating medical and technological advances into an up-to-date definition of sepsis,
providing scientists with widely acknowledged illness criteria. Together with the rise of Electronic
Health Records (EHR), the scientific community is now armed with both the data and labelling
techniques to experiment with novel prediction methods (Islam et al., 2019; Henry et al., 2015;
Ghosh et al., 2017; Calvert et al., 2016; Desautels et al., 2016), which are already proving effective in
increasing survival rate (Shimabukuro et al., 2017) and promising in decreasing costs.

New models developed so far either relied on some interpretable yet simple prediction methods,
such as logistic regression (Calvert et al., 2016) and decision tree based classifiers (Mao et al., 2018;
Delahanty et al., 2019), or on effective yet black-box methods such as Recurrent Neural Networks
(Futoma et al., 2017b). Moreover, the results achieved by different authors are rarely comparable:
although most use the MIMIC-III data set, the disparities in labelling rules result in highly variable
data sets (eg. Raghu et al. (2018) have 17,898 septic patients vs. 2,577 for Desautels et al. (2016)).

This work presents an attempt at reconciling interpretability and predictive performance on the sepsis
prediction task and makes the following contributions:

• Gold standard for labelling. We provide a gold standard for Sepsis-3 labelling implemented
on the MIMIC-III data set.
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Figure 1: Proposed model architecture.

• Novel interpretable model. We present an explainable and end-to-end trainable model based
on Multitask Gaussian Processes and Attentive Neural Networks for the early prediction of
sepsis.

• Empirical evaluation. We assess our model on real-world medical data and report superior
predictive performance and interpretability compared to previous methods.

An overview of our proposed method is shown in Figure 1.

2 RELATED WORK

Medical time series diagnosis Multiple researchers have tackled the task of predicting sepsis and
septic shock. Works on septic shock include exploration of survival models (Henry et al., 2015)
and Hidden Markov Models (Ghosh et al., 2017). However, these models rely on the assumption
that a patient has already developed sepsis and focus on patterns of patients’ further deterioration.
Other authors (Calvert et al., 2016; Desautels et al., 2016; Mao et al., 2018; Delahanty et al., 2019)
use linear models and decision trees on engineered features to predict sepsis onset, thus failing to
capture temporal patterns. More recently, Kam & Kim (2017) and Raghu et al. (2018) employed
recurrent neural networks to better capture time dependencies. Crucially, all these models rely on
either averaging or forward imputation of data points to create equidistant inputs. This transformation
creates data artefacts and discards relevant uncertainty: in the medical field, the absence of data is a
conscious decision made by professionals implying an underlying belief of the patient state. Futoma
et al. (2017b) and Moor et al. (2019) tackled this issue with Multitask Gaussian Processes (MGPs),
however their models lack the interpretability necessary in the medical field.

Irregularly sampled time series The most common solution to missing values is forward imputa-
tion (Calvert et al., 2016). Lipton et al. (2016) utilise forward imputation coupled with a missingness
indicator fed into a black-box model. Although this method retains information about data presence,
it is not clear how the information is later interpreted by the model and hence does not meet our
transparency criteria. Ghassemi et al. (2015) use MGPs to fit sparse medical data, however they
optimise their model for the data fit and use the parametrisation as input for a classifier rather than
optimising the model for a classification task. Both Futoma et al. (2017a) and Moor et al. (2019)
use MGPs with end-to-end training, although their temporal covariance function is shared across all
variables. Finally, Futoma et al. (2017b) uses MGPs with multiple time kernels in a similar fashion to
our model, although they infer the number of kernels from hyperparameter tuning rather than the data
itself.

Attention based neural networks Attention was first introduced on the topic of machine transla-
tion (Bahdanau et al., 2014). Since then, the concept has been used in natural language processing
(Yang et al., 2016; Yu et al., 2018) and image analysis (Mnih et al., 2014; Schlemper et al., 2019). In
the same spirit, Qin et al. (2017) used attention mechanisms to improve the performance of a time
series prediction model. Although their model easily explains the variable importance, its attention
mechanism is based on Long Short Term Memory encodings of the time series. At any given time,
such an encoding contains both the information of the current time point and all previous time points
seen by the recurrent model. As such, the time domain attention does not allow for easy interpretation.
More similar to our implementation is the RETAIN model (Choi et al., 2016), which generates its
attention weights through reversed recurrent networks and applies them to a simple embedding of the
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time series. The model employs recurrent neural networks which are slower to train and suffer from
the vanishing gradient problem. Furthermore, the initial and final embeddings decrease the model’s
interpretablity. Other authors using Temporal Convolutional Network (TCN) based attention include
Lin et al. (2019), who only attend to time.

3 METHOD

3.1 NOTATION

Let us first define some notation for the problem at hand. For each patient encounter p, several
features yp,ti,k are recorded at times tp,k,i from admission, where k ∈ {1, . . . ,M} is the feature
identifier. These features are often vital signs and laboratory results. As such, they are rarely observed
at the same times. Hence, we have a sparse matrix representation of observations yp,1,t1 . . . yp,1,tNp

...
. . .

yp,M,t1 . . . yp,M,tNp

 (1)

where Np is the patient’s observation period length. We also define static features sp =
{sp,M+1, ..sp,M+Q} with features identifiers k ∈ {M + 1, . . . ,M + Q}, corresponding to time-
independent quantities, such as age, gender and first admission unit. Finally, we define sepsis labels
lp ∈ {0, 1}. Given the sparsity of the data, we can define the compact representation of all observed
values:

{tp,yp, sp, lp} =
{
{tp,i,k, yp,i,k}i∈{0,...,Np},k∈{1,...,M}, {sp,M+1, ..sp,M+Q}, lp

}
(2)

The goal of the model is, for a given set {tp,yp, sp} to predict the label lp. In order to remove clutter,
we will from now on drop the patient-specific subscript p from all notation, and the feature subscript
k from time notation, simplifying tp,k,i to ti.

3.2 MULTITASK GAUSSIAN PROCESS (MGP)

Gaussian processes are commonly known for their ability to generate coherent function fits to a set of
irregular samples, by modelling the data covariance. As they easily account for uncertainty and do
not require homogeneously sampled data, Gaussian processes are the perfect candidate model to deal
with relatively small amounts of medical data.

Following Bonilla et al. (2008), we use a Multitask Gaussian Process (MGP) to capture feature
correlation and Li & Marlin (2016)’s end-to-end training framework, in a similar manner to Futoma
et al. (2017a). Given an hourly spaced time series {t′i}0i=−Np

(where 0 is the time of prediction), the
MGP layer produces a set of posterior predictions for each feature, which will then be fed into a
classification model.

We define a patient-independent prior over the true values of {yi,k} by {fk(ti)} such that
{yi,k} ∼ N (fk(ti), σ

2
k) (3)〈

fk(ti), fk′(tj)
〉

=
∑
l∈L

Kk
l (k, k′)Ktt

l (ti, tj) (4)

where {Ktt
l (ti, tj)}l∈L are time point covariances varying in smoothness, {Kk

l (k, k′)}l∈L are feature
covariances at a given smoothness level, independent of time, and L are smoothness clusters. Over
all variables and time points, the multivariate model has covariance∑

l∈L

Kk
l ⊗Ktt

l +D ⊗ I (5)

where D = diag(σk) are the noise terms associated to each feature and ⊗ is the Kronecker product.
The posterior over t′ = {t′i}0i=−Np

is a multivariate Gaussian with mean and covariance:

µ =
(∑
l∈L

Kk
l ⊗Ktt′

l

)(∑
l∈L

Kk
l ⊗Ktt

l +D ⊗ I
)−1

y

Σ =
∑
l∈L

Kk
l ⊗Kt′t′

l −
(∑
l∈L

Kk
l ⊗Ktt′

l

)(∑
l∈L

Kk
l ⊗Ktt

l +D ⊗ I
)−1(∑

l∈L

Kk
l ⊗Kt′t

l

) (6)
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In order to approximate the posterior distribution, we then take Monte Carlo samples yMC from
YMGP ∼ N (µ,Σ).

Note that there are two main feature clusters: vital signs (vitals) and laboratory results (labs). Vitals
are noisier and sampled more often, whereas labs are more monotone and rarely sampled. As opposed
to Futoma et al. (2017b), we do not treat the number of clusters L as hyperparameters but set L = 2
and define

Kt
l (ti, tj) = exp

(−|ti − tj |
λl

)
(7)

as Ornstein-Uhlenbeck (OU) kernels with lengths λ1 and λ2, each representing a cluster smoothness.
OU kernels are well suited to capture local variations and do not assume infinite differentiability as
Squared Exponential kernels do. In our case, differentiablity implies a level of smoothness which
does not apply to medical records and only introduces unnecessary bias. In addition, given the scarce
availability of labs, all short lengthscales would be an ill fit to the data. We hence discarded kernels
varying over lengthscales such as the Cauchy and the Rational Quadratic kernels. Kk

l (k, k′) are
free-form covariance matrice that are learned by gradient descent.

To feed the MGP samples into the classifier, we fix the model time window to N = 25 by either zero
padding or truncating the beginning of the time series. We choose to do so at the beginning of the
time series in order to align prediction times as the last step of the temporal classification model.
Here, we also integrate the static variables by broadcasting them over each time point1.

3.3 ATTENTION TIME CONVOLUTIONAL NETWORK (ATTTCN)

The concept of attention was born in machine translation (Bahdanau et al., 2014): given an input
sentence embedding S = {h1, . . .h|S|}, the attention mechanism produces weights {αi1, . . . αi|S|}
such that αij ∈ [0, 1],

∑
j α

i
j = 1, and a context vector ci =

∑
j α

i
jhj used to predict target word

i. The weights αij can therefore be interpreted as the importance of the input sentence’s jth word to
produce the ith word of the translation.

More recently, Choi et al. (2016) have applied attention to clinical time series. Given a time series
{x1, . . .xT } ⊂ Rr, the authors first create a time-independent embedding of the data {v1, . . .vT } ⊂
Rm. They then use inversed recurrent neural networks (RNN) to create weights α ∈ RT and
β ∈ RT×m, where αj ∈ [0, 1] and βij ∈ [−1, 1], with softmax and tanh activations respectively. The
context vectors then take the form ci =

∑
j≤i αjβj � vj and are fed into a multilayer perceptron

with softmax activation to yield a prediction.

The attention model we devised borrows some ideas from Choi et al. (2016). The interpolated
data yMC ∈ RN×(M+Q) is directly fed into two temporal convolutional networks (TCNs) (Lea
et al. (2017)) and generates embeddings z = [z1, . . . , zN ] ∈ RN×(M+Q) and z′ = [z′1, . . . , z

′
N ] ∈

RN×(M+Q).

TCNs are a class of neural networks composed of causal convolutions stacked into Residual Blocks.
A causal convolution is a 1D convolutional layer which only takes inputs from the past to generate its
output, avoiding any information leakage from the future. Residual Blocks are made of two causal
convolutional layers together with ReLU activation functions, dropout and L2 regularisations. The
Residual Blocks also include an identity map from the input of the block added to the output. As we
only use up to 12 layers, this last step is omitted in our architecture. TCNs have shown to outperform
RNNs (Bai et al. (2018)), are faster at training and do not suffer from vanishing gradients. Given the
latter, inverting the time series similarly to Lea et al. (2017) also becomes an unnecessary step which
we omit.

We generate the attention weights α and β as

αj,0 = softmax(zj ×Wα,0 + bα,0) αj,1 = softmax(zj ×Wα,1 + bα,1) (8)

βj,0 = sigmoid(z′j ×Wβ,0 + bβ,0) βj,1 = sigmoid(z′j ×Wβ,1 + bβ,1) (9)

Wα,0,Wα,1 ∈ RM+Q bα,0, bα,1 ∈ R (10)

Wβ,0,Wβ,1 ∈ R(M+Q)×(M+Q) bβ,0,bβ,0 ∈ RM+Q (11)

1see Appendix C.2 for more information on this design choice
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such that α = [α0,α1] ∈ RN×2 and β = [β0,β1] ∈ RN×(M+Q)×2.

We then create two context vectors, one for each of negative and positive label predictions

ci =
∑
j≤i

αj,δβj,δ � yMC,j ∈ RN×(M+Q)×2 , δ ∈ {0, 1} (12)

where yMC,j is broadcast to meet the dimensionality of βj,δ . We then predict the labels as

l̂i = softmax
( N∑

n

M+Q∑
m

ci,nm

)
∈ [0, 1]2 (13)

In our case, we are only interested in making predictions with the latest available data. We therefore
only use l̂last to train the model. This of course can be easily modified to suit any specific use-case.

Since the MGP output is directly multiplied by weights ci, the classification model can be interpreted
as a scoring mechanism where each past point yMC,ij contributes αi,0βij,0 to the time series being
classified as positive, and αi,1βij,1 to the time series being classified as negative. The positive and
negative scores are then normalised to represent probabilities of the positive or negative labelling. As
we design both α and β to be non-negative, we can hence directly look at the average α and β over
Monte Carlo samples to see which time points and features contribute most strongly to the network’s
positive or negative decision.

4 DATA

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to
infection (Singer et al., 2016). The latter is usually interpreted as the administration of antibiotics
coupled with the culture of blood samples, generating a suspicion of infection window, whereas the
former is interpreted as a two point increase in Sequential Organ Failure Assessment (SOFA) within
such a suspected infection window. We make use of the MIMIC-III data set (Johnson et al., 2016)
and encode the Sepsis-3 criteria following Johnson & Pollard (2018)’s code available on GitHub,
with the help of Moor et al. (2019)’s code that the authors have generously provided.

One key difference between our assumptions and Moor et al. (2019)’s is the handling of missing
SOFA contributor values: if one or more SOFA contributors are missing, Moor et al. do not calculate
the total score. On the other hand, we assume such a contributor to be within a healthy norm, implying
a zero contribution. The latter heuristics is in line with the official Sepsis 3 definition in Singer et al.
(2016). In order to validate our results, we carry out all experiments using both labelling techniques.

We proceed to extract times series of case and control patients for a set of commonly recorded vitals,
labs and static variables and normalise their values. Following Moor et al. (2019), in order to keep the
data set length balanced, we match the time series lengths of control patients to those of case patients
using the class balance ratio. In addition, we create up to seven copies of each time series and truncate
the last zero to six hours of data, effectively creating early prediction patients and augmenting our
data set. We remove excessively noisy or computationally intensive data and train the model over

Figure 2: Interpretation of the different attention weights in our model.
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Figure 3: Performance of different models. It can be seen that our proposed labels are harder to fit
than the ones by Moor et al. (2019). Moreover, our proposed model outperforms the baselines on
both label sets, especially for earlier prediction horizons.

different hyperparameters, randomly resampling an equal number of case and control patients to
counteract the data set imbalance.

5 EXPERIMENTAL RESULTS

We compare our model’s performance to the performance of the InSight algorithm (Calvert et al.,
2016) and to the state-of-the-art MGP-TCN algorithm (Moor et al., 2019). Figure 3 shows the
predictive performance of the models for different time horizons.

5.1 COMPARISON BETWEEN DIFFERENT DATA LABELS

The first result is the difference in performance of models applied to the different labelling methods.
The SOFA contributor assumption Moor et al. make has two main implications. Firstly, it considerably
restricts the number of patients. Assuming that sicker patients receive more medical attention, the
patients included are likely to be in worse conditions than the septic patients excluded and hence
easier to classify. Secondly, it delays sepsis onset. For example, a patient having a severe liver
failure with few other recorded vitals, followed by an overall collapse further in time will have septic
onset at the time of its liver failure in our records, whereas it will only be considered septic at the
time of the overall collapse in Moor et al.’s labels. On the other hand, the labels we produce reflect
the incomplete nature of medical data: even if only a part of all the potentially relevant tests are
carried out at any given time, a doctor must be able to assess a patient’s well-being and foresee
potential complications. The difference in labels implies a discrepancy in task difficulty: Moor et al.’s
labels present an easier learning problem, however they define a more narrow use-case in real-world
scenarios.

Indeed, when assessing the performance of the different models on the two different data labellings,
it becomes evident that our proposed labels are harder to fit. This means that predicting sepsis in a
realistic setting on the intensive care unit is probably much harder than previous work would suggest.

5.2 MODEL PERFORMANCE

We find that our MGP-AttTCN model has a better performance when presented with patients further
in time from sepsis onset. In the case of Moor et al.’s labels the difference is clearly noticeable,
whereas with our labels it is of lower statistical significance. With our labels, both MGP-TCN and
MGP-AttTCN have a stronger performance than InSight. The intuition behind this result is the
robustness of the models to missing data: both MGP-TCN and MGP-AttTCN account for the data
uncertainty and hence have a better performance on lower resolution and more irregular data.
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Figure 4: Heatmaps of the learned MGP covariance matrices between the data features for the two
different smoothness clusters.

On Moor et al.’s labels, the MGP-TCN model does not seem to significantly outperform the InSight
model, suggesting that those labels might be easy enough to not require a particularly pronounced
robustness to missing data. However, the additional attention of the proposed MGP-AttTCN model
does seem to gain a clearer advantage here than on our labels, presumably due to a more complete set
of features that can be attended to.

5.3 MGP INTERPRETABILITY

Inspecting the learned covariances (Figure 4), we notice that the two OU lengthscales converged
to represent two clusters within the selected variables: a shorter lengthscale (around two hours)
represents noisy data, whereas a larger lengthscale (around 64 hours) represents smoother observations.
In addition, the feature covariance matrix for the short lengthscale puts more emphasis on vitals, while
the one for the long lengthscale puts more emphasis on labs, fitting our initial intuition that vitals
vary more rapidly. Graphically, one can observe this by inspecting the diagonals on the covariance
heatmaps.

On a more granular level, the two covariance matrices also provide insights about the underlying
variables. One can for instance observe that the body temperature (tempc) has a larger variance
than the systolic and diastolic blood pressure (sysbp, diabp), following the general clinical intuition.
Moreover, we can observe correlations between different features, such as a negative correlation
between temperature and heart rate, which also seems to coincide with the general medical expectation.
These covariances can then for instance be used by the model to extrapolate a full function from a
single INR observation with an inverse correlation to the pulse oximetry observations (Fig. 5).

5.4 ATTENTION WEIGHTS

One important benefit of our model compared to current approaches is its interpretability due to the
attention mechanism. Once the samples have been drawn, the weights α and β provide us with more
information about the importance of different time points and features for the model’s behaviour. The
attention weights for an exemplary patient trajectory are depicted in Figure 5.

Overall, the absolute values of α are small for points further from the prediction time and increasingly
larger closer to it. A good example of this behaviour is the fourth row in Figure 5, where feature
importance increases in time. We can also see there, that different features can have opposing effects
on the prediction. While the elevated heart rate close to the prediction time increases the likelihood
of a sepsis prediction (first column, yellow weights), the lowered prothrombin values reduce this
likelihood (third column, blue weights). Interestingly, the low prothrombin values are not actually
measured in this example, but predicted by the MGP purely based on the other measured features and
the learned covariances.
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Figure 5: Visualization of the journey of an exemplary patient trajectory through our proposed model
architecture. The raw features (row 1), measured at irregular time points, are interpolated by an
MGP (row 2). Samples from the MGP posterior can then be aggregated into means and variances for
each feature on a fixed, regularly-spaced time grid (row 3). These values are then attended to by the
TCN (row 4), where positive attention weights are yellow and negative ones blue. Row 5 shows the
attention weights separated by features (x-axis) and time point (y-axis).

Finally, α× β × yMC gives the individual score contribution of each feature at each time point. These
weights are shown in the last row of the figure. It can again be seen that the attention weights are
generally larger in magnitude closer to the prediction time. Moreover, about half of the features have
significant non-zero attention weights, while the others seem to not be important for the prediction in
this example.

These visualizations could be used by doctors to make an informed decision about whether or not
to trust the prediction of the model for each given patient, thus facilitating the interpretability and
accountability that is crucial in medical applications.

6 CONCLUSION

We have shown that current data sets for the early prediction of sepsis underestimate the true difficulty
of the problem and proposed a new labelling for the MIMIC-III data set that corresponds more closely
to a realistic intensive care setting. Moreover, we have proposed a new machine learning model,
the MGP-AttTCN, which outperforms the state-of-the-art approaches on the easier labels from the
literature as well as on our proposed harder labels. Additionally, our model provides an interpretable
attention mechanism that would allow clinicians to make more informed decisions about trusting its
predictions on a case-by-case basis.

Potential avenues for future work include a more thorough discussion with clinicians to potentially
make our proposed labels even more representative of the real-world task, and architectural im-
provements, for instance by meta-learning the MGP prior (Fortuin & Rätsch, 2019), amortizing the
latent MGP inference for performance gains (Fortuin et al., 2019), or discretizing the latent space for
improved interpretability (Fortuin et al., 2018).
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APPENDIX A DATA PROCESSING

A.1 DATA LABELLING

Please refer to link omitted for anonymity for more details how we derived the MIMIC-III sepsis
labels.

A.2 DATA EXTRACTION

Patient Inclusion We filter for patients admitted to Intensive Care Units (ICU) who are more than
14 years old and with valid records. Case patients are patients having sepsis onset within their ICU
stay, whereas control patients have not developed sepsis nor have an ICD discharge code referring to
sepsis. Starting with 58’976 patients, we find 14’071 control patients and 7’936 case patients using
our labels, versus 1’797 cases using Moor et al. labels.

Feature extraction Reviewing sepsis related literature and commonly extracted laboratory and
vital recordings, we extracted all features which were reported at least once for more than 75% of the
included population. The final 24 dynamic features are reported in Table 3. We also extracted static
features - age, gender and first ICU admission department.

Case-control matching As the goal is to predict sepsis prior to onset, the cases data was extracted
between ICU admission and sepsis onset. Note that sepsis onset happens early within ICU admission,
with the median patient getting sick at 3.4 hours of admission. On the other hand, patients not
developing sepsis are more likely to recover completely, and do so in a lengthier time frame. In
addition, once they are close to discharge, their vitals and labs are within the norms. Hence, both the
length and the values of the time series are strong discriminatory factors which ease the classification.
We hence carry out a matching strategy similar to Moor et al. (2019): following the class imbalance
ratio, we associate each control time series to a case time series and truncate the control to have the
same length as the case from ICU admission. We then discard patients with less than 40 data points
within the selected window, and - for computational tractability - truncate the first Np − 250 initial
values of patients’ time series in order to keep a maximum of 250 data points per patient.

Horizon augmentation As our goal is to predict sepsis early, we augment the data by creating new
shorter time series. For each time series, we create six copies, where each copy represents a different
horizon to onset. We then proceed to truncate the last one to six hours prior to onset from the time
series copies. In order to keep data consistency, we once again discard time series with less than 40
observations. In Tables 1 and 2 we illustrate the data distribution per horizon.

Table 1: Augmented Dataset Description with Moor et al. labels

Horizon to onset N. of patients N. of obs. per patient
0 h 15’123 69.9± 59.6
1 h 11’258 56.6± 59.1
2 h 8’478 61.4± 62.8
3 h 6’554 66.5± 65.9
4 h 5’233 70.6± 69.0
5 h 4’162 76.3± 71.9
6 h 3’390 81.9± 74.3

Data split Finally we split the data into training, validation and testing sets, respectively capturing
80%, 10% and 10% of the data. We then normalise the data by subtracting the training set mean and
dividing by the training set standard deviation of each feature.
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Table 2: Augmented Dataset Description with authors labels

Horizon to onset N. of patients N. of obs. per patient
0 h 20’075 64.0 ± 65.5
1 h 15’832 62.5 ± 65.6
2 h 12’080 66.1 ± 67.2
3 h 9’441 69.7 ± 68.1
4 h 7’484 73.4 ± 68.5
5 h 6’007 77.1 ± 68.2
6 h 4’876 81.2 ± 67.4

Table 3: List of dynamic features

Vitals Labs
Sys. blood pressure Bicarbonate PTT
Dia. blood pressure Creatinine INR

Mean blood pressure Chloride PT
Resp. rate Glucose Sodium
Heart rate Hematocrit BUN

SpO2 pulse ox. Hemoglobin WBC
Temperature (C) Lactate Magnesium

Platelet pH blood gas
Potassium

APPENDIX B BASELINES

B.1 DATA PREPARATION

In order to benchmark our MGP model, we build some baselines homogenising the data sampling.
For each hour and variable, we take the average of the available observations. If a given hour has
no observations, we carry forward the average of the previous hour. In this manner, we generate an
hourly sampled time series for each patient. We then proceed to normalise the size of each patient
matrix by setting a time window of observation N . For patients having more than N observations
Np, we discard the first N −Np observation; whereas for patients having less than N observations
we pad the beginning of the matrix with zeros. yp,1,t1 . . . yp,1,tNp

...
. . .

yp,M,t1 . . . yp,M,tNp

 carry forward−−−−−−−→

 yp,1,1 . . . yp,1,Np

...
. . .

yp,M,1 . . . yp,M,Np

 (14)

normalise−−−−−→



 yp,1,N−Np . . . yp,1,N
...

. . .
yp,M,N−Np

. . . yp,M,N

 if Np ≥ N

0 . . . 0 yp,1,N−Np
. . . yp,1,N

...
...

...
. . .

0 . . . 0 yp,M,N−Np . . . yp,M,N

 oth.

(15)

We choose to align the end of the time series as opposed to the beginning as the relative importance
of time points is to when a patient becomes sick rather to when he is admitted to the ICU.

As a next step, we augment the data to focus on different time series in a similar manner than for
irregularly sampled data. We create seven copies of each time series, for each copy we discard the last
zero to six hours, then normalise the matrix as above. We hence generate a dataset YBL = {Y }q =

{{yq,ij}N,Mi,j=1}q where q represent all augmented the time series.
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B.2 INSIGHT

The InSight scoring model is one of the few machine learning algorithms to surpass the proof-of-
concept stage with multiple research, economic and clinical trials (Calvert et al., 2016; Desautels
et al., 2016; Calvert et al., 2017; Mao et al., 2018). We therefore include it as a baseline to our model.

The key concept of the model is to use few largely available vitals, build some handcrafted features
and train a simple classification model.

Here is an account of our interpretation of the author’s method. The features extracted are based on a
six consecutive hour window. For each six hour window, we extract each variable’s mean Mi and
difference Di (last observation minus first observation) over the window. We also extract variables
pairs correlation Dij and triplet correlation Dijk; where i, j, k are observed variables. We interpret
the latter as a relaxation of the Pearson correlation: if the correlation between two variables is

ρXY =
E[(X − µX)(Y − µY )]

σXσY
(16)

then we define the triplet correlation as

ρXY Z =
E[(X − µX)(Y − µY )(Z − µZ)]

σXσY σZ
(17)

We then classify the difference and correlations as either positive, negligible or negative using their
distribution quantiles over every patient and six hour window observed. Note that given the high
level of data missingness, many variables are calculated by forward imputation and hence have no
variance over six hours. To adjust for the high number of zero correlations, we calcualte the quantiles
of non-zero correlations and define:

D̂i =


1 if Di > q∗(2/3)

−1 if Di < q∗(1/3)

0 otherwise
(18)

where q∗ is the adjusted quantile function. We proceed in a similar manner for the correlations and
triplet correlations.

In order to keep the results comparable to the AttTCN fixed window N , we extract N − (6− 1) six
consecutive hour window and vectorise the resulting features, generating in total

nfeatures =
(
N − 5

)
×
(

2×M +

(
M

2

)
+

(
M

3

))
(19)

features per patient.

Although the original paper does not specify which classification method the authors employ, we
derive by their description of a dimensionless score that the method is a logistic regression.

APPENDIX C MODEL DETAILS

C.1 TCN PROPERTIES

TCNs are a class of neural networks composed of causal convolutions stacked into Residual Blocks.
A causal convolution is a 1D convolutional layer which only takes inputs from the past to generate
its output, avoiding any data leakage. Residual Blocks are made of two causal convolutional layers
together with ReLU activation functions, dropout and L2 regularisations.

C.2 STATIC VARIABLES

In our model implementation, we decide to integrate the static variables to the MGP output. Another
choice we considered is to integrate the data to the output of the attention model. Once the weights α
and β have been created, we can introduce a bias term to

l̂i = Softmax
( N∑

m

M+Q∑
m

ci,nm + bstatic

)
∈ [0, 1]2 (20)
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Table 4: Hyperparameter search

Hyperparameter Random Search
min max

MGP Monte Carlo samples 4 20
TCN kernel size 2 6
TCN number of Residual Blocks 2 12
TCN number of hidden layers 10 55
TCN dropout rate 0 0.99
TCN L2 regularisation 0 250

Table 5: Area under the ROC curve for Moor et. al. labels

Time to onset InSight MGP-TCN MGP-AttTCN
6h 66.4 ± 0.7 65.0 ± 2.2 67.0 ± 4.3
5h 65.9 ± 1.5 66.4 ± 2.8 73.2 ± 2.7
4h 64.7 ± 0.6 68.3 ± 2.9 73.4 ± 2.9
3h 67.0 ± 1.0 66.6 ± 2.4 72.2 ± 3.6
2h 67.7 ± 1.2 66.4 ± 2.7 73.9 ± 2.5
1h 69.5 ± 0.8 68.2 ± 2.0 76.8 ± 1.7
0h 76.4 ± 0.9 81.4 ± 0.9 80.5 ± 0.5

where bstatic is generated by the output of a two layers multilayer perceptron applied to the static
data. Although this solution is computationally lighter and provides a more elegant interpretation, it
does not allow the attention mechanism to utilise the information about the patient’s static state when
making a decision about its vitals and labs values. For the scope of this paper, we hence decided for
earlier static data integration.

C.3 PARAMETER HYPERSEARCH AND TRAINING

As the datasets are highly unbalanced, we carry out a case set oversampling: we randomly resample
the case set to have the same size as the control set. In addition, at each iteration we sample equally
the same number of cases and controls, then feed a shuffled version into the model. In this manner
the model will see an equal number of controls and cases and will not become biased towards zero
labels. This procedure does not happen for either of the validations and test sets, as the results would
not compare to real life settings.

For both our core model MGP-AttTCN and all baselines, in order to select the best possible hyperpa-
rameters, we performed a hyperparameter random search, as described in Table 4.

C.4 NUMERICAL RESULTS

The results are shown in Tables 5 and 6.

Table 6: Area under the ROC curve for our labels

Time to onset InSight MGP-TCN MGP-AttTCN
6h 55.5 ± 2.7 60.9 ± 0.9 63.6 ± 0.9
5h 55.5 ± 1.4 62.4 ± 1.0 63.9 ± 1.6
4h 55.5 ± 1.6 62.4 ± 0.9 64.1 ± 1.2
3h 55.9 ± 1.3 61.6 ± 0.7 63.6 ± 0.9
2h 57.3 ± 1.5 62.4 ± 0.9 63.6 ± 0.6
1h 58.8 ± 1.8 64.5 ± 0.9 64.7 ± 0.9
0h 61.4 ± 1.1 67.0 ± 0.6 66.5 ± 0.9
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